
J. Ind. Eng. Int., 7(13), 35-43, Spring 2011

ISSN: 1735-5702

© IAU, South Tehran Branch

 *Corresponding Author Email: emehdi@qiau.ac.ir

 Tel.: +98 2813670051

A genetic algorithm approach for ∑ jjbsi fwSTP // , problem

E. Mehdizadeh
1
*; R. Tavakkoli-Moghaddam

2

1
Assistant Prof., Dep. of Industrial Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran

2
Professor, Dep. of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Received: 13 February 2009; Revised: 15 December 2009; Accepted: 13 April 2010

Abstract: In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling

problem with family setup time that minimizes the total weighted flow time (∑ jjbsi fwSTP // ,
). No set-

up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching

from the processing of family i jobs to those of another family j, i ≠ j, the duration of this set-up being the

sequence-independent set-up time sj for family j. This problem is shown to be NP-hard in the strong sense

and obtaining an optimal solution for the large-sized problems in reasonable computational time is

extremely difficult. Further, it is computationally evaluated the performance of the proposed genetic

algorithm solutions obtained using a mixed integer programming (MIP) with the Lingo 8.0 software.

Keywords: Genetic algorithm; Parallel machine scheduling; Setup time; weighted flow time

1. Introduction

A machine scheduling problem is an extended

field of research in various applications. The main

elements of machine scheduling problems are

machine configuration, job characteristics, and

objective function. The machine configuration can

be classified into single and multiple machine

problems in a broad sense. Parallel-machine

scheduling problems can be referred as a class of

problems that relaxed from the multiple machine

scheduling problems (Ahn and Hyun, 1990). A

batch setup time (cost) occurs when jobs, e.g.,

machine parts, are processed in batches (pallets,

containers, boxes) and a setup of a certain time or

cost precedes the processing of each batch. The

batch setup time (cost) can be sequence dependent

or sequence-independent. It is sequence-

dependent if its duration (cost) depends on the

families of both the current and the immediately

preceding batches, and is sequence-independent if

its duration (cost) depends solely on the family of

the current batch to be processed.

Three-field notation α/β/γ is adapted of

Allahverdi et al. (2008) to describe a scheduling

problem. The α field describes the shop (machine)

environment. The β field describes the setup

information, other shop conditions, and details of

the processing characteristics, which may contain

multiple entries. Finally, the γ field contains the

objective to be minimized.

A parallel machine-scheduling problem studied

with identical parallel machines, jobs arranged

into families, and sequence-independent set-up

time between jobs of different families on these

machines i.e. ∑ jjbsi fwSTP // ,
.

Many researchers studied parallel-machine

scheduling problems in the past. However,

research on family scheduling models is relatively

new to the literature. Allahverdi et al. (2008)

conducted a comprehensive review of setup-time

(or time) research for scheduling problems

classifying into batch, non-batch, sequence-

independent, and sequence-dependent setup.

Brono et al. (2003) proved that even a two-

machine system for finding the weighted sum of

flow time with an unequally weighted set of jobs

is NP-hardness. Blazewicz and Kovalyov (2002)

proved the strong NP-hardness of the problem

∑ jbsi CSTP // , under the group technology

assumption, and presented a polynomial-time

dynamic programming algorithm for the special

case with a given number of the machines.

Webster and Azizoglu (2001) and Azizoglu

and Webster (2003) addressed the same

problem with a weighted objective function,

i.e.,
 ∑ jjbsi fwSTP // , , or equivalently

∑ jjbsi CwSTP // , .

Two dynamic programming algorithms (a

backward and a forward) were proposed by

Webster and Azizoglu (2001), where they also

identified the characteristics of the problems for

which each algorithm is suitable. When the

number of machines and families is fixed, the

backward dynamic algorithm is polynomial in

36 E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43

sum of the weights while the forward dynamic

algorithm is polynomial in the sum of processing

and setup time. Azizoglu and Webster (2003)

presented several branch-and-bound algorithms

for the problem and computationally evaluated the

performance of each algorithm. They concluded

that the algorithms can quickly generate optimal

solutions for problems with up to 15 to 25 jobs,

depending on the number of machines. Chen and

Powell (2003) proposed column generation based

branch-and-bound algorithms for the same

problem, where they obtained optimal solutions

for problems up to 40 jobs, 4 machines and 6

families. Dunstall and Wirth (2005a) presented

another branch-and-bound algorithm for the same

problem and they showed that their algorithm

outperforms that of Azizoglu and Webster (2003).

