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Abstract 
This paper presents a multi-criteria vehicle routing problem with soft time windows (VRPSTW) to mini-

mize fleet cost, routes cost, and violation of soft time windows penalty. In this case, the fleet is heterogene-
ous. The VRPSTW consists of a number of constraints in which vehicles are allowed to serve customers out 
of the desirable time window by a penalty. It is assumed that this relaxation affects customer satisfaction and 
penalty is equal to a degree of customer dissatisfaction. The VRP, which is an extension of traveling sales-
man problem (TSP), belongs to a class of NP-hard problems. Thus, it is necessary to use meta-heuristics for 
solving VRP in large-scale problems. This paper uses a simulated annealing (SA) approach with 1-Opt and 2-
Opt operators for solving the proposed mathematical model. The proposed model is then solved by the Lingo 
software and the associated solutions are compared with the computational results obtained by the SA ap-
proach for a number of instance problems. The obtained results are promising and indicating the efficiency of 
the proposed SA approach.    

 
Keywords: Multi-criteria vehicle routing problem; Mathematical model; Time windows; Simulated           
annealing 

 
 
 
1. Introduction 
 

In the classical vehicle routing problem (VRP), 
routes are constructed to dispatch a fleet of homoge-
nous or heterogeneous vehicles to serve a set of cus-
tomers from a single distribution depot. Each vehicle 
has a fixed capacity and each customer has a known 
demand that must be fully satisfied. Each customer 
must be serviced by exactly one visit of a single ve-
hicle. The total demands of the customers serviced by 
the vehicle must not exceed the capacity of the vehi-
cle. Each vehicle must depart from and return to the 
depot. A vehicle routing problem with time windows 
(VRPTW) is an extension of the classical VRP in 

which each customer serviced in a specified time in-
terval named time window. If a vehicle arrives at a 
station (or node) to pick up a customer earlier than 
the lower bound of the customer’s time window, the 
vehicle must wait until the service is possible. Also, 
if a vehicle arrives later than the upper bound of the 
customer’s time window, the vehicle cannot serve the 
customer. The VRPTW has a great number of practi-
cal applications in industries and services such as the 
distribution of cash amounts among bank branches, 
disposal of garbage and industrial wastes, distribution 
of fuel to and among fuel stations, school transporta-
tion services and the like. The VRPTW can be classi-
fied into two general categories known as hard and 
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soft VRPTW. These two categories are explained 
below:  
 
 
 
 
 
 
 
 

• Hard VRPTW: In hard VRPTW, vehicles are 
expected to fulfill a customer service within a 
specified time window as shown in figure 1. In 
other words, each customer i has an allowed 
service time interval [a i, bi] as shown in figure 
2, in which the service must occur. The service 
out of this interval is not allowed. figure 3    
depicts customer satisfaction in a hard time 
window. 

• Soft VRPTW: In soft VRPTW, each customer i 
has a desirable time window with the high sat-
isfaction as [ai , bi] and a hard time window as 
[LBi , UBi] where LBi < ai and UBi > bi . An in-
stance of soft time window is shown in figure 
4. In intervals [LBi , ai) and (bi , UBi], the ser-
vice is allowed but a penalty is set for the ser-
vice. As shown in figure 5, the customer satis-
faction in interval [ai , bi] is maximum and in 
intervals [LBi , ai) and (bi , UBi] is reducing.    

 
 

