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          Abstract 

In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. 

The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-

cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-

gramming (ILP) is determined. The objective functions of both algorithms are to find the shortest path. The 

path must be connected and incident to all cells at least in one edge or node. A simple Branch-and-Cut ap-

proach is used to solve the ILP models. Computational results show that the models easily can solve the prob-

lem with less than 45 cells using a commercial ILP solver.  
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1. Introduction 

Facility Planning (FP) as one of the most important 

task of industrial engineering branches, is one of the 

eldest activities of industrial engineers. Facility loca-

tion and facility layout are two sections of FP. Facil-

ity layout involves in determining the department 

layout, production and manufacturing units, stores 

and so on. Tompkins et al. [29] also stated that facil-

ity layout includes layout design, material handling 

system design and facility system design. Apple [2] 

pointed out that it is crucial to incorporate material 

handling decisions in layout design. Tompkins et al. 

[29] estimated that 20 to 50 percent of production 

costs are related to layout design and material han-

dling. Therefore any cost reduction in this area will 

lead to cost reduction in a production unit. 

In a layout design, each cell is represented by a rec-

tilinear. This cell is not necessarily a convex polygon. 

A block layout is a set of fully packed of these cells. 

Any planning and analysis in a block layout is impos-

sible without considering material handling system. 

American Society of Material Handling defined ma-

terial handling as the art and knowledge which in-

volves in movement, packing and storing of materials 

in every shapes and forms. Tanchoco and Sinriech 

[28] defined material flow system in terms of mate-

rial handling equipments, configuration and direction 

of material handling networks, and number and loca-

tion of pick-up and delivery stations. Among all types 

of material handling equipments, in this paper the 

authors consider Automated Guided Vehicle (AGV).  

AGVs are driverless vehicles used for transporting 

materials and goods within a plant layout. They usu-

ally follow a wire guided-path. (see, e.g., Hodgson, 

King and Monteith [14]). When there is more than 

one vehicle, a controller is responsible for regulation 

of traffic. In recent years, the application of AGVs 

was increased as a horizontal material handling 

equipment in production plants.  

One of the common problems in AGV systems is 

finding a route that serves all cells in a block layout. 

This problem was first studied by Maxwell and 

Muckstatdt [19]. They introduced a model to deter-

mine maximum number of vehicles in a plant layout 

to efficiently transfer material from one department to 

another. In their model, they assumed that the best 

routes had been found and installed.  

There are some types of material handling network 

configurations which have been considered by the 

researchers. These types are (1) Conventional con-

figuration, (2) Unidirectional single loop, (3) Tandem 
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configuration, (4) Segmented Flow Topology (SFT) 

and (5) Bi-directional path. Conventional configura-

tion was modeled by Gaskin and Tanchoco [13], 

Kaspi and Tanchoco [15] and Seo and Egbelu [22] 

among the others who used mathematical program-

ming. In conventional configuration, all edges are 

parts of the material handling network and the models 

are to determine the direction of the edges. Unidirec-

tional single loop problem determines a loop which 

serves all pick-up and delivery stations. This type of 

material handling networks has been studied by sev-

eral researchers like Tanchoco and Sinriech [28], Sin-

riech and Tanchoco [23,24], Laporte et al. [17], Aef-

Vaziri et al. [3,4] and Farahani et al. [11]. Tandem 

configuration involves breaking up the entire block 

layout into non-overlapping and separated cells and 

assigning a single loop to each cell. Each cell is 

served by a single unidirectional AGV. Separated 

cells are connected to each other with a set of con-

veyors [6]. Bozer and Srinivasan [5,7] used a parti-

tioning algorithm based heuristic to divide the shop 

floor into various tandem loops. SFT divides block 

layout into several parts. An AGV is assigned to each 

part. Sinriech and Tanchoco had some studies on SFT 

at 1994, 1995 and 1997 [25,26,27]. Another type of 

material handling networks is bi-directional path. Fig-

ure 1 shows a path in a basic block layout. 

Egbelu and Tanchoco [10] studied the bi-

directional path in 1986. Although in a bi-directional 

path, traffic flow takes place in either direction in 

each aisle, however vehicles are not allowed to travel 

in opposite directions at the same time. Therefore, 

buffer areas should exist for temporary parking of 

vehicles [10]. Egbelu and Tanchoco [10] discussed 

about types of buffers, place and number of required 

buffers. They also introduced a model which de-

scribes the flow and control of AGVs in a bi-

directional network. With simulation, it has been 

shown that in a specified situation, the use of bi-

directional guide-paths in networks with few AGVs 

can lead to an increase in productivity. Kim and Tan-

choco [16] also presented simulation results to com-

pare the performance of unidirectional and bi-

directional layouts in a particular network. For this 

network, it has been shown that the bi-directional 

layout outperforms the unidirectional one in terms of 

the number of jobs completed per time unit. Chhajed 

et al. [8] had another study on bi-directional path in 

1992. In 2004, Rajagopalan et al. [20] discussed two 

models considering material flow system in addition 

to bi-directional path. Their models addressed mate-

rial flow path and the location of P/D stations, but 

they did not ensure optimal solution. Also in these 

models, both loaded and unloaded vehicles were con-

sidered. In the first model flow path for both loaded 

and unloaded vehicles was the same, but in the sec-

ond model, the flow path for loaded and unloaded 

could be different.  

