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Abstract: In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling 

problem with family setup time that minimizes the total weighted flow time ( ∑ jjbsi fwSTP // ,
). No set-

up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching 

from the processing of family i jobs to those of another family j, i ≠ j, the duration of this set-up being the 

sequence-independent set-up time sj for family j. This problem is shown to be NP-hard in the strong sense 

and obtaining an optimal solution for the large-sized problems in reasonable computational time is 

extremely difficult. Further, it is computationally evaluated the performance of the proposed genetic 

algorithm solutions obtained using a mixed integer programming (MIP) with the Lingo 8.0 software.  
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1. Introduction 

A machine scheduling problem is an extended 

field of research in various applications. The main 

elements of machine scheduling problems are 

machine configuration, job characteristics, and 

objective function. The machine configuration can 

be classified into single and multiple machine 

problems in a broad sense. Parallel-machine 

scheduling problems can be referred as a class of 

problems that relaxed from the multiple machine 

scheduling problems (Ahn and Hyun, 1990). A 

batch setup time (cost) occurs when jobs, e.g., 

machine parts, are processed in batches (pallets, 

containers, boxes) and a setup of a certain time or 

cost precedes the processing of each batch. The 

batch setup time (cost) can be sequence dependent 

or sequence-independent. It is sequence-

dependent if its duration (cost) depends on the 

families of both the current and the immediately 

preceding batches, and is sequence-independent if 

its duration (cost) depends solely on the family of 

the current batch to be processed.  

Three-field notation α/β/γ is adapted of 

Allahverdi et al. (2008) to describe a scheduling 

problem. The α field describes the shop (machine) 

environment. The β field describes the setup 

information, other shop conditions, and details of 

the processing characteristics, which may contain 

multiple entries. Finally, the γ field contains the 

objective to be minimized.  

A parallel machine-scheduling problem studied 

with identical parallel machines, jobs arranged 

into families, and sequence-independent set-up 

time between jobs of different families on these 

machines i.e. ∑ jjbsi fwSTP // ,
.  

Many researchers studied parallel-machine 

scheduling problems in the past. However, 

research on family scheduling models is relatively 

new to the literature. Allahverdi et al. (2008) 

conducted a comprehensive review of setup-time 

(or time) research for scheduling problems 

classifying into batch, non-batch, sequence-

independent, and sequence-dependent setup. 

Brono et al. (2003) proved that even a two-

machine system for finding the weighted sum of 

flow time with an unequally weighted set of jobs 

is NP-hardness. Blazewicz and Kovalyov (2002) 

proved the strong NP-hardness of the problem 

∑ jbsi CSTP // , under the group technology 

assumption, and presented a polynomial-time 

dynamic programming algorithm for the special 

case with a given number of the machines. 

Webster and Azizoglu (2001) and Azizoglu  

and Webster (2003) addressed the same     

problem with a weighted objective function,     

i.e.,
 ∑ jjbsi fwSTP // , , or equivalently 

∑ jjbsi CwSTP // , . 

Two dynamic programming algorithms (a 

backward and a forward) were proposed by 

Webster and Azizoglu (2001), where they also 

identified the characteristics of the problems for 

which each algorithm is suitable. When the 

number of machines and families is fixed, the 

backward dynamic algorithm is polynomial in 
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sum of the weights while the forward dynamic 

algorithm is polynomial in the sum of processing 

and setup time. Azizoglu and Webster (2003) 

presented several branch-and-bound algorithms 

for the problem and computationally evaluated the 

performance of each algorithm. They concluded 

that the algorithms can quickly generate optimal 

solutions for problems with up to 15 to 25 jobs, 

depending on the number of machines. Chen and 

Powell (2003) proposed column generation based 

branch-and-bound algorithms for the same 

problem, where they obtained optimal solutions 

for problems up to 40 jobs, 4 machines and 6 

families. Dunstall and Wirth (2005a) presented 

another branch-and-bound algorithm for the same 

problem and they showed that their algorithm 

outperforms that of Azizoglu and Webster (2003). 

They solved problems with up to 25 jobs and 8 

families using their branch-and-bound algorithm. 

Dunstall and Wirth (2005b) proposed several 

simple heuristics for the same problem. Clearly, 

the branch-and-bound algorithms of Chen and 

Powell (2003) and of Dunstall and Wirth (2005b) 

remain to be compared.  