They solved problems with up to 25 jobs and 8

families using their branch-and-bound algorithm.

Dunstall and Wirth (2005b) proposed several

simple heuristics for the same problem. Clearly,

the branch-and-bound algorithms of Chen and

Powell (2003) and of Dunstall and Wirth (2005b)

remain to be compared.

Zhu and Heady (2000) introduced a mixed

integer programming formulation to minimize the

earliness and tardiness of all jobs for a scheduling

problem with a non-uniform parallel machine and

setup consideration. Omar and Teo (2006) studied

on minimizing the sum of earliness/tardiness in

the presence of setups. They developed a mixed-

integer programming formulation model to deal

with such a scheduling problem. Biskup and

Cheng (1999) focused on two objectives, namely

small deviations from a common due date and

short flow time. Therefore, they proposed a model

to minimize the earliness, tardiness, and

completion time penalties.

Balakrishnan et al. (1999) presented a compact

mathematical model and described computational

experience by using their model to solve small-

sized problems. Dunstall et al. (2000) proposed a

B/B algorithm for lower bounds for the problem

of minimizing the weighted flow time on a single

machine with family set-up time and static job

availability. Thus, as the case of many NP-hard

problems, research on efficient heuristics capable

of high quality solutions is warranted. Meta-

heuristic methods can be developed to solve such

hard problems.

Caoa et al. (2005) developed a heuristic

algorithm to obtain the near-optimal solutions

based on a tabu search (TS) mechanism on

parallel machines scheduling problems by

minimizing the sum of machine holding costs and

job tardiness costs. Ramachandra and Elmaghraby

(2006) proposed a GA procedure to solve a two

machines scheduling problem to minimize the

weighted completion time.

Monch et al. (2005) attempted to minimize the

total weighted tardiness on parallel batch

machines with incompatible job families and

unequal ready times of jobs. They proposed two

approaches and applied genetic algorithm (GA) in

both approaches. Li and Cheng (1993) considered

the job scheduling problem in identical parallel-

machine systems with an objective of minimizing

the maximum weighted absolute lateness further,

Cheng and Gen (1997) have applied genetic

algorithms to the above problem. Kim et al.

(2002) proposed a simulated annealing (SA)

method for unrelated parallel-machine scheduling

problems with setup times. Melve and Uzsoy

(2007) also proposed a genetic algorithm to a

problem of minimizing the maximum lateness on

parallel, identical batch-processing machines with

dynamic job arrivals, based on random keys

encoding. Tavakkoli-Moghaddam and

Mehdizadeh (2007) presented a novel, integer-

linear programming (ILP) model for an identical

parallel-machine scheduling problem with family

setup times that minimizes the total weighted flow

time (TWFT). A meta-heuristic based genetic

algorithm is proposed and applied to the given

problem, which obtains good and near-optimal

solution, especially for large sizes.

The purpose of this paper is to extend a genetic

algorithm to schedule job families on parallel

machines by minimizing the total weighted flow

time, in which the weight of a job is the cost rate

for delaying its completion. Job families reflect

the efficiencies associated with processing similar

jobs together. The setup may reflect the need to

change a tool or clean the machine. A machine

must be set up when switching from one family to

others. There is no setup time between two jobs

from the same family.

The rest of this paper is given below. In Section

2, details of the given problem and the optimi-

zation model are presented. Section 3 presents a

description and design of the proposed genetic

algorithm. In Section 4, various test problems are

presented and solved by the proposed genetic

algorithm. Future research in this area and

conclusions are presented in Section 5.

2. Problem formulation

The objective of the problem is to schedule

identical parallel machines by minimizing the

total weighted flow time. All jobs are available at

E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43 37

time zero with known integer-processing times,

setup time, and weights. Each job is related to a

family, in which a setup time is required between

two jobs from different families, and the family

setup time is independent of the preceding family.

A setup is also required prior to the processing of

the first job on a machine. This is typical of

environment when scheduling at the beginning of

a new shift after machine down time. For a given

schedule, the weighted flow time of a particular

job is the product of its weight and job completion

time, and the total weighted flow time of a

schedule is the sum of weighted flow time over all

jobs.