In this article we consider the Shortest Path Design 

Problem (SPDP). The assumptions are (1) cell layout 

is known (2) flow path is bi-directional (3) P/D sta-

tions are not considered. P/D stations could be on the 

edge or nodes of cells which are adjacent to path. We 

use two Integer Linear Programming (ILP) models to 

solve this problem. Input of these models is only 

block layout and the objective functions are to mini-

mize total path length. De Gazman [9] has proved 

that this problem is NP-hard.  

Afentakis [1] stated the advantages of loop pattern 

for material handling network configuration as sim-

plicity and efficiency, low initial and expansion cost 

and flexibility in process and production. For bi-

directional path in addition to loop advantages, there 

are some advantages which managers prefer to use. A 

path usually has a shorter length than a loop, so it 

used less space of a production plant for aisles. Also 

shorter length will result in less time to travel. Some-

times when a single loop is impossible to form in a 

special block layout, a bi-directional path is very easy 

to implement. 

In Section 2 we will have a definition of the prob-

lem. Section 3 involves in mathematical model for 

the algorithm. For each algorithm, an ILP is devel-

oped and then an algorithm is introduced based on 

Branch-and-Cut approach to solve the problem. 

Computational results will be presented in Section 4 

and eventually Section 5 contains conclusion and fu-

ture research suggestions. 

2. Problem definition  

The problem of designing shortest path in a block 

layout is considered. Suppose that the production 

plant is divided into n cells. Each cell is a rectangle, 

not necessarily a rectangular but a rectilinear with 

angles of 90, 180 and 270 degrees. So each cell may 

be not a convex polygon. 

 

 

 

 

Figure 1. Bi-directional path in a block layout. 
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As pointed out previously, these models have block 

layout as an input. To explain this problem, we con-

sider a prototype example used by Farahani et al. [11]. 

The block layout is shown in Figure 2. 

There are two versions for path in SPDP (i) the 

path must be incident with each cell at least in one 

side (Figure 3) and (ii) the path must be adjacent to 

each cell at least in one node (Figure 4). The pro-

posed algorithm is able to solve both versions. 

 A feasible path is one that is connected and is ad-

jacent to each cell at least in one edge or one node. If 

one of these conditions is violated, then the path will 

be infeasible. Figures 5 and 6 show cases that each 

condition violates. 

It may be a block layout which has not any feasible 

path. Figure 7 shows a block layout without any fea-

sible path. 

A block layout could be mentioned with an adja-

cency graph in which each node represents a cell and 

each edge represents adjacency of the cells. Figure 8 

shows the adjacency graph and adjacency matrix of 

the block layout of Figure 2. 

 

 

 

 

 

 

 

Figure 2. A block layout (Farahani et al. [11]). 

 

 

 

 

 

 

Figure 3.  A path which is adjacent to each cell at least in one edge. 

 

 

 

 

 

  Figure 4.  A path which is adjacent to each cell at least in one node  

(cell #10 is adjacent to the path in only one node). 

 

 

      

 

Figure 5. Some cells are not adjacent to the path. 

 

 

Figure 6. The path is not connected. 
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Figure 7. A block layout without any feasible path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) Adjacency graph, (b) Adjacency matrix. 

 

SPDP is shown with unidirectional graph G= (V, 

E). V is the set of nodes and E is the set of edges. In 

our notation, if (i,j) is an edge, then i is less than j 

(i<j). Asef-Vaziri et al. [3] considered Shortest Loop 

Design Problem (SLDP) and developed a model to 

solve this problem. They stated that degree 2 nodes 

do not have any role in solving the problem. But here, 

in our problem SPDP, degree 2 could have an effec-

tive role. Figure 9 shows a feasible path, but in this 

path a degree 2 node exists. Therefore we consider 

entire node, degrees 2, 3 and 4, during running the 

algorithms. 

SLDP is related to Generalized Traveling Salesman 

Problem (GTSP) [3]. GTSP is involved in finding 

shortest Hamiltonian cycle in certain sets of nodes in 

which the cycle must be adjacent one node of each 

set. When each set includes only one node, GTSP 

converts to Traveling Salesman Problem (TSP). 

GTSP is formulated and solved using ILP by Laporte 

and Nobert [18] and Fischetti et al. [12]. Asef-Vaziri 

et al. stated two differences between GTSP and SLDP. 