The VRPTW belongs to the class of the NP-hard 
combinatorial optimization problems [13]. Although 
optimal solutions can be obtained by using exact and 
numerous methods, the computation time required to 
solve the VRPTW is optimally prohibitive [7]. Since 
heuristic methods often produce near-optimal solu-
tions in a reasonable amount of computational time, 
most of the researches have focused on the design of 
heuristics and metaheuristics [1, 2, 5, 6, 20]. The 
VRPTW in particular is still ‘‘much more difficult’’ 
to solve than the classical VRP [17]. Hence, primar-
ily heuristic procedures are suggested for larger-sized 
instances of the VRPTW. In the last decade, quite 
good results have been achieved for the VRPTW by 
metaheuristics. Two groups of metaheuristics seem to 
be appropriate for solving the VRPTW: (1) Metaheu-
ristics controlling local search processes, such as tabu 
search [4, 18, 22], simulated annealing [3], genetic 
algorithms [16, 24], evolution strategies [10], large 
neighborhood search [19], and guided local search 
[11]; and (2) metaheuristics controlling a subordinate 
construction heuristic, such as the greedy randomized 
search procedure [14], the RNET meta-heuristic [12], 
and multiple ant colony systems [14]. 

Only a few authors report on the solution to the 
VRPTW by means of hybrid approaches. Gam-
bardella, et. al. [8] and Glover, et. al. [9] have 
pointed out that hybrid approaches focus on enhanc-
ing the strengths and compensating for the weak-
nesses of two or more complementary approaches. 

The aim is to generate better solutions by combining 
the key elements of competing methodologies.     
Osman and Kelly [15] have proposed a two-phase 
hybrid metaheuristic method for the VRPTW based 
on this idea. The best individual is determined by a 
genetic algorithm in which the first search phase is 
passed over to a tabu search algorithm in order to 
improve the achieved solution in the second search 
phase. On the other hand, the tabu search algorithm 
includes an element of the simulated annealing con-
cept. This element is used to control the selection of 
neighborhood solutions. Thangiah, et. al. [25] have 
proposed a hybrid method which repeatedly carries 
out two subsequent steps. Partial routes constructed 
in the first step are improved by the simulated anneal-
ing in the second step. In the simulated annealing 
steps, a tabu list is used to avoid cycling.  

In this paper, the authors propose a new mathe-
matical model of soft VRPTW minimizing fleet cost, 
total traveled distances cost, and penalty of violating 
soft time windows. It is assumed that the fleet is het-
erogeneous. This type of soft VRPTW is used in 
most real-world situations such as school services 
and staff transportation scheduling. The proposed 
model is solved by the simulated annealing algorithm 
in large-scale problems.   

This paper is organized as follows. The problem 
formulation is described in Section 2. The structure 
of the SA algorithm is explained in Section 3 with 
respect to the proposed model. The computational 
results are shown in Section 4 and the conclusion is 
presented in Section 5. 

 

Figure 1. Vehicle routes with hard time window. 
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Figure 2. Service time interval [ai, bi] in hard time window. 
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Figure 3. Customer satisfaction in hard time window. 
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Figure 4. Soft time window. 

 
 
 

 
Figure 5. Customer satisfaction in soft time window. 

 
 
2. Problem formulation 
 

The problem is defined as follows: Let G(V,E) be a 
complete graph, where V={1,2,..,i,…,N} is the node 
set and E={(i,j): i,j∈V, i≠j} is the arc set. Node i=1 
represents a depot while the remaining nodes are cor-
responded to the demand points or customers. Each 
node i has a desirable service time interval [ai , bi] 
and a hard time window as [LBi , UBi]. The matrix    
D = {Lij : (i,j)∈E , i,j∈V , Lij>0} denotes the physical 
distance between nodes. Also, let  
F = {1,2,…, M} be fleet or set of available vehicles. 
Each vehicle j has capacity Cv and cost Bv where      
Bv / Cv is fixed. 

 The problem is solved under the following         
assumptions: 

 

1. Each node is visited only once by a single 
vehicle. 

2. Each vehicle must start and end its route at 
the depot. 

3. Total demand served by each vehicle cannot 
exceed its capacity. 

4. Each node must be served in related hard 
time window. 

5. The mean velocity of travel for all vehicles is 
constant. 

6. A service (wait) time in each node is al-
lowed. 

7. The hard time windows must not exceed. 
8. The soft time windows can be violated at a 

fixed cost. 
9. The fleet is heterogeneous and there are three 

types of capacity as: small, medium, and 
large for vehicles. Also, the cost of each unit 
of capacity is fixed for all vehicle types.  