2.1. Definition of parameters

The following Parameters are used in the

proposed model.

i, j Job indices, where job 0 is a dummy job

that is always at the first position on a

machine (i, j = 0, 1, …, n).

k Machine index (k=1, 2, …, m).

f, g Family indices.

n Number of jobs.

m Number of identical parallel machines.

o Number of families, (o ≤ n).

M Large positive number.

Pif Processing time of job i from family of

(f = 1, 2, …, o).

Sf Setup time of family f.

Wif Weight of job i from family f.

γifjg Equals to 1, if f ≠ g; and equals to 0,

otherwise.

2.2. Definition of decision variable

Cif Completion time of job i from family f.

Yifk Equals to 1, if job i from family f is

assigned to machine k; and equals to 0,

otherwise.

Xifjgk Equals to 1, if job j from family g

immediately follows job i from family f

on machine k; and equals to 0, otherwise.

X0ifk Equals to 1, if job i from family f on

machine k is the first in the queue; and

equals to 0, otherwise.

2.3. Proposed model

The proposed mathematical model is as follows:

∑
=

=
n

i

ifif WCTWFTMin
1

 (1)

Subject to:

fiY
m

k

ifk ,1
1

∀=∑
=

 (2)

kfiYPYSC ifkififkfif ,,∀+≥ (3)

gfjikgmfji

XMSPCC ifjgkifjgjgjgifjg

≠≠∀

−−++≥

;;,,,,,

),1(γ

 (4)

gjfY
n

ij
i

m

k

ifjgk ,,1
0 1

∀=∑∑
≠
= =

 (5)

kgjfYX
n

ij
i

jgkifjgk ,,,
0

∀=∑
≠
=

 (6)

kgfiYX
n

ij
j

ifkifjgk ,,,
1

∀≤∑
≠
=

 (7)

kfX
n

i

ifk ,1
1

0 ∀≤∑
=

 (8)

kgfjiCXXY iifkifjgkifk ,,,,0;1,0,, 0 ∀≥= (9)

Equation (1) represents the objective function

minimizing the total weighted flow time. Equation

(2) states each job from each family must be

assigned to exactly one machine. Equation (3)

ensures that completion time of a job from a

family must be later or equal to its processing

time and setup time.

Equation (4) guarantees that the completion

time of a job must be later or equal to the

completion time of its direct predecessor job in

the sequence, and its processing and setup time

(if setup is necessary). This constraint becomes

redundant if jobs i and j are assigned to different

machines. Equation (5) ensures that a job must be

processed at one and only one position on a

machine. Equation (6) states that job j should

immediately follow other job on machine k if it is

placed on this machine. Equation (7) states that if

38 E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43

job i, i ≠ 0, is processed on machine k, it will be

immediately followed by at most one another job

on this machine.

Equation (8) enforces that only at most one job

immediately follows the dummy job 0 on each

machine. Equation (9) states the properties of the

decision variables.

3. The proposed genetic algorithm

3.1. Structure of genetic algorithm

Genetic Algorithm (GA) was first introduced

by John Holland in the 1970s. It is a search

technique based on the concept of the natural

selection and evolution. GA is a stochastic search

technique based on the mechanism of the natural

selection and natural genetics. Genetic algorithm,

differing from conventional search techniques, it

starts with an initial set of random solutions called

a population.

Each individual in the population is referred to

a chromosome, representing a solution to the

problem at hand. A chromosome is a string of

symbols. Chromosomes evolve through

successive iterations, namely generations. During

each generation, chromosomes are evaluated by

using some measures of fitness.

To create the next generation, new

chromosomes, referred to offspring, are formed by

either (1) merging two chromosomes from the

current generation by using a crossover operator,

or (2) modifying a chromosome by using a

mutation operator. A new generation is formed by

(1) selecting, according to the fitness value, some

of parents and offspring, and (2) rejecting others

so as to keep the population size constant. After

several generations, the algorithm converges to

the best chromosome, which hopefully represents

the optimal or sub-optimal solution to the given

problem.

A genetic algorithm consists of four search

operators, namely selection, crossover, mutation,

and reproduction, to transform a population of

chromosomes while improving their ‘‘quality’’.

Genetic search operators are then applied one after

another to systematically obtain a new generation

of chromosomes with a better overall quality. This

process is repeated until the stopping criterion is

met, and the best solution of the last generation is

reported as the final solution. To efficiently search

the GA process and find the proper solution

structure, it is necessary that the initial population

of schedules be a diverse representative of the

search space.