Zhu and Heady (2000) introduced a mixed 

integer programming formulation to minimize the 

earliness and tardiness of all jobs for a scheduling 

problem with a non-uniform parallel machine and 

setup consideration. Omar and Teo (2006) studied 

on minimizing the sum of earliness/tardiness in 

the presence of setups. They developed a mixed-

integer programming formulation model to deal 

with such a scheduling problem. Biskup and 

Cheng (1999) focused on two objectives, namely 

small deviations from a common due date and 

short flow time. Therefore, they proposed a model 

to minimize the earliness, tardiness, and 

completion time penalties. 

Balakrishnan et al. (1999) presented a compact 

mathematical model and described computational 

experience by using their model to solve small-

sized problems. Dunstall et al. (2000) proposed a 

B/B algorithm for lower bounds for the problem 

of minimizing the weighted flow time on a single 

machine with family set-up time and static job 

availability. Thus, as the case of many NP-hard 

problems, research on efficient heuristics capable 

of high quality solutions is warranted. Meta-

heuristic methods can be developed to solve such 

hard problems. 

Caoa et al. (2005) developed a heuristic 

algorithm to obtain the near-optimal solutions 

based on a tabu search (TS) mechanism on 

parallel machines scheduling problems by 

minimizing the sum of machine holding costs and 

job tardiness costs. Ramachandra and Elmaghraby 

(2006) proposed a GA procedure to solve a two 

machines scheduling problem to minimize the 

weighted completion time.  

Monch et al. (2005) attempted to minimize the 

total weighted tardiness on parallel batch 

machines with incompatible job families and 

unequal ready times of jobs. They proposed two 

approaches and applied genetic algorithm (GA) in 

both approaches. Li and Cheng (1993) considered 

the job scheduling problem in identical parallel-

machine systems with an objective of minimizing 

the maximum weighted absolute lateness further, 

Cheng and Gen (1997) have applied genetic 

algorithms to the above problem. Kim et al. 

(2002) proposed a simulated annealing (SA) 

method for unrelated parallel-machine scheduling 

problems with setup times. Melve and Uzsoy 

(2007) also proposed a genetic algorithm to a 

problem of minimizing the maximum lateness on 

parallel, identical batch-processing machines with 

dynamic job arrivals, based on random keys 

encoding. Tavakkoli-Moghaddam and 

Mehdizadeh (2007) presented a novel, integer-

linear programming (ILP) model for an identical 

parallel-machine scheduling problem with family 

setup times that minimizes the total weighted flow 

time (TWFT). A meta-heuristic based genetic 

algorithm is proposed and applied to the given 

problem, which obtains good and near-optimal 

solution, especially for large sizes. 

The purpose of this paper is to extend a genetic 

algorithm to schedule job families on parallel 

machines by minimizing the total weighted flow 

time, in which the weight of a job is the cost rate 

for delaying its completion. Job families reflect 

the efficiencies associated with processing similar 

jobs together. The setup may reflect the need to 

change a tool or clean the machine. A machine 

must be set up when switching from one family to 

others. There is no setup time between two jobs 

from the same family. 

The rest of this paper is given below. In Section 

2, details of the given problem and the optimi-

zation model are presented. Section 3 presents a 

description and design of the proposed genetic 

algorithm. In Section 4, various test problems are 

presented and solved by the proposed genetic 

algorithm. Future research in this area and 

conclusions are presented in Section 5. 

2. Problem formulation  

The objective of the problem is to schedule 

identical parallel machines by minimizing the 

total weighted flow time. All jobs are available at 
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time zero with known integer-processing times, 

setup time, and weights. Each job is related to a 

family, in which a setup time is required between 

two jobs from different families, and the family 

setup time is independent of the preceding family. 

A setup is also required prior to the processing of 

the first job on a machine. This is typical of 

environment when scheduling at the beginning of 

a new shift after machine down time. For a given 

schedule, the weighted flow time of a particular 

job is the product of its weight and job completion 

time, and the total weighted flow time of a 

schedule is the sum of weighted flow time over all 

jobs. 