 
 

2.1. Definition parameters 
 

A number of parameters are used in the proposed 
mathematical model as follows:  
N: Number of demand nodes or stations (depot is at 

the node i=1). 
M: Number of vehicles available.  
Cv: The capacity of the vehicle v.  
qi: Demand at the node i.  ( q1= 0 )  
Bv: Cost of the vehicle v, Bv = δ×Cv where δ = cost of 

each unit of capacity. 
a: Mean traveling speed of each vehicle.  
dij: Distance between nodes i and j where  dii= M.  
(M= an arbitrary big number).  
tij

v: Time for rendering service to the node plus the 
time. For covering the distance from node i to j 
by the vehicle v. This parameter has appeared in 
the model as a function of distance and speed. 

g: Cost of a unit travel by the each vehicle. 
sv

i: Start time of service in node i by the vehicle v. 
Pe: Unit penalty of earliness.  
P1: Unit penalty of lateness.  
ai: Lower bound of soft time window for the node i  
bi: Upper bound of soft time window for the node i  
ye

vi: max{ei-sv
i, 0} is the violation degree of lower 

bound of soft time. 
yl

vi: max{sv
i-li, 0} is the violation degree of upper 

bound of soft time.  
LBi: Lower bound of hard time window for the node i 
UBi: Upper bound of hard time window for the node i  
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2.2. Definition of decision variables 
 

Two decision variables are defined as zv, xv
ij as fol-

lows:  
 

              1    if arc (i,  j)∈E is traversed by vehicle v 
xv

ij =  
              0    otherwise  
 
              1    if vehicle v is used 
zv

  =  
              0     otherwise  

 
 
 
2.3. Mathematical formulation 
 

By considering the defined parameters and vari-
ables, the proposed mathematical model consists of a 
multi-criteria function and 15 constraints for which 
we will give more detailed explanations after present-
ing the model. 

 

1 1 1 1 1
Min 

N N M M N
v e l

ij ij v v e ki l ki
i j v v i

g d x B z p y p y
= = = = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤× × + × + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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               , ,v
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v
ij

v i j
x r S S V S

= = =

≥ ∀ ⊆ − ≠∅∑∑∑       (15) 

{ }, 0,1v
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The objective function (1) of the proposed model 

consists of three components. The first component is 
equal to the sum of traveled distances by all the used 
vehicles. The second component is defined as the 
fleet cost that is equal to the sum of costs related to 
the used vehicles. The third component of objective 
function is equal to total penalty of outrage from soft 
time windows in all demand points.   

The constraints (2) and (3) impose that start and 
end of route for each vehicle must be at the depot. 
The constraints (4), (5), and (6) indicate that exactly 
one vehicle enters and leaves each node and serves it. 
The constraint (7) assures that the vehicles' capacity 
is not exceeded. The constraint (8) determines the 
start time of service for each vehicle in covered 
nodes. The constraints (9) and (10) assure that the 
start time of services does not violate the hard time 
windows. The constraints (11) and (12) determine the 
vehicles that are used. If vehicle v is not used then 
xv

11=1, else xv
11=0. The constraints (13) and (14) de-

termine the violation degree of the lower and upper 
bound of soft time windows for each node. The con-
straint (15) that named capacity-cut constraint en-
sures that the sub-tours are eliminated. The constraint 
(16) guarantees the decision variables are zero or one.  
 
 
2.4. Service time consideration 
 

The constraint (8) forces the model to consider a 
service time (ST) in each node according to the equa-
tion (17). The service time can implicate to wait time 
for persons or a change of speed between current and 
succeeding node. It can influence a reduction of soft 
windows violation in the third term of the objective 
function. 

