
ORIGINAL RESEARCH

Dynamic cellular manufacturing system considering machine failure
and workload balance

Masoud Rabbani1 • Hamed Farrokhi-Asl2 • Mohammad Ravanbakhsh1

Received: 7 October 2016 / Accepted: 6 February 2018 / Published online: 22 February 2018
� The Author(s) 2018. This article is an open access publication

Abstract
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time.

In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided

with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the

problem of integrated family (part/machine cell) formation as well as the operators’ assignment to the cells. The first

objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally,

a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the

NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-

sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting

genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two

algorithms are compared with respect to five different comparison metrics.

Keywords Dynamic cellular manufacturing system � Labor utilization � Machine failure � Alternative processing routs �
Multi-objective optimization

Introduction

Since 1970, increase in competitiveness among American

industries have begun and adoption of new ideas such as

just-in-time (JIT) and group technology (GT) have inten-

sified. The GT philosophy is about division of a large

system into smaller subsystems. This makes it simple to

manage, because managing a subsystem is considerably

easier than the entire large system (Sakhaii et al. 2016).

Cellular manufacturing (CM) is one of the most important

applications of GT, which takes advantage of the link

between the flow-shop system (high rate of production) and

job-shop systems (manufacturing flexibility and diversity

of products). Cellular manufacturing system (CMS)

enables us to produce various products with low waste

(Niakan et al. 2016), so it is used in most major manu-

facturing centers with a relatively high diversity of prod-

ucts and also multipurpose facilities. As defined, CM

means processing a set of similar parts on certain groups of

machines or manufacturing processes (Mungwattana

2000). Designing of CMS consists of four steps. The first

and foremost is solving a cell formation problem (CFP). At

this stage, parts which have similarities in shape and con-

figuration, and produced by the same or similarly required

machines, are considered as a same family to process by a

group of machines located in one cell. In the second step,

facility layout is determined which involves cells layout at

the level of workshop and also machines within each cell.

The third step is about scheduling of the operation on each

machine in the cells. Finally, the fourth step is allocation of

resources in which resources such as tools, manpower and

materials are assigned to machines and cells. Family for-

mation for the parts and grouping the machines have some

advantages such as reducing the setup times, material

handling cost, work-in-process (WIP) inventories,

throughput times, and production cost (Singh and Rajamani

2012). In the literature on this topic, various methods have
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been examined to solve CFP. These methods are included

but not limited to procedure, cluster analysis, graph

approach, mathematic programing and meta-heuristic

approaches (Selim et al. 1998; Chan and Milner 1982;

Tavakkoli-Moghaddam et al. 2005; Rabbani et al. 2015;

Moradgholi et al. 2016). It should be noted that some

companies create cells through machine assignment to a

particular family group, but machines are not placed in a

separate group, and so virtual cells are used. Examples for

this case are presented in some researches such as Saad

et al. (2002) and Kannan (1998). Hosseini et al. (2016)

designed a bi-objective mathematical formulation to find

the optimum routes for parts, the layout of machines and

the assignment of cells to predefined locations. The pre-

sented model is solved by multi-choice goal programming

(MCGP). Since CM is an NP-hard problem, a GA is used to

tackle the model in large-sized problems.

From another point of view, according to the techno-

logical advancements and introduction of multi-function

machines, few parts may have only one production route

(Karim and Biswas 2015). Alternative process routes

(APR) is defined as various processing programs for each

part in which each operation of part can be processed with

different costs and time on a variety of machines (Browne

et al. 1984; Rabbani et al. 2016). Zhao and Wu (2000)

presented a multi-objective CFP model by taking into

account different routes for the production of parts. They

aimed to optimize three conflicting objective functions

simultaneously. Objective functions include minimization

of the inter-/intra-cell movement, the workload variance in

cells, and the exceptional elements. Jouzdani et al. (2014)

utilized simulated annealing algorithm to solve a general-

ized cell formation problem, in which alternative routings

and machine reliabilities were taken into considerations.

Nowadays, due to the increasingly competitive envi-

ronment, companies need both flexibility and efficiency

simultaneously. With regard to periodical changes in the

level of products’ demand, the cell configuration in each

period is not necessarily efficient for the next period. In a

word, maybe cell reconfiguration differs from one period to

the next one, which is known as the dynamic cellular

manufacturing system (DCMS). Increase in the tendency to

produce by make-to-order (MTO) systems and a high

variety of products has changed the traditional static CMS

to DCMS. An illustrative small-scaled example of DCMS

for two periods is shown in Fig. 1.

Tavakkoli-Moghaddam et al. (2012) presented a DCMS

model to identify the family cell parts and machine cell.

The purpose was to minimize the inter-cell movement and

other miscellaneous costs. Machine replication, cell’s size,

sequence of operations, and reconfiguration are considered

as constraints of the model. Mehdizadeh and Rahimi

(2016) proposed an integrated mathematical model to

tackle the dynamic cell formation problem by simultaneous

consideration of inter-/intra-cell layout problems with

machine duplication and operator assignment. The pre-

sented mathematical formulation consists of three main

objectives in which the first one aims to minimize the

inter-/intra-cell part movements, the second objective

minimizes machine and operator costs, and the last one

increases consecutive forward flow ratio. Rabbania et al.

(2017) presented a new dynamic cell formation problem,

where some new concepts such as lucky parts were intro-

duced. Lucky parts are parts which are allowed to be

produced in a specific period. Moreover, purchasing and

selling of machines taking into account their book values

were taken into consideration.

period1

cell1 cell2 cell3

period2

cell1 cell2 cell3

M3

M1 M2

M
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Fig. 1 Changing of cell

reconfiguration in DCMS
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From another point of view, machine performance is

frequently considered as a complete performance without

any drawbacks and machine failure is usually neglected.

However, machine failure can have an irreparable damage,

because it can stop the production line and waste time.