3.2. Application of GA to the given problem

Chen and Gen have applied genetic algorithms

to the job scheduling problem in identical parallel

machine system with the objective of minimizing

the maximum weighted absolute lateness (Cheng

and Gen, 1995). This problem was first

considered by Li and Cheng (1993) as follows.

3.2.1. Chromosome representation

There are two essential issues to be dealt with

all types of multiple machine scheduling

problems:

• Partition of jobs to machines.

• Sequence jobs for each machine.

Also, each job (e.g., k) belongs to a family

(e.g., j) as shown with (j, k). Suppose n indicates

the number of jobs, therefore, an extended

representation is proposed to encode partition of

jobs to machines and sequence jobs for each

machine into a chromosome with n columns and

two rows. Where first row represents all possible

permutation of (j, k) (or sequence of (j, k)) and

second row designates the partition of (j, k) to

machines. Let us consider a simple example with

three jobs, two families, and two machines subject

to k1 and k2 belong to j1 , and k3 belong to j2.

Suppose there is a schedule as shown in Figure 1.

The chromosome can be represented as

follows:

In general, for an n-job, f-family, and m-

machine problem, a legal chromosome contains

two rows with n columns. There are n symbols of

(j, k) at the first row, and m machines at the

second row.

3.2.2. Generation of the initial population

Initial population is generated at random.

Machine 2 (j1 , k1)

Machine 1 (j2 , k3) (j1 , k2)

Figure 1: Schedule for three-jobs, two-families and two-machines.

(2 3) (1 2) (1 1)

1 1 2

Figure 2: Representation for three-jobs, two-families and two-

machines.

E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43 39

3.2.3. Evaluation

A simple way to determine the fitness value for

each chromosome is to use the inverse of the total

weighted flow time. Let TWFTk denote the total

weighted flow time for the k
th

 chromosome. The

fitness value (eval (vk)) is then calculated as

follows:

k

k
TWFT

veval
1

)(= (10)

where,

∑
=

=
n

ij

jk WFTTWFT (11)

WFTj is the weighted flow time for the j
th

 job that

is computed as follows:

WFTj = (completion time of j
th

 job) ×(weight of j
th

job)

3.2.4. Selection

The purpose of the parent selection in GA is to

offer additional reproductive chances to those

population members that are the fittest. One

common technique used in the proposed GA is the

roulette wheel selection. Here, it is used the

modified roulette wheel as follows that use the

number of generation for improvement of fitness

quality. The chromosome with higher fitness has

higher chance for selection.

1. Calculate the fitness value eval(vk) for each

chromosome vk (k=1, 2, …, pop_size).

2. Calculate the total fitness for the population

∑
−

=

=
sizepop

k

kvevalF
1

)(.

3. Calculate the selection probability Pk for each

chromosome vk:

F

veval
p k

k

)(
= , (k=1, 2, …, pop_size)

4. Calculate

Generation
R

kk pz
)(

= and R is a real

number.

5. Calculate the cumulative probability kq for

each chromosome kv :

∑
=

=
k

ij

jk zq , (k=1, 2, …, pop_size)

6. Generate a random number r from the interval

[0, 1]

7. If r ≤ q1, then select the first chromosome vk ;

otherwise, select the k
th

 chromosome vk (2≤ k ≤

pop_size) such that qk-1≺ r ≤ qk.

3.2.5. Genetic operators order crossover

There are several types of crossover operators.

In this study, order crossover (OX) operator is

used. The procedure is illustrated in Figure 3. By

the OX procedure, two off springs in per iteration

can be produced but the proposed crossover takes

two parents and creates a single offspring.

During past years, several mutation operators

have been proposed. The reciprocal exchange

mutation (swapping mutation) is used here, in

which two random positions are selected and then

their genes are swapped.

Parent1

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7)

1 1 1 2 2 2 2

Offspring

(3 6) (1 5) (3 4) (2 1) (1 3) (2 2) (1 7)

1 1 1 2 2 2 2

Parent2

(3 6) (1 5) (3 4) (1 3) (2 1) (2 2) (1 7)

1 1 1 2 2 2 2

Figure3: Illustration of OX operator.

Parent

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7)

1 1 1 2 2 3 3

Offspring

(3 4) (1 5) (1 3) (2 1) (3 6) (2 2) (1 7)

1 1 1 2 2 3 3

(a)

Parent

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7)

1 1 1 2 2 3 3

Offspring

(1 3) (3 6) (3 4) (2 1) (1 5) (2 2) (1 7)

1 1 1 2 2 3 3

(b)

Figure4: (a) Swap two jobs within one machine; (b) swap two jobs

within different machine.