2.1. Definition of parameters 

The following Parameters are used in the 

proposed model. 

i, j Job indices, where job 0 is a dummy job 

that is always at the first position on a 

machine (i, j = 0, 1, …, n). 

k Machine index (k=1, 2, …, m). 

f, g Family indices. 

n Number of jobs. 

m Number of identical parallel machines. 

o Number of families, (o ≤ n). 

M Large positive number. 

Pif Processing time of job i from family of  

(f = 1, 2, …, o). 

Sf Setup time of family f. 

Wif Weight of job i from family f. 

γifjg Equals to 1, if f ≠ g; and equals to 0, 

otherwise. 

2.2. Definition of decision variable  

Cif Completion time of job i from family f. 

Yifk Equals to 1, if job i from family f is 

assigned to machine k; and equals to 0, 

otherwise. 

Xifjgk Equals to 1, if job j from family g 

immediately follows job i from family f 

on machine k; and equals to 0, otherwise. 

X0ifk Equals to 1, if job i from family f on 

machine k is the first in the queue; and 

equals to 0, otherwise. 

2.3. Proposed model 

The proposed mathematical model is as follows: 
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Equation (1) represents the objective function 

minimizing the total weighted flow time. Equation 

(2) states each job from each family must be 

assigned to exactly one machine. Equation (3) 

ensures that completion time of a job from a 

family must be later or equal to its processing 

time and setup time.  

Equation (4) guarantees that the completion 

time of a job must be later or equal to the 

completion time of its direct predecessor job in 

the sequence, and its processing and setup time     

( if setup is necessary). This constraint becomes 

redundant if jobs i and j are assigned to different 

machines. Equation (5) ensures that a job must be 

processed at one and only one position on a 

machine. Equation (6) states that job j should 

immediately follow other job on machine k if it is 

placed on this machine. Equation (7) states that if 
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job i, i ≠ 0, is processed on machine k, it will be 

immediately followed by at most one another job 

on this machine.  

Equation (8) enforces that only at most one job 

immediately follows the dummy job 0 on each 

machine. Equation (9) states the properties of the 

decision variables. 

3. The proposed genetic algorithm  

3.1. Structure of genetic algorithm 

Genetic Algorithm (GA) was first introduced 

by John Holland in the 1970s. It is a search 

technique based on the concept of the natural 

selection and evolution. GA is a stochastic search 

technique based on the mechanism of the natural 

selection and natural genetics. Genetic algorithm, 

differing from conventional search techniques, it 

starts with an initial set of random solutions called 

a population. 

Each individual in the population is referred to 

a chromosome, representing a solution to the 

problem at hand. A chromosome is a string of 

symbols. Chromosomes evolve through 

successive iterations, namely generations. During 

each generation, chromosomes are evaluated by 

using some measures of fitness.  

To create the next generation, new 

chromosomes, referred to offspring, are formed by 

either (1) merging two chromosomes from the 

current generation by using a crossover operator, 

or (2) modifying a chromosome by using a 

mutation operator. A new generation is formed by 

(1) selecting, according to the fitness value, some 

of parents and offspring, and (2) rejecting others 

so as to keep the population size constant. After 

several generations, the algorithm converges to 

the best chromosome, which hopefully represents 

the optimal or sub-optimal solution to the given 

problem. 

A genetic algorithm consists of four search 

operators, namely selection, crossover, mutation, 

and reproduction, to transform a population of 

chromosomes while improving their ‘‘quality’’. 

Genetic search operators are then applied one after 

another to systematically obtain a new generation 

of chromosomes with a better overall quality. This 

process is repeated until the stopping criterion is 

met, and the best solution of the last generation is 

reported as the final solution. To efficiently search 

the GA process and find the proper solution 

structure, it is necessary that the initial population 

of schedules be a diverse representative of the 

search space. 

3.2. Application of GA to the given problem 

Chen and Gen have applied genetic algorithms 

to the job scheduling problem in identical parallel 

machine system with the objective of minimizing 

the maximum weighted absolute lateness (Cheng 

and Gen, 1995). This problem was first 

considered by Li and Cheng (1993) as follows. 

3.2.1. Chromosome representation 

There are two essential issues to be dealt with 

all types of multiple machine scheduling 

problems: 

•  Partition of jobs to machines. 

•  Sequence jobs for each machine. 