Chung et al. (2011) presented a multi-objective model of

CMS with regard to machines failures and alternative

process routes. They aimed to minimize the associated

costs with cell production and also the machines failure

cost. Hence, they used Tabu search algorithm to solve this

model. Jabal Ameli et al. (2008) solved multi-objective

DCMS model regarding machine reliability and multiple

production routes, using e - constraint method. On one

hand, it seeks to minimize the costs associated with pro-

duction, and on the other it reduces costs and waste of time

caused by machine failure. Other examples of failure

consideration in CMS are given in Aghajani et al. (2014).

Labor assignment as one of the CMS steps, despite its

great importance in increasing the efficiency of production

systems and workload balance of different cells, has

received little attention. Aryanezhad et al. (2009) presented

a new mathematical model to solve CFP and manpower

allocation by considering the machines’ flexibility and

alternative routes. In this model, each worker has a deter-

mined skill level, and improving the skill level is possible

by expending training costs. Mehdizadeh et al. (2016)

proposed a novel multi-objective mixed mathematical

formulation, where cell formation and production planning

problems are considered simultaneously. The paper aimed

to decrease inter/intra-cell movement costs, setup costs,

machine and reconfiguration costs, production planning

costs, and worker hiring, firing, training, and salary costs.

Azadeh et al. (2014) considered aspects of personality

consistency and behavioral characteristics of individuals

who are assigned to a same cell and presented a bi-objec-

tive mathematical model to minimize the inter-cell move-

ment costs and the inconsistency of cell individuals

according to their decision-making style. Rafiei and Ghods

(2013) and Ghotboddini et al. (2011) presented a relatively

similar multi-objective DCMS models. They solved the

problem of grouping part/machine and machine/cell. In

addition, they considered manpower allocation to cells with

the aim of minimizing miscellaneous costs of production

and maximizing the labor utilization, of considering who

are allocated to the cells. Tavakkoli-Moghaddam et al.

(2012) solved the multi-objective problem of CMS, using a

scatter search algorithm, regarding alternative process

routes for parts. The aims of the model include minimizing

the fixed/variable cost of the machinery, maintenance and

repair cost, inter-cell movement cost, maximizing the uti-

lization of the machine, and minimizing workload variance

of the different cells. Studies on the subject of CM are

presented briefly in Table 1.

In this study, a new mathematical model, which is more

comprehensive than previous models for multi-objective

dynamic cellular manufacturing, is presented. This model

contains many real-world factors such as cell workload

balance, limitation of delivery time, and also negative

Table 1 Comparison between some papers related to CMS in the literature

Author Part

movement

inter-cell

intra-cell

Dynamics APR Machine

reliability

Labor

assignment

Cell

balance

Demand

variable

fixed

Method

Defersha and Chen (2006) H – H H – – H – H LINDO software

Jabal Ameli et al. (2008) H H – H – – – H e - constraint

Aramoon Bajestani et al.

(2009)

H – H H – – H – H MOSS

Ranjbar-Bourani et al.

(2008)

H – – H – – H – H TOPSIS method

Safaei et al. (2008) H H H H – – – – H MFA/SA

Aryanezhad et al. (2009) H – H H – H – – H LINGO

Ghotboddini et al. (2011) H H H H

–

– H – H – Benders decomposition

approach

Chung et al. (2011) – – H H – – – H Tabu search algorithm

Tavakkoli-Moghaddam

et al. (2012)

H – – H H – H – H Scatter search algorithm

Rafiei and Ghods (2013) H H H H – H – H – Ant colony optimization

Aghajani et al. (2014) H – H – H – – H – NSGA-II e - constraint

This paper H H H H H H H – H NSGA-ll and MOPSO
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effects of wasted time resulting from machine failure. The

first objective of the proposed model is to minimize the

miscellaneous expenses of the dynamic cellular manufac-

turing system such as fixed or variable costs, inter-/intra-

cellular part movement costs, and machine reconfiguration

costs, labor transfer between cells, delay in the date of parts

delivery, and failure of the machines. The second and third

objectives aim at minimizing the variance of workload on

human resources and machinery in different cells as two

main factors in the CMS efficiency.

The rest of the paper is organized as follows: In

‘‘Reliability in manufacturing systems’’, we introduce the

reliability in the production system. In ‘‘Problem descrip-

tion’’, the description of the mathematical model and lin-

earization of the proposed model are presented. The

concept of a non-dominated solution is illustrated in

‘‘Methodology’’ and two proposed meta-heuristic algo-

rithms are explained in detail. In ‘‘Numerical experi-

ments’’, we conduct a numerical experiment to compare

the proposed meta-heuristic algorithms by presentation of a

few test problems and using some comparison metrics.

Finally, the study ends with conclusion remarks and future

research.

Reliability in manufacturing systems

By definition, reliability is the probability that the machine,

systems, device, vehicle, etc., perform the required duties

under the operating conditions, for a specified period of

time (Ebeling 1997). Jabal Ameli et al. (2008) stated that

the reliability of the whole system cannot be considered as

a function of the reliability of the individual members in

the production system, because failure may occur when a

machine is under operating condition, but in the production

system all machines have idle time during the production

period except bottleneck machines, and the previously

considered functions cannot accurately estimate the relia-

bility of the system. Therefore, it is better to evaluate the

negative effects caused by the lack of reliability. These

effects can be divided into two categories: first, cost-based

effects; and second, time-based effects.

Cost-based effects

Machine reliability is defined as R = exp (kt), where k and

t stand for the machine failure rate and machine operation

time, respectively. It should be mentioned that exp in this

equation stands for exponential distribution. It is very

common to assume this distribution for time intervals in

which failures occur. Also, when time interval between

failures follows exponential distribution, the number of

failures will follow Poisson distribution (Walpole et al.