 

(1 )

(1 )

v
ijv v v

j i ij

v
ijv v v

j j i ij

d
S S M x

a

d
ST S S M x

a

⎛ ⎞
≥ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞

⇒ = − + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

       (17) 

3. Simulated annealing  
 

Simulated annealing (SA) is a stochastic relaxation 
technique that has its origin in statistical mechanics 
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[21, 23]. It is an approach based on the Mont Carlo’s 
model that is used for the study of the relation among 
atomic structure, entropy, and temperature through 
the cooling process of a metal or material. The physi-
cal process of cooling that used for reducing tempera-
ture of a material to a minimal degree of energy is 
called thermal equilibrium. Cooling process is com-
menced with a material in a state of fusion and the 
temperature is gradually decreased. A metal or mate-
rial may approach thermal equilibrium at any tem-
perature. The temperature must not be subject to a 
rapid decrease; otherwise the substance will not    
approach a minimal energy state. Temperature reduc-
tion is similar to the objective value reduction in a 
minimization problem that is carried out by a series 
of improving variations. In order to allow a slow   
decrease of temperature, non–improving variations in 
the objective function must be made with a certain 
probability in a way that such a probability is also 
reduced when a reduction is made in the objective 
value. This prevents the algorithm from being       
entrapped by local optimums. Thus, temperature will 
act as a control parameter in an optimization       
problem.  

SA uses a stochastic approach to direct the search. 
It allows the search to proceed to a neighboring state 
even if the move causes the value of the objective 
function to become worse. SA guides the original 
local search method in the following way. If a move 
to a neighbor X′ in the neighborhood N(X) decreases 
the objective function value or leaves it unchanged, 
then the move is always accepted. More precisely, 
the solution X′ is accepted as the new current solution 
if ∆ ≤ 0, where ∆=C(X′)-C(X) and C(X) is the objec-
tive function value. Moves, which increase the objec-
tive function value, are accepted with a probability of 
e(-∆/T) to allow the search to escape a local optimum; 
where T is a parameter named the temperature. The 
value of T varies from a relatively large value to a 
small value close to zero. These values are controlled 
by a cooling schedule that specifies the initial and 
incremental temperature values at each stage of the 
algorithm. 
 
 
3.1. Initial solution generation 
 

The first step in each metaheuristic approach is to 
generate initial solutions. The following innovative 
approach has been used for generating initial solu-
tions.  

 

Let S be a set of no served nodes; S⊂ V-{1} and V  be 
a set of nodes.The depot is represented by the node 1.  
Let F0 be a set of no used vehicles; F0 ⊂ F and F be a 
set of fleet. 
Let Cv be the capacity of vehicle v.  
Let Cmax = maxv∈F0 {Cv} (maximum capacity in 
fleet). 

 
Steps of complete algorithm are follows: 

1. Let S =V-{1} and q = 0, where q is a counter 
of used capacity of the current vehicle. 

2. Select node i at random where i∈S and let    
q = di.  

3. Allocate vehicle v∈F0 to node i where         
Cv = Cmax. 

a) Find a node j at random where j∈S 
and generate a service time STj ran-
domly according to Section 2.4. 
Then dispatch vehicle v to node j to 
serve in which constraints (7), (9), 
and (10) have not violated.  

b) IF node j is not found THEN dis-
patch vehicle v to depot AND let v = 
v* where |Cv*-q|=minv∈F0

{|Cv-q|} 
AND set F0=F0-{v*} ELSE  let  S=S-
{j} AND q=q+dj. 

4. Repeat step 4 until vehicle v return to the   
depot.   

5. Repeat steps 2 to 5 until S=∅ .  
 
 
3.2. Generation of neighborhood solution 
 

Two efficient operators have been used to search 
the neighboring solutions within the feasible space. 
These operators are explained bellow:  
2-Opt operator. In this type of operator, two routes 

belonging to two vehicles are randomly chosen 
from the existing feasible answer and then two 
nodes out of the two routes are exchanged with 
each other with the observance of vehicle capacity 
and service time constraints.  