Also, each job (e.g., k) belongs to a family 

(e.g., j) as shown with (j, k). Suppose n indicates 

the number of jobs, therefore, an extended 

representation is proposed to encode partition of 

jobs to machines and sequence jobs for each 

machine into a chromosome with n columns and 

two rows. Where first row represents all possible 

permutation of (j, k) (or sequence of (j, k)) and 

second row designates the partition of (j, k) to 

machines. Let us consider a simple example with 

three jobs, two families, and two machines subject 

to k1 and k2 belong to j1 , and k3 belong to j2. 

Suppose there is a schedule as shown in Figure 1. 

The chromosome can be represented as 

follows: 

In general, for an n-job, f-family, and m-

machine problem, a legal chromosome contains 

two rows with n columns. There are n symbols of 

(j, k) at the first row, and m machines at the 

second row.   

3.2.2. Generation of the initial population 

Initial population is generated at random.  

 

Machine 2 (j1 , k1) 

Machine 1 (j2 , k3) (j1 , k2) 

Figure 1: Schedule for three-jobs, two-families and two-machines. 

 

(2 3) (1 2) (1 1) 

1 1 2 

Figure 2: Representation for three-jobs, two-families and two-

machines. 
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3.2.3. Evaluation 

A simple way to determine the fitness value for 

each chromosome is to use the inverse of the total 

weighted flow time. Let TWFTk denote the total 

weighted flow time for the k
th

 chromosome. The 

fitness value (eval (vk)) is then calculated as 

follows: 

k

k
TWFT
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1

)( =                                            (10) 

where,  
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WFTj is the weighted flow time for the j
th

 job that 

is computed as follows:  

WFTj = (completion time of j
th

 job) ×(weight of j
th
 

job) 

3.2.4. Selection 

The purpose of the parent selection in GA is to 

offer additional reproductive chances to those 

population members that are the fittest. One 

common technique used in the proposed GA is the 

roulette wheel selection. Here, it is used the 

modified roulette wheel as follows that use the 

number of generation for improvement of fitness 

quality. The chromosome with higher fitness has 

higher chance for selection. 

1. Calculate the fitness value eval(vk) for each 

chromosome vk (k=1, 2, …, pop_size).  

2.  Calculate the total fitness for the population 
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chromosome vk: 
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=  and R is a real 

number.   

5. Calculate the cumulative probability kq for 

each chromosome kv : 

∑
=
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k

ij

jk zq  , (k=1, 2, …, pop_size) 

6. Generate a random number r from the interval  

[0, 1]  

7. If r ≤ q1, then select the first chromosome vk ; 

otherwise, select the k
th

 chromosome vk (2≤ k ≤ 

pop_size) such that qk-1≺ r ≤ qk. 

3.2.5. Genetic operators order crossover 

There are several types of crossover operators. 

In this study, order crossover (OX) operator is 

used. The procedure is illustrated in Figure 3. By 

the OX procedure, two off springs in per iteration 

can be produced but the proposed crossover takes 

two parents and creates a single offspring. 

During past years, several mutation operators 

have been proposed. The reciprocal exchange 

mutation (swapping mutation) is used here, in 

which two random positions are selected and then 

their genes are swapped. 

 

 

 

Parent1 

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7) 

1 1 1 2 2 2 2 

 

 

Offspring 

(3 6) (1 5) (3 4) (2 1) (1 3) (2 2) (1 7) 

1 1 1 2 2 2 2 

 

Parent2 

(3 6) (1 5) (3 4) (1 3) (2 1) (2 2) (1 7) 

1 1 1 2 2 2 2 

Figure3: Illustration of OX operator. 

Parent 

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7) 

1 1 1 2 2 3 3 

Offspring 

(3 4) (1 5) (1 3) (2 1) (3 6) (2 2) (1 7) 

1 1 1 2 2 3 3 

(a) 

 

Parent 

(1 3) (1 5) (3 4) (2 1) (3 6) (2 2) (1 7) 

1 1 1 2 2 3 3 

Offspring 

(1 3) (3 6) (3 4) (2 1) (1 5) (2 2) (1 7) 

1 1 1 2 2 3 3 

(b) 

Figure4: (a) Swap two jobs within one machine; (b) swap two jobs 

within different machine. 
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3.2.6. Swapping mutation 

The randomly swap genes may be either job or 

job and machines. Different combinations of job 

and job and machines result in two basic types of 

mutation. 