1993). Chung et al. (2011) said that any failure has pur-

suant expenses for machinery, such as repair and substi-

tution costs. The usual way to deal with reliability in

production systems is evaluation of the mean time between

failures (MTBF). Its calculation formulation is shown in

Eq. (1):

MTBFb ¼ 1

k
: ð1Þ

The cost estimation of the machine failure as a function

of machine operation time (t) is calculable by Eq. (2):

BR ¼ t � b
MTBF

; ð2Þ

where MTBF represents the mean time between failures, b
denotes cost of machine failure each time and BR is the

failure costs over the planning horizon.

Time-based effects

Another aspect is the machine’s failure during the manu-

facturing process, which may stop the production line, and

subsequent delay may occur in completing the manufac-

turing operations. The downtime estimation of the machine

failure as a function of machine operation time t is calcu-

lated by Eq. (3):

Trep ¼ t � MTTR

MTBF
; ð3Þ

where MTTR represents the mean time to repair and Trep

represents the total time of the machine downtime in the

planning horizon.

Problem description

The model presented in this paper is multi-objective with

regard to the real-world condition, and these objectives

may be in conflict with each other. The first objective seeks

to minimize the costs associated with DCMS (fixed or

variable costs of machine, purchasing and selling costs of

machinery between courses, parts and labor intercellular/

intracellular transmission costs, delay costs of delivery

time, and expenses arising from machine failure). The

second one aims to increase labor utilization in different

cells, such that the working pressure exerted on the human

resources in different cells would not be much different.

The third objective is to minimize the cells’ workload

variance according to the number of allocated machines to

each cell.
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Problem assumptions

• Each part has several operations, and each of these

operations should be done respectively by its number.

• The operation time of the machines and manual labor

are known and constant.

• Fixed costs are specified for each machine and include

all service costs.

• Variable costs are specified for each machine and are

dependent on the assigned workload.

• Back order demand is not allowed and demand for each

period should be provided in the same period.

• Labor force is fixed for every period and hiring and

firing is unauthorized.

• Each machine can perform various operations, so

machines are multipurpose.

• Each part may have one or more routes for production

and we are allowed to choose one and only one route

among the existing routes.

• The available time for every manpower is known and

constant.

• The demand for each part is specified and certain.

• Delivery time and delay cost of each part are specified

for each period.

• The time capacity for each machine is constant and

specified for each period.

• The purchasing cost of each machine and selling them

between periods are constant and known.

• The maximum size of each cell space is specified.

• Batch size for the part movement between machines

and also the costs of inter- and intra-cellular move-

ments are constant and specified (it is assumed that the

inter-cell transfer cost is more than the intra-cell cost).

• The cost of labor inter-cell transmission is constant and

specified.

• Number of machine failures have a Poisson distribu-

tion, and the MTBF and MTTR for each of the

machines in each period are constant and specified.

Notations

Indices

p Index for part types p ¼ 1; . . .Pð Þ
jp Index for operations belonging to part p

j ¼ 1; . . .Op

� �

c Index for manufacturing cells c ¼ 1; . . .Cð Þ
h Index for time periods ðh ¼ 1; . . .HÞ
m Index for machine types m ¼ 1; . . .Mð Þ

Input parameters

P Number of part types

Op Number of operations for part p

C Number of cell types

H Number of periods

M Number of machine types

L Total number of labors

Dph Demand for part p in period h

#ph If part p is planned to produce in period h,

#ph = 1; otherwise, it is zero

UB Maximal cell size

cinter
P

Inter-cell movement cost per batch p

cintra
P

Intra-cell movement cost per batch p

Delph Delivery time of part p in period h

Cp Delay cost of part p for per unit time

um Marginal cost to purchase machine type m

xm Marginal revenue from selling machine type m

am Constant cost of machine type m in each period

qh Constant cost of inter-cell labor moving in

period h

dm Relocation cost of machine type m

Tmh Time capacity of machine type m in period h in

regular time

tjpm Processing time required to perform Operation

j of part type p on machine type m

t0jpm Manual workload time required to perform

Operation j of part type p on machine type m

ajpm If operation j of part p can be done on machine

type m, ajpm = 1; otherwise, it is zero

BRm Cost of machine breakdown m

MTBFm Mean time between failures on machine type m

MTTRm Mean time to repair on machine type m

bm Variable cost of machine type m for each unit

time in regular time

BP Batch size for movements of part h

WT Available time per worker

Decision variable

Xjpmch If operation j of part type p is done on machine

type m in cell c in period h, Xjpmch ¼ 1; otherwise,

it is zero

Nmch Number of machine type m allocated to cell c in

period h

Kmch
? Number of machine type m added in cell c in

period h

Kmch
- Number of machine type m removed from cell c in

period h

I�mh Number of machine type m sold in period h

Iþmh Number of machine type m purchased in period h
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Lch Number of labors that allocate cell c in period h

LUh Labor utilization in period h

LIh Reverse of labor utilization in period h

RTph Completion time of the manufacturing part p in

period h

sph Bottleneck time for production part p in period h

}ph Delay time from the date of delivery of part p in

period h

lpch If there is at least one manufacturing operation of

part p inside cell c in period h, lpch = 1;

otherwise, it is zero

OUh Utilization percent of all the machines in period h

CUch Utilization percent of the machines’ cell c in

period h

Mathematical model

MinZ1 ¼
XH

h¼1

XM

m¼1

XC

c¼1

Nmcham þ
XH

h¼1

XM

m¼1

Iþmhum

�
XH

h¼1

XM

m¼1

I�mhxm

þ
XH

h¼1

XC

c¼1

XP

p¼1

XOp

jp¼1

XM

m¼1

bmDphtjpmXjPmch

þ 1

2

XH

h¼1

XP

p¼1

cinter
P

Dph

BP

� �XOp�1

jp¼1

XC

c¼1

XM

m¼1

X jþ1ð Þpmch �
XM

m¼1

Xjpmch

�����

�����

þ 1

2

XH

h¼1

XP

p¼1

cintra
P

Dph

BP

� �XOp�1

jp¼1

XC

c¼1

�
XM

m¼1

X jþ1ð Þpmch Xjpmch

���
����

XM

m¼1

X jþ1ð Þpmch �
XM

m¼1

Xjpmch

�����

�����

!