1-Opt operator. In this type of operator, two routes of 
two vehicles are randomly chosen out of the exist-
ing feasible answer and then a node is deleted 
from a route and is added to the other route with 
the observance of vehicle capacity and service 
time constraints. Figures 6 and 7 depict a profile 
of the two presented operators used in solving 
problems. 
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Figure 6. Implementation of operator 1-opt. 

Figure 7. Implementation of operator 2-opt. 
 
3.3. SA algorithm 
 

The SA has two inside and outside loops. The in-
side loop controls the achievement to equipment in 
the current temperature and outside loop controls the 
decreasing rate of temperature. The SA parameters 
are listed bellow: 

 
EL (Epoch length): Number of accepted solutions 

achieved in each temperature. 
MTT: Maximum number of consecutive temperature 

trails. 
T0.: Initial temperature. 
α : Rate of decreasing the current temperature (cool-

ing schedule). 
X : A feasible solution. 
C(X) : The objective function value in respect to X. 
n : Counter of number of accepted solutions in each 

temperature. 
r : Counter of number of consecutive temperature 

trails, where Tr is equal to temperature in iteration 
r. The steps of the SA algorithm are shown in    
figure 8. 

 
 
4. Computational results 
 

Computational results have been shown in two 
cases which have been devoted to the model verifica-
tion and the SA results respectively.  

For the model verification, fourteen test problems 
are solved by the Lingo 6.0 software. To decrease the 
model complexity, some of parameters are consid-
ered constant as a priori shown in table 1. It is also 
assumed that the fleet has three types of capacities as 
small (20 persons), medium (30 persons) and large 
(40 persons) sizes.  The values of hard time windows 
boundaries (LBi and UBi) are considered constant. The 

value of soft time windows boundaries (ai and bi) are 
randomly generated in intervals [LBi ,UBi]. The value of 
demand in nodes is randomly generated at random in 
uniform distribution [0,20] and [0,10]. The distances 
between nodes are generated at random in uniform dis-
tribution [0,100]. The CPU times are correspond to an 
Intel® Celeron® mobile 1.3 GHz  processor.  

The comparison of optimal and SA solutions in 
small-sized problems is shown in table 2. As depicted 
in table 2, the proposed model is sensitive to UB 
value. By decreasing of UB parameter, the CPU time 
increases progressively for such problems (7,8), 
(9,10) and (11,12). The column 'Var' in table 2 indi-
cates the number of variables in the model and the 
column 'Cons' indicates the number of constraints. 
Also, the column 'O.F.V' presents the objective func-
tion value. The column 'k' depicts the number of used 
vehicles in each problem. For instance in problem 1, 
the number of available vehicles is equal to 6 and the 
number of used vehicles is equal to 3. The column 
'B&B' indicates the number of branches in a branch-
and-bound method. The complexity of the proposed 
model with respect to number of variables, con-
straints, CPU time, and branches is shown in figure 9. 
The average gap between optimal and SA solutions is 
4.8 percent implicating the efficiency of the SA algo-
rithm. Also, the CPU times is related to SA solutions 
have egregious difference in respect to optimal ones.   

 
r = 0  ,Xbest = ∅  
Generate X0  
Xbest = X0 
Do (Out Side loop) 
  n = 0  
  Do (In Side loop) 

Select an operator (1-Opt or 2-Opt move) randomly and run over 
Xn operator 

as : Xn → Xnew 

    ∆C = C(Xnew) - C(Xbest) 
    If ∆C < 0 Then 
      Xbest = Xnew and n = n +1 and Xn = Xnew   
    Else   
      Generate y → U(0,1) Randomly 
      Set Z = e-∆C/T

r     
      If y < z Then n = n +1 and Xn = Xnew   
    End if 
  Loop While( n < EL) 
  r = r + 1 
  Tr  = Tr-1  - α × Tr-1 
Loop While ( r < MTT  and   Tr > 0 ) 
Print Xbest 

Figure 8. SA algorithm. 