1. If the two selected jobs are processed by the 

same machine. In this case, the mutation alters the 

job order for the machine as shown in Figure 4(a). 

2.Another case is that two jobs are processed by 

different machines. In this case, the mutation 

alters both job order and job partition to machines 

for the chromosome as shown in Figure 4(b). 

3.2.7. Stopping condition 

The GA is terminated after a pre-selected 

number of generations. A reasonable number can 

be arrived at with a few preliminary test runs. 150 

generations are founded to be sufficient. 

4. Computational results and performance 

evaluation 

The proposed genetic algorithm (GA) can be 

used for more complex and widely applicable 

models of scheduling problems in industries. 

The proposed algorithms are coded in Visual 

Basic 6 and run on a PC with Intel(R) Core(TM) 

2Duo CPU 1.8GHz, 2GB of RAM.  

In Table 1 we compare the performance of the 

proposed GA with the Lingo 8 software in terms 

of computational time. The proposed GA has a 

better solution than the Lingo software. Further, 

when the number of jobs increases, we can see 

that the computational time increases 

exponentially because of the NP-hard nature of 

the given problem. Other test instances have 

generated according to the same rules followed by 

Duntsall and Wirth (2000). 

For each (G; N; M) jobs randomly assigned to 

families by first drawing a random number for 

each family and then distributing jobs 

approximately in proportion to these random 

numbers, subject to the constraint that total the 

number of jobs sums to N. Job processing time 

and weights are randomly sampled from the 

ranges [1; 100] and [1; 10] respectively, and setup 

time is randomly sampled from the range [0; 50]. 

27 sample size and 5 instances have generated for 

each (G; N; M). 

In line with the study by Duntsall and Wirth 

(2000), the genetic algorithm have tested over 

each combination of (G; N; M) from }8,5,3{∈G , 

}40,20,10{∈N and }5,3,2{∈M . 

Because of the stochastic nature of the 

proposed GA, five trials are performed for 150-

generation each and the best solution amongst the 

five is considered as the final solution. The 

associated computational results are summarized 

in Table 1.  

It can be seen the input and output of the 

designed software in Figures 5 and 6. Tables 2 

and 3 show the convergence of the average and 

the best fitness in each generation. The near-

optimal solution is achieved after approximately 

50 generations. The results show that the GA 

consistently converged to the optimal solution. 

Since, GA is a stochastic search algorithm, one 

aspect of investigating the efficiency of the 

proposed GA is the sensitivity analysis to the GA 

operators used in this paper. Thus, 27 test 

problems are solved, which, are a modified 

versions of the problems given in Duntsall and 

Wirth (2005b). The data sets of these problems 

are shown in Table 4 and the last column of the 

table shows that all (STD/Average) ×100 of the 

problems are less than 2%. Thus, the proposed 

GA is a robust optimization algorithm. Figure 7 

shows the (STD/Average) ×100 of the best 

solution to each problem. 

 

 

Table 1: Comparison of the proposed GA and Lingo8. 

Problem 

size 
(N × G× M ) 

Lingo 
Old GA (Cheng 

and Gen, 1995) 

New 

GA 

OFV 
Time 

(sec) 
OFV 

Time 

(sec) 
OFV 

Time 

(sec) 

3×2×2 10 ~0 10 ~0 10 ~0 

5×2×2 46 0.1 46 <0.1 46 ~0 

7×3×3 147 12 147 5 147 0.014 

10×3×2 96 >36000 96 32 96 0.155 

 

 

 

Figure 5: The input of designed software. 
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Figure 6: The output of the designed software. 
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Figure7: Standard deviation of fitness function. 
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Figure 8: Tree Level ANOVA Results. 

 

 

 

 
Table 2: General linear model: Respon versus Pc;Pm. 

Factor Type Levels Value 

Pc Fixed 3 25; 35; 45 

Pm Fixed 4 2; 5; 10; 15 

 

Table 3: Analysis of variance for Respon, using adjusted SS for tests. 

Source DF Seq SS Adj SS Adj MS F P 

Pc 2 1682772 1682772 841386 0.68 0.506 

Pm 3 65543694 65543694 21847898 17.72 0.000 

Pc*Pm 6 530733 530733 88456 0.07 0.999 

Error 228 281094281 281094281 1232870   

Total 239 348851481     

4.1. Parameter tuning 

As discussed above, the genetic search method 

is guided by the ‘tuning’ of two parameters, 

namely crossover rate (Pc), and mutation rate (Pm) 

which choosing a proper value for them affects 

the search behavior and improves the quality of 

convergence. 