þ 1

2

XH

h¼1

XC

c¼1

qh Lc hþ1ð Þ � Lch
�� ��� �

þ 1

2

XH

h¼1

XM

m¼1

XC

c¼1

dm Kþ
mch þK�

mch

� �

þ
XM

m¼1

XH

h¼1

XC

c¼1

XP

p¼1

XOp

jp¼1

DphtjpmXjpmchBRm

MTBFm

þ
XH

h¼1

XP

p¼1

DphCp}ph;

ð4Þ

MinZ2 ¼
XH

h¼1

LUh; ð5Þ

MinZ3 ¼
XH

h¼1

XC

c¼1

CUch � OUhj j; ð6Þ

s.t.

XC

c¼1

XM

m¼1

ajpmXjpmch ¼ #ph 8j; p; h; ð7Þ

Xjpmch� ajpm 8j; p; h; c;m; ð8Þ

XP

p¼1

XOp

jp¼1

DphtjpmXjpmch �NmchTmh

�
XP

p¼1

XOp

jp¼1

DphtjpmXjpmchMTTRm

MTBFm

8h; c;m

!
XP

p¼1

XOp

jp¼1

DphtjpmXjpmch 1 þ MTTRm

MTBFm

� �

�NmchTmh 8h; c;m;

ð9Þ

XC

c¼1

Nmch �
XC

c¼1

Nmc h�1ð Þ ¼ Iþmh � I�mh 8h;m; ð10Þ

Nmc h�1ð Þ þ Kþ
mch � K�

mch ¼ Nmch 8h; c;m; ð11Þ

XC

c¼1

Lch ¼ L 8h; ð12Þ

XM

n¼1

Nmch �UB 8h; c; ð13Þ

RTph ¼ BP

Dph

BP

� �
� 1

� �
sph
� ��

þ
XM

m¼1

XOp

jp¼1

XC

c¼1

tjpmXjpmch 1 þ MTTRm

MTBFm

� �1

A8h; p;
ð14Þ

sph � tjpmXjpmch 1 þ MTTRm

MTBFm

� �
8h; p; j;m; c; ð15Þ

ðRTph � DelphÞ�}ph 8h; p; ð16Þ

0�}ph8h; p; ð17Þ

CUCh ¼

PM

m¼1

PP

p¼1

POp

jp¼1

DphtjpmXjpmch

!

PM

m¼1

NmchTmh

� � 8c; h; ð18Þ

OUh ¼

PC

c¼1

PM

m¼1

Pp

p¼1

POp

jp¼1

DphtjpmXjpmch

!

PC

c¼1

PM

m¼1

NmchTmh

� � 8h; ð19Þ

0�
PM

m¼1

PP
p¼1

POp

jp¼1 Dpht
0
jpm

Xjpmch

LchWT
� 1 8h; ð20Þ

PM
m¼1

PP
p¼1

POp

jp¼1 Dpht
0
jpm

Xjpmch

LchWT
�LUh 8h; c; ð21Þ

Xjpmch 2 0; 1f g;K�
mch;K

þ
mch; I

þ
mh; I

�
mh;CUCh;OUh;Nmch;

Lch � 0 and integer

T 0
mch; }ph;RTph; sph;LUh � 0 and integer:

ð22Þ
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Equation (4) deals with minimization of the costs rela-

ted to DCMS, including machines’ fixed costs (land,

energy, maintenance), the cost of machine purchasing

between the periods, the selling price of secondhand

machines, the machines’ variable costs, the cost of intra-

and inter-cell part movement (comprehensive explanation

of how to calculate the fifth and sixth terms is presented by

Safaei et al. (2008)], intercellular manpower transfer cost

[costs of training and skilling the staff), machines reloca-

tion costs, expenses arising from machine failure, and cost

of delay in delivery time. It should be noted that notation

x denotes the smallest integer number larger than x. The

second objective function considered in Eq. (5) deals with

integration of the utilization of manpower in different cells.

Utilization rate of manpower is defined as the total work-

load of the cell divided by the total available time of the

manpower of that cell. This function seeks to maximize the

minimum of manpower utilization rate between cells in

different periods. For the third objective function, that is,

Eq. (6), deals with minimization workload variance on

machines in different cells. The percentage of machine

utilization is defined as the total machine workload in terms

of time divided by total machine’s available time in a

period. In fact, this objective function seeks the uniformity

of machine workload in different cells.

Equation (7) ensures that if there is demand for a part,

its operation gets allocated only to one machine in one cell

during a period, because according to Eq. (4), each part’s

operation in a period cannot be done on more than one

machine. Equation (8) shows that if there is lack of ability

to perform an operation to produce a part on a machine,

then that operation would not be performed in any cell and

period. Equation (9) ensures that the total needed time for

each kind of machines in each cell plus the wasted time

caused by its failure would not be more than the total time

capacity of the same kind. Equation (10) shows the balance

of the number of machines in different periods with respect

to purchases and selling at any period. Equation (11)

determines the number of each cell’s machines by con-

sidering the machines’ relocation between each period.

Equation (12) implies that the total labor allocated to dif-

ferent cells in each period is equal to the total number of

labor. Equation (13) shows that the total number of

machines allocated to each cell does not exceed the size of

the cell. Equation (14) determines the entire manufacturing

process time of each part, considering the failure of

machinery and bottleneck machine in each period (Jabal

Ameli et al. 2008). Equation (15) determines the operation

time of the bottleneck machine for manufacturing each part

during each period. Equation (16) and Eq. (17) are used to

calculate the delay in delivery time. Equation (18) deter-

mines the machine utilization percentage in each cell and

each period. Equation (19) specifies the utilization per-

centage of the total machines in each period. Equation (20)

shows that the manual workload of each cell does not get

bigger than the total manpower available capacity. Equa-

tion (21) determines the minimum utilization rate of

manpower between different cells in each period. This

equality is defined according to the objective function of

Eq. (5).