  

2-Opt 
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For verifying the SA algorithm in large-scale prob-
lems, the results obtained from SA are compared with 
the lower bound solution (LBS) by five test prob-
lems, as shown in table 3. The LBS is calculated by 
the relaxation of constraints (9) and (10) in the pro-
posed mathematical model. In other words, the LBS 
is obtained by solving a classical VRP without time 
windows. The efficiency of SA can be measured by 
comparing initial and final solutions reported in table 
3. The final solution is yielded about one hour. The 
detailed components of the objective function for 
problem 5 in table 3 is shown in figure 9. As shown 
in figure 10, the fleet and route costs are approxi-
mately constant during annealing process rather than 
the penalty of violating soft time windows. 

 
 

 

Table 1. Parameter settings. 

Pe Pl g δ EL MTT T0 Tf α 
10 20 2 100 100 100 5 0 0.99 

 
 
 

 

Table 2. Comparison of optimal and SA solutions in small-sized problems. 

Problem Optimal  SA 

No. N×M×UB Var Cons O.F.V CPU 
Time  K B&B O.F.V CPU Time 

(Sec.) 

Gap 
(%) 

1 6×3×50 1572 275 4887 00:00:05 3 509 4887 0.8 0 

2 6×3×60 1572 275 4176 00:00:04 3 537 4176 3.7 0 

3 6×3×70 1572 275 4000 00:00:08 3 708 4000 11.5 0 

4 6×3×80 1572 275 4090 00:00:08 3 1087 4090 5.6 0 

5 6×3×90 1572 275 3120 00:00:05 2 595 3120 0.9 0 

6 6×3×100 1572 275 3319 00:00:07 2 733 3344 17.2 0.7 

7 7×3×80 2421 361 4105 00:00:38 3 1504 4105 16.6 0 

8 7×3×100 2421 361 3889 00:00:31 2 1471 4105 1.16 5.5 

9 8×3×80 3534 459 6817 00:04:04 3 8938 7075 0.2 3.7 

10 8×3×100 3534 459 4225 00:01:03 3 2287 4225 0.1 0 

11 9×2×120 3289 386 7449 00:12:52 2 20036 7529 0.1 1 

12 9×3×120 4947 569 4230 00:59:28 3 81758 4601 110 8.7 

13 10×2×150 4465 468 3795 01:15:00 2 84779 4712 0.5 24 

14 10×3×150 6691 691 3795 02:00:00 3 135728 4712 0.7 24 
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Figure 9. Complexity of the proposed model. 
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Figure 10. Cost details for the problem 5 from Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Comparison of lower bound and SA solutions in large-sized 
problems. 

SA Solution 

Test Problem Lower Bound 
Initial Solution Final Solution 

No. N×M×UB O.F.V
Used 

Vehicles
O.F.V 

CPU 
Time 
(Sec.) 

O.F.V 
CPU 
Time 
(Sec.) 

Used  
Vehicles

1 20×7×140 4025 4 29861 0 12117 124 6 

2 20×7×180 4025 4 41773 0 11382 109 4 

3 50×17×200 9625 8 107047 0 37276 347 9 

4 50×17×500 9625 8 298533 0 80029 604 8 

5 100×30×500 18550 18 767785 0 234968 955 14 

 
 
 
 

Value 

Problem  
No.  

Sample No.
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5. Conclusions 
 

In this paper, the authors propose a multi-criteria 
model of a vehicle routing problem with time win-
dows (VRPSTW) with heterogeneous fleet of fixed 
cost and service time in nodes. The objective is to 
minimize the fleet cost, routes cost, and degree of 
violating soft time windows boundaries. The pro-
posed model is solved by the Lingo 6.0 and SA. The 
associated computational results have been reported 
and compared. The efficient SA algorithm based on 
virtual service time is used for generating initial solu-
tions. Two operators 1-Opt and 2-Opt are used to im-
prove the quality of obtained solutions. These solu-
tions show that the proposed model is verifiable and 
confinable and the proposed SA is a suitable ap-
proach to solve such a hard model.      
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