40 E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43

3.2.6. Swapping mutation

The randomly swap genes may be either job or

job and machines. Different combinations of job

and job and machines result in two basic types of

mutation.

1. If the two selected jobs are processed by the

same machine. In this case, the mutation alters the

job order for the machine as shown in Figure 4(a).

2.Another case is that two jobs are processed by

different machines. In this case, the mutation

alters both job order and job partition to machines

for the chromosome as shown in Figure 4(b).

3.2.7. Stopping condition

The GA is terminated after a pre-selected

number of generations. A reasonable number can

be arrived at with a few preliminary test runs. 150

generations are founded to be sufficient.

4. Computational results and performance

evaluation

The proposed genetic algorithm (GA) can be

used for more complex and widely applicable

models of scheduling problems in industries.

The proposed algorithms are coded in Visual

Basic 6 and run on a PC with Intel(R) Core(TM)

2Duo CPU 1.8GHz, 2GB of RAM.

In Table 1 we compare the performance of the

proposed GA with the Lingo 8 software in terms

of computational time. The proposed GA has a

better solution than the Lingo software. Further,

when the number of jobs increases, we can see

that the computational time increases

exponentially because of the NP-hard nature of

the given problem. Other test instances have

generated according to the same rules followed by

Duntsall and Wirth (2000).

For each (G; N; M) jobs randomly assigned to

families by first drawing a random number for

each family and then distributing jobs

approximately in proportion to these random

numbers, subject to the constraint that total the

number of jobs sums to N. Job processing time

and weights are randomly sampled from the

ranges [1; 100] and [1; 10] respectively, and setup

time is randomly sampled from the range [0; 50].

27 sample size and 5 instances have generated for

each (G; N; M).

In line with the study by Duntsall and Wirth

(2000), the genetic algorithm have tested over

each combination of (G; N; M) from }8,5,3{∈G ,

}40,20,10{∈N and }5,3,2{∈M .

Because of the stochastic nature of the

proposed GA, five trials are performed for 150-

generation each and the best solution amongst the

five is considered as the final solution. The

associated computational results are summarized

in Table 1.

It can be seen the input and output of the

designed software in Figures 5 and 6. Tables 2

and 3 show the convergence of the average and

the best fitness in each generation. The near-

optimal solution is achieved after approximately

50 generations. The results show that the GA

consistently converged to the optimal solution.

Since, GA is a stochastic search algorithm, one

aspect of investigating the efficiency of the

proposed GA is the sensitivity analysis to the GA

operators used in this paper. Thus, 27 test

problems are solved, which, are a modified

versions of the problems given in Duntsall and

Wirth (2005b). The data sets of these problems

are shown in Table 4 and the last column of the

table shows that all (STD/Average) ×100 of the

problems are less than 2%. Thus, the proposed

GA is a robust optimization algorithm. Figure 7

shows the (STD/Average) ×100 of the best

solution to each problem.

Table 1: Comparison of the proposed GA and Lingo8.

Problem

size
(N × G× M)

Lingo
Old GA (Cheng

and Gen, 1995)

New

GA

OFV
Time

(sec)
OFV

Time

(sec)
OFV

Time

(sec)

3×2×2 10 ~0 10 ~0 10 ~0

5×2×2 46 0.1 46 <0.1 46 ~0

7×3×3 147 12 147 5 147 0.014

10×3×2 96 >36000 96 32 96 0.155

Figure 5: The input of designed software.

E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43 41

Figure 6: The output of the designed software.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Problems

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Figure7: Standard deviation of fitness function.

Pm

M
e
a
n

302520151052

23600

23200

22800

22400

22000 21980

23359

22670

One-Way ANOM for Respon by Pm
Alpha = 0.05

Figure 8: Tree Level ANOVA Results.

Table 2: General linear model: Respon versus Pc;Pm.

Factor Type Levels Value

Pc Fixed 3 25; 35; 45

Pm Fixed 4 2; 5; 10; 15

Table 3: Analysis of variance for Respon, using adjusted SS for tests.