Linearization of the proposed model

The proposed model in the previous subsection is a non-

linear model. Two of the three objective functions are

transformed into the linear form as follows:

MinZ1 ¼
XH

h¼1

XM

m¼1

XC

c¼1

Nmcham þ
XH

h¼1

XM

m¼1

Iþmhum �
XH

h¼1

XM

m¼1

I�mhxm

þ
XH

h¼1

XC

c¼1

XP

p¼1

XOp

jp¼1

XM

m¼1

DphtjpmXjpmch bm þ BRm

MTBFm

� �

þ 1

2

XH

h¼1

XP

p¼1

cinter
P

Dph

BP

� �XOp�1

jp¼1

XC

c¼1

Z1
jpch

þ Z2
jpch

	 


þ 1

2

XH

h¼1

XP

p¼1

cintra
P

Dph

BP

� �XOp�1

jp¼1

XC

c¼1

XM

m¼1

Y1
jpmch

þ Y2
jpmch

	 


� Z1
jpch

þ Z2
jpch

	 


þ 1

2

XH

h¼1

XC

c¼1

qh W1
ch þW2

ch

� �

þ 1

2

XH

h¼1

XM

m¼1

XC

c¼1

dm Kþ
mch þ K�

mch

� �
þ
XH

h¼1

XP

p¼1

DphCp}ph;

ð23Þ

Z1
jpch

� Z2
jpch

¼
XM

m¼1

X jþ1ð Þpmch �
XM

m¼1

Xjpmch 8j; p;m; c; h;

ð24Þ

Y1
jpmch

� Y2
jpmch

¼ X jþ1ð Þpmch Xjpmch 8j; p;m; c; h; ð25Þ

W1
ch �W2

ch ¼ Lc hþ1ð Þ � Lch 8c; h; ð26Þ

Z1
jpch; Z

2
jpch; Y

1
jpmch; Y

2
jpmch;W

1
ch;W

2
ch; � 0: ð27Þ

For the first objective function, replace Eq. (23) with

Eq. (4).Then, the constraints of Eqs. (24)–(27) are added to

the model. Moreover, Eq. (23) which is related to the

objective function of Eq. (5) is nonlinear. Initially, we

define a variable named LIch as follows:
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LUh ¼
1

LIh
PM

m¼1

PP
p¼1

POp

jp¼1 Dpht
0
jpm

Xjpmch

LchWT
�LUh ¼

1

LIh
8h; c

XM

m¼1

XOp

jp¼1

XP

p¼1

Dpht
0
jpm

Xjpmch � 0

! LchWT �
XM

m¼1

XOp

jp¼1

XP

p¼1

Dpht
0
jpm

XjpmchLIh 8h; c;

ð28Þ
Sjpmch ¼ XjpmchLIh 8j; p;m; c; h; ð29Þ

! Lch � WT�
XM

m¼1

XOp

jp¼1

XP

p¼1

Dpht
0
jpm

Sjpmch 8h; c; ð30Þ

0� SjPmch �LIh 8j; p;m; c; h; ð31Þ

LIh �M 1 � Xjpmch

� �
� Sjpmch �MXjpmch 8j; p;m; c; h;

ð32Þ
Sjpmch �MXjpmch 8j; p;m; c; h; ð33Þ

LIh �M 1 � Xjpmch

� �
� Sjpmch 8j; p;m; c; h; ð34Þ

MaxZ3 ¼
XH

h¼1

LIh or MinZ3 ¼
XH

h¼1

LUh

!

8h; ð35Þ

1�LIh 8h; ð36Þ
Sjpmch � 0 8j; p;m; c; h: ð37Þ

Equation (5) is replaced by Eq. (35), and constraints are

applied on Eqs. (30), (33), (34) and (36) instead of

Eqs. (20) and (21).

Methodology

Two meta-heuristic algorithms, namely, non-dominated

sorting genetic algorithm (NSGA-II) and multi-objective

particle swarm optimization (MOPSO), are used for solv-

ing the proposed model. Since the proposed model is multi-

objective, we initially refer to some concepts of multi-ob-

jective functions.

Non-dominated solution

On some issues related to the single-objective models,

determining the best solution is easily possible and any

solution that optimizes the objective function can be cho-

sen as the best answer. However, there is more than one

objective in some real-world issues. In these functions,

existence of a single solution that optimizes all objectives

may be unavailable. According to Ehrgott (2006), non-

dominated points are mathematically defined as follows:

A feasible answer like x̂ is called non-dominated if there

would be no answer such as x 2 X, so that f xð Þ� f x̂ð Þ. In

this algorithm, non-dominated answers are ranked as

number 1, and ranking answers xi on generation t that are

dominated by pi
t of other answers can be calculated by the

equity:

Rankðxi; tÞ ¼ 1 þ pti: ð38Þ

NSGA-II

NSGA-II is a population-based search method that is

similar to the function of genes. A chromosome is a string

of some genes. During each iteration of the algorithm, a

new set of chromosomes is produced. During the repro-

duction process, genetic operators such as crossover oper-

ator and mutation operator apply to make the new

chromosomes. Chromosomes that are produced in this way

are called a child. Then, the children suitability is evaluated

and more qualified chromosomes are chosen by a selection

procedure and transferred to the next generation. In case of

equality in a rank, we need another criterion to choose the

answers. In this paper, we apply the notion of crowding

distance. Boundary elements have an infinite crowding

distance. For intermediate elements, crowding distance is

determined by calculating the absolute value distance of

the objective function from the adjacent elements that are

normalized. In summary, the various stages of the NSGA-II

algorithm are shown in Fig. 2.