First, the constraints of SDLP are to cover edges, but 

GTSP is to cover nodes and second, connectivity 

constraints in SLDP are much more less than GTSP.  

SPDP is very similar to SLDP. When we use a vir-

tual node in block layout graph, every loop that in-

cludes the virtual node, actually is a path. Therefore 

SPDP and SLDP can easily convert to each other and 

SPDP also is similar to GTSP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A feasible path with a degree 2 node. 
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3. SPDP 

We use Integer Linear Programming to solve the 

SPDP. In our algorithms, we use two different ILPs. 

The first ILP use a very clear specification of the path. 

A path is a tree. In this tree, all nodes are degree 2 

except 2 nodes which are degree 1. One of the attrib-

utes of a tree is that the number of nodes is less than 

the number of edges by one. This is the basic concept 

of the first formulation. The second formulation uses 

the formulation which has been used with Aset-Vaziri 

et al [3]. They have solved SLPD, but we add a con-

straint to their model to insert a virtual node perma-

nently in the loop. This loop is actually a path. Other 

completing explanations are as follow. 

3.1. First algorithm 

As it was explained previously, in this algorithm an 

ILP used that it is based on an attribute of trees. 

3.1.1. Sets and indices 

• },...,3,2,1{ nC = : Set of cells in a block lay-

out graph� )( Cp ∈ . 

• CS ⊂ : Subset of C. 

• SCS \= : Full complement of S. 

• {1,2,..., }V v= : Set of nodes in block layout 

graph ( Vlkji ∈,,, ). 

• },...,2,1{ pp vV = : Set of nodes of cell p in 

block layout graph ( ,
p C p

p C V V
∈

∀ ∈ =� ). 

• },...,3,2,1{ eE = : Set of nodes in block lay-

out graph ( ( , ) |k l E∈ ,k l V∈ are adjacent 

nodes). 

• },...,3,2,1{ pp eE = : Set of edges of cell p in 

block layout graph ( ,
p C p

p C E E
∈

∀ ∈ =� ). 

• }),(:|),{()( ajiSaEjiSE ∈∈∈= : Set 

of all edges belong to subset S in block layout 

graph.  

 

Now, a relation is defined as follows: 

 

CbaEEA baab ∈∀∩= ,, .                               (1) 

This relation defines a set which includes common 

edges between two subsets of S. According to relation 

(1), the following subsets are defined: 

}1:|{ ≥∈∀⊂= �
∈Sb

abA ASaCSS : Set of all sub-

sets of adjacent cells in block layout graph. 

mAS : One member of
A

S . 

}),(:|)(),{()( bAAA EjiSbSEjiSB ∈∈∃∈= : 

 Set of edges on boundary of
A

S .  

3.1.2. Variables and parameters 

ij
c  Length of edge (i,j). ( ( , ) |i j E∈ ,i j V∈ are 

adjacent nodes). 

ijx     Binary variable which is equal to 1 if and only 

if (i,j) is adjacent to path and 0 otherwise. 

( ( , ) |i j E∈ ,i j V∈ are adjacent nodes). 

ky   Binary variable which is equal to 1 if and only if 

node k is adjacent to path and 0 otherwise. 

kv  Binary variable which is equal to 1 if and only if 

node k is at the start or finish node of path and 0 

otherwise. 

3.1.3. Mathematical model 

SPDP could be solved using a model as follow: 

 

Min �
< ji

ijij xc .                                                          (2) 

Subject to: 

kk

kj

kj

ki

ik vyxx −=+��
><

2   )( Vk ∈                (3) 

1
),(

≥�
∈ pEji

ijx                            )( Cp ∈                (4) 

1)(
)(),(

−≤�
∈

mA

m

SBji

Aij SBx      )( AA SS
m

∈              (5) 

kk yv ≤                                    )( Vk ∈               (6) 
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1
1),(

−=��
=∈

v

k

k

Eji

ij yx                                             (7) 

ky  = 0 or 1                       )( Vk ∈                      (8) 

ijx  = 0 or 1                   )),(( Eji ∈                    (9) 

ky  = 0 or 1��                    )( Vk ∈                     (10) 

Relation (2) is the objective function and is to 

minimize total length of the path. 

Relation (3) is the degree constraint. This relation 

is very similar to relation which was used by Asef-

Vaziri et al. [3] for degree constraint. This means if a 

node is in the middle of path, two adjacent edges of it 

must be in the path. If a node is the start or finish 

node of the path, then only one of its adjacent edges 

could be in the path. If a node is not in the path, then 

none of its adjacent edges could be in the path. 