Source DF Seq SS Adj SS Adj MS F P

Pc 2 1682772 1682772 841386 0.68 0.506

Pm 3 65543694 65543694 21847898 17.72 0.000

Pc*Pm 6 530733 530733 88456 0.07 0.999

Error 228 281094281 281094281 1232870

Total 239 348851481

4.1. Parameter tuning

As discussed above, the genetic search method

is guided by the ‘tuning’ of two parameters,

namely crossover rate (Pc), and mutation rate (Pm)

which choosing a proper value for them affects

the search behavior and improves the quality of

convergence.

For choosing these parameters, a factorial

design in the design of experiments (DOE) with

three levels and the parameters ranges are showed

next.

• Crossover rate: 25%, 35% and 45%.

• Mutation rate: 2%, 5%, 10% and 15%.

The results are given in figure 8 and they show

that only mutation parameter have to be estimated.

Therefore, another experiment designed with one

levels and the mutation parameter ranges are

considered as 2%, 5%, 10%, 15%, 20%, 25% and

30%. The results are given in figure 9 and 25%

rate chosen for mutation rate.

5. Conclusion

The parallel-machine scheduling problem is an

extended field of study in various applications.

This type of the problem is one of classical

machine scheduling problems. In this paper, a

genetic algorithm presented for an identical

parallel-machine scheduling problem with family

setup time that minimizes the total weighted flow

time i.e. ∑ jjbsi fwSTP // ,
). This problem is shown

to be NP-hard in the strong sense and obtaining an

optimal solution for the large-sized problems in

reasonable computational time is extremely

difficult. This is the motivation for using genetic

algorithms (GAs). The proposed GA is more

flexible in the sense that the practitioner is not

limited to a single solution. Some properties and

solution methods for a generalized model

consisting of job due dates and penalties for

completing both early and tardy jobs can be used

in further research.

42 E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43

Table 4: GA performance for 27 problems.

(STD/Aver

age) ×100
STD The Best Average

Trial
G M N Problem

5 4 3 2 1

1.4 72 4959 5004 5124 4959 4959 5017 4959 3 2 10 1

0.7 54 7707 7803 7825 7838 7823 7707 7823 5 2 10 2

0.4 33 7710 7748 7740 7710 7740 7751 7800 8 2 10 3

1.0 54 5229 5278 5229 5262 5229 5331 5339 3 3 10 4

0.4 18 4704 4716 4724 4704 4705 4744 4705 5 3 10 5

0.2 16 6919 6933 6923 6958 6941 6925 6919 8 3 10 6

0.6 43 7453 7493 7453 7540 7466 7538 7466 3 5 10 7

0.6 20 3176 3192 3220 3208 3182 3176 3176 5 5 10 8

0.7 43 6145 6177 6224 6145 6225 6148 6145 8 5 10 9

1.1 293 26015 26381 26208 26015 26794 26446 26444 3 2 20 10

0.3 63 21778 21823 21779 21819 21778 21931 21807 5 2 20 11

1.0 178 18090 18210 18243 18102 18090 18108 18509 8 2 20 12

1.1 178 15503 15725 15756 15917 15503 15864 15583 3 3 20 13

1.9 381 19830 20168 19967 20789 19830 20264 19992 5 3 20 14

1.8 365 19417 19798 19658 20276 19417 20081 19556 8 3 20 15

1.6 209 12839 13146 13410 13236 13096 12839 13147 3 5 20 16

0.7 90 13099 13197 13099 13140 13250 13170 13324 5 5 20 17

1.4 150 10312 10443 10420 10684 10312 10472 10326 8 5 20 18

0.7 528 76706 77326 76901 76706 77373 77665 77985 3 2 40 19

0.7 558 80208 80713 81019 81545 80208 80363 80430 5 2 40 20

1.0 805 80195 81425 80195 81036 82122 81786 81985 8 2 40 21

1.3 909 68161 69212 70660 68161 69019 69256 68963 3 3 40 22

1.0 740 75182 76021 76115 76543 76900 75182 75363 5 3 40 23

1.0 744 70637 71742 72632 70637 71473 72058 71912 8 3 40 24

1.1 468 40185 40718 40558 41056 40185 41337 40454 3 5 40 25

1.3 435 34179 34786 34179 35062 35214 34988 34489 5 5 40 26

1.6 620 39273 39730 39687 39273 39409 39474 40807 8 5 40 27

References

Ahn, B. H.; Hyun, J. H., (1990), Single facility

multi-class job scheduling. Computers and

Operations Research, 17(3), 265-72.