MOPSO

Multi-objective particle swarm optimization (MOPSO)

algorithm is one of the most important meta-heuristic

algorithms that is usually used to optimize continuous

nature problems (Azadeh et al. 2015). This algorithm is

inspired by the social behavior of birds. In this system, a

group of birds (those are called as particles) fly over the

solution space. Each particle represents a potential solution

to the mentioned problem. The position of each particle is

influenced by the best position that the particle ever had

(personal experience); one of the best positions found was

chosen randomly from the non-dominated solutions archive

and previous velocity of the particle. Thus, according to

this factor, the new particle velocity is calculated (Figs. 3,

4, 5, and 6).

The particle’s specifications in the group can be stated

as follows:

xi: The current location of the particle.

vi: The current velocity of the particle.
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pi: The best position which has been found by the

particle.

gi: The best position which has been found by the

adjacent particles.

If the function of the mentioned problem would be

function (f), then the amounts of xi, vi, pi and gi on any

phase will be updated as follows:

VijðtÞ ¼ xðt � 1ÞVijðtÞ þ c1r1ðpijðt � 1Þ � xijðt � 1ÞÞ
þ c2r2ðgiðt � 1Þ � xijðt � 1ÞÞ;

ð39Þ
xijðtÞ ¼ xijðt � 1Þ þ VijðtÞ; ð40Þ

pijðtÞ ¼ pijðt � 1Þ if f ðxiðtÞÞ� f ðpiðt � 1ÞÞ; ð41Þ

pijðtÞ ¼ xijðtÞ if f ðxiðtÞÞ� f ðpiðt � 1ÞÞ; ð42Þ

where x is inertia weight and usually reduces linearly

during the iterations and r1, r2 are random numbers in the

range of [0, 1]. c1, c2 are constant numbers and are known

as acceleration coefficients; their amount is considered to

be about 2.

gi ¼ Minðp1;p2;p3. . .pnÞ: ð43Þ

Solution representation

We need to generate the initial population to use the pro-

posed algorithm. According to the proposed model, ini-

tially it is sufficient to create the decision variables, XjPmch

and Lch, at random, and then other decision variables are

calculated through them.

Fig. 3 Particle movement in PSO

Fig. 2 Flowchart of the NSGA-II
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In this section, we describe how chromosomes of solu-

tions are represented. To create a feasible solution, XjPmch

must be determined so that firstly it should be binary, and

secondly Eqs. (7) and (8) would be established. These

constraints state that if there is a demand for a part in a

period, each of its manufacturing operations is performed

only on a single machine and in a single cell. If there is

possibility of any operation of any part on Q machine from

M machine, since that operation can be performed in each

of the cells, then Q 9 C different alternatives would exist

to operate it. For each operation of each part in every

period, create a random number in the interval of [0, 1].

Multiply the obtained number in Q 9 C and round it up.

The final obtained number determines the cell and machine

of the desired operation.

For example, if there are three cells for processing the

parts, and there is the possibility for the performance of a

part operation on three (2, 3, and 5) of six machines, then

there will be nine different alternative operations for the

part.

Lch To create a feasible solution, Lch must be determined

so that firstly its amount would be an integer number, and

secondly Eq. (12) would be established. For this purpose,

we create C - 1 random number in the interval of 0; 1½ � in

every period, then multiply the obtained numbers with L

and round it up. The results are inserted in the table with L̂

ascending; the number of labor for each cell is calculated

from the following equations:

Fig. 4 Flowchart of the MOPSO

3C 2C 1C 

6M 5M 4M 3M 2M 1M 6M 5M 4M 3M 2M 1M 6M 5M 4M 3M 2M 1M 

- 9 - 8 7 - - 6 - 5 4 - - 3 - 2 1 - 

Fig. 5 Example of how to

create a decision variable XjPmch

1Ĉ hL −
…

ĉhL…
1̂hL

ChL1C hL −
…

chL…
1hL

Fig. 6 Example of how to create a decision variable Lch
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L1 ¼ L̂1;

Lc ¼ L̂c � L̂ðc�1Þ 8c ¼ 2; 3. . .C � 1;

LC ¼ L� L̂ðC�1Þ:

Crossover operator

Three kinds of crossover, single-point, double-point, and

uniform, are used for the algorithm NSGA-II and one of

them will be chosen for each iteration at random. Initially,

chromosomes of the parent in the form of two-dimensional

(with the dimensions of C - 1 and H) and three-dimen-

sional (with the dimensions of OP and P and H) are,

respectively, by the number of arrays put in a row together

and chromosomes are created in one dimension. Note that

the number of chromosome cells for every new variable

will be called length. In single-point crossover, we initially

create random number in [1, length - 1]. Then, the two

parent chromosomes of the cut points are combined to

create two offspring; its example is presented in Fig. 7. The

function of double-point crossover is similar to the single-

point crossover with the exception that two random num-

bers are created in the range of [1, length - 1] and each

parent chromosome from two corresponding points cute

and then swap with each other. An example is presented in

Fig. 8. In uniform crossover, we create a random chro-

mosome which has same length as the parent chromosome.

This chromosome determines which genes from the first

parent and which one from the second parent are to be

transferred to the offspring. Its function is shown in Fig. 9.

After obtaining the crossover, by reshaping we turn back

chromosomes cells to their original dimensions.

Mutation operator

The same mutation is used in both algorithms and created

based on the replacement of parent chromosome genes.

The chromosome associated with the creation of Lch
decision variables is two dimensional (C - 1 and H), and

also the chromosome associated with the creation XjPmch

decision variable has three dimensions (OP, P, and H). To

create a mutation in the first chromosome, each time, two

rows or two columns which are selected randomly replace

each other (the sample of translocation in chromosome

lines is shown in Fig. 10). For the second chromosome

which is three dimensional, replace the corresponding plate

to the two rows, two columns or two depths which are

chosen randomly from each other (sample of translocation

in chromosome columns is shown in Fig. 11). Since solu-

tion representation is based on real numbers between 0 and

1, all generated offsprings also will be in this range and an

infeasible situation does not occur (Tables 2, 3).