For choosing these parameters, a factorial 

design in the design of experiments (DOE) with 

three levels and the parameters ranges are showed 

next. 

•   Crossover rate: 25%, 35% and 45%. 

•   Mutation rate: 2%, 5%, 10% and 15%.  

The results are given in figure 8 and they show 

that only mutation parameter have to be estimated. 

Therefore, another experiment designed with one 

levels and the mutation parameter ranges are 

considered as 2%, 5%, 10%, 15%, 20%, 25% and 

30%. The results are given in figure 9 and 25% 

rate chosen for mutation rate. 

5. Conclusion 

The parallel-machine scheduling problem is an 

extended field of study in various applications. 

This type of the problem is one of classical 

machine scheduling problems. In this paper, a 

genetic algorithm presented for an identical 

parallel-machine scheduling problem with family 

setup time that minimizes the total weighted flow 

time i.e. ∑ jjbsi fwSTP // ,
). This problem is shown 

to be NP-hard in the strong sense and obtaining an 

optimal solution for the large-sized problems in 

reasonable computational time is extremely 

difficult. This is the motivation for using genetic 

algorithms (GAs). The proposed GA is more 

flexible in the sense that the practitioner is not 

limited to a single solution. Some properties and 

solution methods for a generalized model 

consisting of job due dates and penalties for 

completing both early and tardy jobs can be used 

in further research. 
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Table 4: GA performance for 27 problems. 

(STD/Aver

age) ×100 
STD The Best Average 

Trial 
G M N Problem 

5 4 3 2 1 

1.4 72 4959 5004 5124 4959 4959 5017 4959 3 2 10 1 

0.7 54 7707 7803 7825 7838 7823 7707 7823 5 2 10 2 

0.4 33 7710 7748 7740 7710 7740 7751 7800 8 2 10 3 

1.0 54 5229 5278 5229 5262 5229 5331 5339 3 3 10 4 

0.4 18 4704 4716 4724 4704 4705 4744 4705 5 3 10 5 

0.2 16 6919 6933 6923 6958 6941 6925 6919 8 3 10 6 

0.6 43 7453 7493 7453 7540 7466 7538 7466 3 5 10 7 

0.6 20 3176 3192 3220 3208 3182 3176 3176 5 5 10 8 

0.7 43 6145 6177 6224 6145 6225 6148 6145 8 5 10 9 

1.1 293 26015 26381 26208 26015 26794 26446 26444 3 2 20 10 

0.3 63 21778 21823 21779 21819 21778 21931 21807 5 2 20 11 

1.0 178 18090 18210 18243 18102 18090 18108 18509 8 2 20 12 

1.1 178 15503 15725 15756 15917 15503 15864 15583 3 3 20 13 

1.9 381 19830 20168 19967 20789 19830 20264 19992 5 3 20 14 

1.8 365 19417 19798 19658 20276 19417 20081 19556 8 3 20 15 

1.6 209 12839 13146 13410 13236 13096 12839 13147 3 5 20 16 

0.7 90 13099 13197 13099 13140 13250 13170 13324 5 5 20 17 

1.4 150 10312 10443 10420 10684 10312 10472 10326 8 5 20 18 

0.7 528 76706 77326 76901 76706 77373 77665 77985 3 2 40 19 

0.7 558 80208 80713 81019 81545 80208 80363 80430 5 2 40 20 

1.0 805 80195 81425 80195 81036 82122 81786 81985 8 2 40 21 

1.3 909 68161 69212 70660 68161 69019 69256 68963 3 3 40 22 

1.0 740 75182 76021 76115 76543 76900 75182 75363 5 3 40 23 

1.0 744 70637 71742 72632 70637 71473 72058 71912 8 3 40 24 

1.1 468 40185 40718 40558 41056 40185 41337 40454 3 5 40 25 

1.3 435 34179 34786 34179 35062 35214 34988 34489 5 5 40 26 

1.6 620 39273 39730 39687 39273 39409 39474 40807 8 5 40 27 
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