Allahverdi, A.; Cheng, T. C. E.; Kovalyov, Y. M.,

(2008), A survey of scheduling problems

with setup times or costs. European Journal

of Operational Research, 187(3), 985-1032.

Azizoglu, M.; Webster, S., (2003), Scheduling

parallel machines to minimize weighted

flowtime with family set-up times.

International Journal of Production

Research, 41(6), 1199-1215.

Balakrishnan, N.; Kanet, J.; Sridharan, S. V.,

(1999), Early/tardy scheduling with sequence

dependent setups on uniform parallel

machines. Computer and Operations

Research, 26(3),127-141.

Biskup, D.; Cheng, T. C. E., (1999), Multiple-

machine scheduling with earliness, tardiness

and completion time penalties. Computer and

Operations Research, 26(3),45-57.

Blazewicz, J.; Kovalyov, M. Y., (2002), The

 complexity of two group scheduling

problems. Journal of Scheduling, 5(6), 477-

485.

Caoa, D.; Chen, M.; Wan, G., (2005), Parallel

machine selection and job scheduling to

minimize machine cost and job tardiness.

Computers and Operations Research, 32(8),

1995-2012.

Chen, Z. L.; Powell, W. B., (2003), Exact

algorithms for scheduling multiple families

of jobs on parallel machines. Naval Research

Logistics, 50(7), 823-840.

Cheng, R.; Gen, M., (1995), Minmax earliness/

tardiness scheduling in identical parallel

machine system using genetic algorithm.

Computer and Industrial Engineering, 29(1-

4), 513-517.

Dunstall, S.; Wirth, A., (2005a), A comparison of

branch-andbound algorithms for a family

scheduling problem with identical parallel

machines. European Journal of Operational

Research, 167(2), 283-296.

Dunstall, S.; Wirth, A., (2005b), Heuristic

methods for the identical parallel machine

E. Mehdizadeh; R. Tavakkoli-Moghaddam / Journal of Industrial Engineering International 7(13) (2011) 35-43 43

flowtime problem with set-up times.

Computers and Operations Research, 32(9),

2479-2491.

Dunstall, S.; Wirth, A.; Baker, K., (2000), Lower

bounds and algorithms for flow time

minimization on a single machine with set-up

times. Journal of Scheduling, 3(2), 51-69.

Gen, M.; Cheng, R., (1997), Genetic algorithms

and engineering design. John Wiley & Sons,

New York.

Kim, D. W.; Kim, K. H.; Wooseung- Jang, F.;

Chen, F., (2002), Unrelated parallel machine

scheduling with setup times using simulated

annealing. Robotics and Computer Integrated

Manufacturing, 18(3-4), 223-231.

Li, C.; Cheng, T., (1993), The parallel machine

min-max weighted absolute lateness

scheduling problem. Naval Research

Logistics, 41(1), 33-46.

Melve, S.; Uzsoy, R., (2007), A genetic algorithm

for minimizing maximum lateness on parallel

identical batch processing machines with

dynamic job arrivals and incompatible job

families. Computers and Operations

Research, 34(10), 3016-3028.

Monch, L.; Balasubramanian, H.; Fowler, W. J.;

Pfund, E. M., (2005), Heuristic scheduling of

jobs on parallel batch machines with

incompatible job families and unequal ready

times. Computers and Operations Research,

32(11), 2731-2750.

Omar, M. K.; Teo, S. C., (2006), Minimizing the

sum of earliness/tardiness in identical parallel

machines schedule with incompatible job

families: An improved MIP approach.

Applied Mathematics and Computation,

181(2), 1008-1017.

Ramachandra, G.; Elmaghraby, S. E., (2006),

Sequencing precedence-related jobs on two

machines to minimize the weighted

completion time. International Journal of

Production Economics, 100(1), 44-58.

Tavakkoli-Moghaddam, R.; Mehdizadeh, E.,

(2007), A new ILP model for identical

parallel machine scheduling with family

setup times minimizing the total weighted

flow time by a genetic algorithm.

International Journal of Engineering, 20(2),

183-194.

Webster, S.; Azizoglu, M., (2001), Dynamic

programming algorithms for scheduling

parallel machines with family setup times.

Computers and Operations Research, 28(4),

127-137.

Zhu, Z.; Heady, R. B., (2000), Minimizing the

sum of earliness / tardiness in multi machine

scheduling with sequence dependant setups

on uniform parallel machines. Computer and

Industrial Engineering, 38(1), 297-305.