0.220.730.430.680.930.570.120.960.240.34Parent1

0.630.750.940.140.840.420.090.650.120.76Parent2

0.630.750.940.140.840.420.120.960.240.34Offspring 
1 

0.220.730.430.680.930.570.090.650.120.76Offspring 
2 

Fig. 7 Example of the single-point crossover operator

0.220.730.430.680.930.570.120.960.240.34Parent1

0.630.750.940.140.840.420.090.650.120.76Parent2

0.220.730.430.680.930.420.090.650.240.34Offspring 
1 

0.630.750.940.140.840.570.120.960.120.76Offspring 
2 

Fig. 8 Example of the double-point crossover operator

0.220.730.430.680.930.570.120.960.240.34Parent1

0.630.750.940.140.840.420.090.650.120.76Parent2

1010101101Rand 
number

0.220.750.940.140.930.420.120.960.120.34Offspring 
1

0.630.730.430.680.840.570.090.650.240.76Offspring 
2

Fig. 9 Example of the uniform

crossover operator

Journal of Industrial Engineering International (2020) 16:25–40 35

123



Numerical experiments

Two algorithms are coded in MATLAB R2013a software

on a personal computer ASUS Core i7, 2.2 GHz with 4 GB

RAM. 12 test problems are designed to verify the perfor-

mance of this model; the 6 test problems of these are small

sized and the others are large sized. The parameters of the

test problem are shown in Tables 4, 5 and 6. This proposed

model is validated by GAMS software in small sized of the

problem that each objective function value calculated

separately and other objective functions are calculated with

regard to the obtained solution. Table 7 shows the result of

GAMS software. The conflict of objectives can be seen in

Table 7 and Fig. 12. The proposed model is NP hard; thus,

GAMS software is unable to find the optimal solutions for

large-scale problems and we use meta-heuristic approaches

to solve it.

Parameter tuning

The good value of the input parameters of algorithms is

calculated in large and small dimensions of the problem by

the experiment design in Minitab software (TAGUCHI

method). According to multi-objectiveness, the first front

of the best solution (based on the second criterion) in each

scenario is chosen for testing initially. Then, the amount of

each function is divided by its maximum amount among

different scenarios and the sum of three obtained amounts

is considered as the scenario output. The results are shown

in Tables 8, 9, 10, and 11.

Meta-heuristic algorithms comparison

In this section, we solve the presented test problem by the

two algorithms of NSGA-ll and MOPSO, and then compare

and analyze the results of the two methods by the five

criteria including covered solution (x, y), spacing metric,

diversification metric, quantity of non-dominated points,

and space covered.

The quantity of non-dominated points that is discussed

in more detail in ‘‘Methodology’’ represents the number of

non-dominant points of each algorithm and is also briefly

mentioned as QNDP in Tables 12 and 13.

Spacing metrics represents uniformity of the algorithm’s

non-dominated answers in the Pareto space, which is

briefly mentioned as SM in Tables 12 and 13. As much as

H

.42.78.69.34.42.78.69.34

.65.47.52.95.51.31.86.65

.93.22.68.55.93.22.68.55C-1

.51.31.86.65.65.47.52.95

.82.82.82.82.82.82.82.82

Fig. 10 Example of the mutation operator for L (C = 6, H = 4)

0.45

0.34

0.24 0.97

0.62

0.81 0.91

0.43

0.62 0.53

0.65

0.71

0.41

0.59

0.37

OP

P

H

0.71

0.65

0.53 0.97

0.62

0.81 0.91

0.43

0.62 0.24

0,34

0,45

0.41

0.59

0.37

Fig. 11 Example of the

mutation operator for

X (OP = 3, P = 5, H = 2)

Table 2 Example of initial

solution generation for XjPmch

Random number 0.543 0.861 0.045 0.357

Calculation 0:543 � 9d e ¼ 5 0:861 � 9d e ¼ 8 0:045 � 9d e ¼ 1 0:357 � 9d e ¼ 4

Number of cells 2 3 1 2

Number of machines 3 3 2 2

Table 3 Example of initial solution generation for Lch (C = 5,

L = 12, H = 1)

Random number 0.65 0.24 0.82 0.36

L̂ 3 4 8 10

L C1 C2 C3 C4 C5

3 1 4 2 2
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the amount of these criteria is less, that algorithm will be

more efficient. SM can be calculated from Eq. (44):

SM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1
�
Xn

i¼1
di � �dð Þ2

r

: ð44Þ

Diversification metrics indicates the dispersion and

diffusion of the non-dominant solutions in the Pareto space,

which is briefly mentioned as DM in Tables 12 and 13 and

can be calculated from Eq. (45):

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
maxð xi � yij jÞ

q
; ð45Þ

where xi represents the non-dominant solution (i) and yi
represents the other non-dominant solution. In this equal-

ity, we obtain the farthest non-dominant answer for each

archiving solution and then take the square root of the sum

of them.

The space covered represents the amount of space that is

covered by the non-dominant points in Pareto space and

can be calculated from Eq. (39). It is briefly mentioned as

CS in Tables 12 and 13.

SC ¼
Xn

i¼1

	YF

f¼1

Zi
f



; ð46Þ

where Zf
i represents the objective function (f) for solution

i of the archive.

The covered solution (x, y) is a criteria for comparing

the quality of Pareto solutions obtained by x and y. In fact,

the CS (x, y) criteria calculate the percentage of the Pareto

front y which is dominated by Pareto front x.

Table 4 Data of the test

problems
Parameter Value Parameter Value Parameter Value

Dph U (200, 700) UB 8M
5C

PM

m¼1

ajpm
2

bm($) U (1, 5) tjpm U (0, 1) BRm U (100, 500)

Cp U (10, 30) xm U (7000, 11,000) t0jpm tjpm/10

}ph U (300, 500) am U (100, 160) cinterP
50

BP U (10, 20) qh U (90, 110) cintraP
5

WT 50 dm U (50, 80) MTTRm U (50, 100)

Tmh($)Vh U (600, 800) um $ð Þ U (10,000, 16,000) MTBFm U (300, 900)

Table 5 Problem sets for small-size problem

Test problem Size of the problem OP 9 P 9 M 9 C 9 H L

1 2 9 3 9 3 9 3 9 2 8

2 3 9 4 9 4 9 3 9 2 10

3 3 9 5 9 5 9 4 9 3 12

4 3 9 6 9 7 9 4 9 3 12

5 3 9 7 9 8 9 4 9 2 16

6 3 9 8 9 9 9 4 9 3 16

Table 6 Problem sets for large-size problem

Test problem Size of the problem OP 9 P 9 M 9 C 9 H L

7 3 9 10 9 8 9 5 9 2 20

8 2 9 12 9 10 9 5 9 3 24

9 3 9 12 9 12 9 5 9 3 30

10 3 9 14 9 14 9 5 9 2 30

11 3 9 16 9 18 9 6 9 3 36

12 3 9 20 9 22 9 6 9 2 40

Table 7 Optimum solution

obtained by GAMS for test

problem 1

Z1 Z2 Z3

Z1* 48,931* 1.25 0.56

Z2* 69,878 0.52* 0.76

Z3* 75,647 0.83 0*

0
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Fig. 12 Conflict between objective functions

Table 8 NSGA-II parameters (small sized)

Population Number of generations Crossover rate Mutation rate

100 50 0.75 0.4
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Table 13 compares the algorithms NSGA-II and

MOPSO (large sizes). The results of the comparison show

that:

• NSGA-II algorithm presents an archive with a larger

number of non-dominated solutions in both small- and

large-scaled problems.

• NSGA-II has a greater average value of the spacing

metric than MOPSO; in other words, non-dominated

solution in MOPSO is more uniform on average.

• The average of diversification metric and space covered

obtained from the NSGA-II Pareto solution is more

than that from MOPSO.

• NSGA-II Pareto solution has a higher quality than

MOPSO with respect to the CS metric and, as seen in

Tables 14 and 15, on average, the percentage of

MOPSO Pareto solution is dominated by NSGA-II

Pareto solution.

• According to the computational time reported in

Tables 12 and 13, the time needed to obtain a Pareto

solution is less for MOPSO in almost all test problems.

Conclusion

In this work, an integrated multi-objective model was

presented, in which grouping of parts/machines and allo-

cation of manpower to cells were addressed simultane-

ously. In the mathematical model presented in this paper,

real-world factors such as bad effects of failures including

time-based and cost-based effects, cost of delay, human

Table 9 MOPSO parameters

(small sized)
Population Number of generations C1 C2 x Mutation rate Size of archive

120 50 2.5 2.5 0.8 0.3 70

Table 10 NSGA-II parameters (large sized)

Population Number of generations Crossover rate Mutation rate

100 50 0.85 0.3

Table 11 MOPSO parameters

(large sized)
Population Number of generations C1 C2 x Mutation rate Size of archive

100 50 2.5 2.5 0.9 0.2 70

Table 12 Comparison of algorithms NSGA-II and MOPSO (small-sizes)

Number test problem QNDP SM DM SC Computational time (s)

NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO

1 32.2 31.1 290 321 890 803 291,456 364,289 62 52

2 59.1 40.7 606 548 1883 1257 3,887,534 2,891,537 75 68

3 53.2 29.2 1253 1105 1737 1241 5,261,534 3,102,536 93 88

4 57.4 27.3 1763 3335 1965 1236 5,904,656 3,234,572 121 119

5 34.8 37.7 2875 2574 1532 1354 4,445,634 4,845,455 148 148

6 25.5 21.1 3398 2070 1466 1133 3,456,507 4,675,467 186 178

Table 13 Comparison of algorithms NSGA-II and MOPSO (large sizes)

Number test problem QNDP SM DM SC Computational time(s)

NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO

7 45.7 26.1 2416 1946 1543 1243 18,364,655 14,736,445 240 201

8 41.8 18.2 1894 2171 2164 1345 17,415,856 12,415,078 404 368

9 52.9 29.3 1754 2163 1654 1534 35,347,435 21,765,445 431 381

10 40.4 35.2 2412 1790 1862 1740 53,273,483 44,864,859 441 402

11 36.3 31.9 2145 1864 1956 1643 86,461,772 87,541,564 624 509

12 45.6 32.1 2017 1911 2171 1895 124,847,696 102,465,676 743 661
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efficiency, and balancing workload in cells were consid-

ered in addition to factors of previous models. The objec-

tives of the proposed model was to minimize the different

costs of the DCMS, increase the manpower utilization, and

also minimize the workload variance between cells. Two

meta-heuristic algorithms, namely NSGA-II and MOPSO,

were proposed for solving the problem. Also, a simple way

to code the problem was introduced. To validate the pro-

posed model, a small-sized problem was solved with

GAMS software. To show the effectiveness of the proposed

algorithm, several test instances were conducted and the

results were compared with each other with respect to five

comparison metrics (quantity of non-dominated points,

spacing metrics, diversification metrics, space covered, and

covered solution). As expected, due to the discrete nature

of the problem, the results showed that the NSGA-II could

discover more Pareto solutions than MOPSO and the

solutions obtained by NSGA-II had more diversity than

MOPSO. Also, it had more quality than MOPSO on

average, but Pareto solution of algorithm MOPSO had

more uniformity.

For future research, operators with different abilities and

skills can be considered by the researcher. Also, the time

value of money, determination of the machine layout, allo-

cation of machinery and facilities, and solving the problems

by other meta-heuristic methods are recommended for

researchers who are interested in this particular subject.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a
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