Relation (4) is covering constraint. This relation is 

similar to covering constraint in [3]. But if SPDP as-

sumes a path feasible when it is adjacent in at least 

one node, we can use another constraint like this: 

 

1≥�
∈ pVk

ky                  Np ∈ .                            (11)   

 

Relation (5) is tour eliminator constraint. This rela-

tion has a similar role to connectivity constraint in [3].  

Relation (6) states that a node could be in start or 

finish node of path if it is in the path. Relation (7) 

keeps the selected edges being a tree. Relations (8), 

(9) and (10) are integrality constraints. 

 

Lemma. In this formulation, relation (6) will be re-

laxed.  

 

Proof. The right side of constraint (3) is summation 

of non-negative variable. So it is always greater than 

or equal to zero. Therefore the left side will be greater 

than 0 or equal to. If the left side is equal to 0 then: 

 

02 =− kk vy � kk vy =2 � 0== kk vy . 

   

Otherwise if the left side is grater than 0 then: 

  

02 >− kk vy � kk vy >2 . 

      

Now if 0=kv  then ( 10 oryk = ) and if 1=kv  

then 1=ky .   

It is obvious that in all states, vk is equal or less than yk 

for all values of k. Therefore the proof is complete.  

3.2 Second algorithm 

In the second algorithm like first algorithm for each 

problem an ILP should be solved. In this ILP we used 

the concepts which are used with Asef-Vaziri et al. [3] 

for solving SLDP. When a virtual node is always in 

the loop, this loop will be a path. Figure 10 shows a 

block layout and a virtual node. As you can see, a 

loop in presence of virtual node is visible. But it is 

actually a path. We consider a virtual cell in block 

layout. This virtual cell has only one node. In our no-

tation we use index 0 for virtual cell and node. 

3.2.1. Sets and indices  

The sets and indices for this algorithm are very 

similar to those of first algorithm, but there are some 

differences which should be explained. Therefore we 

define them again. 

 

• },...,3,2,1{ nC = : Set of all cells in block 

layout graph. 

• },...,2,1,0{}0{ nCN =∪= : set of all cells 

and virtual cell in block layout graph and 

virtual cell ( Np ∈ ). 

• CS ⊂ : A subset of C. 

• SNS \= : The full complement set of S. 

• },...,2,1,0{ vV = : Set of all nodes and virtual 

node in block layout graph ( Vlkji ∈,,, ). 

• },...,2,1{ pp nV = : Set of nodes of cell p 

( VVNp pNp =∪∈∀
∈

, ). 

• },...,3,2,1{ eE = : Set of all edges in block 

layout graph and virtual edges 

( ( , ) |k l E∈ ,k l V∈ are adjacent nodes). 

•  },...,3,2,1{ pp eE = : Set of all edges of cell p 

( EENp PNp =∪∈∀
∈

, ). 

• }),(:|),{()( aEjiSaEjiSE ∈∈∈= : Set 

of all edges of set S in block layout graph. 

 

Aab, SA, 
mAS and B(SA) are defined like section 3.1.1.  
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              Figure 10. A block layout and virtual node. 

3.2.2. Variables and parameters 

For this model, variables and parameters are like 

those of the first algorithm. klc , ijx , ky and kv ex-

actly are the same with those which are defined in 

section 3.1.2. 

3.2.3. Mathematical model 

The following model could be used for solving 

SPDP: 

 

Min �
< ji

ijij xc .                                                        (12) 

Subject to: 

k

kj

kj

ki

ik yxx 2=+��
><

          )( Vk ∈                (13) 

1
),(

≥�
∈ pEji

ijx                     )0,( ≠∈ pNp          (14) 

1)(
)(),(

−≤�
∈

mA

m

SBji

Aij SBx     )( AA SS
m

∈            (15) 

ky  = 0 or 1                             )( Vk ∈              (16) 

ijx  = 0 or 1                          )),(( Eji ∈           (17) 

0y  = 1                                                                (18) 

Relation (12) is like relation (2) and the objective 

function. Relation (13) is like relation (3). It is possi-

ble to change this relation with the following con-

straint [3]. Therefore variable yk can be removed from 

the formulation.  

Relation (14) is like relation (4) covering constraint. 

This relation is similar to covering constraint in [3]. 

But if SPDP assumes a path feasible when it is adja-

cent in at least one node with each cell, then we can 

use another constraint like relation (11) for this pur-

pose. Relation (15) is like relation (5). Relation (16) 

and (17) is integrality constraint. Relation (18) states 

that virtual node has to be in the loop. 

4. Algorithm 

As it was mentioned before, our attempt is to pre-

pare the algorithm for solving the problem with either 

assumptions at least one edge or one node. When a 

feasible path has to be adjacent with at least one edge, 

then constraints (3), (4), (5), (7), (8), (9) and (10) 

would be enough. But otherwise constraints (3), (5), 

(7), (8), (9), (10) and (11) would be used.  

Relation (5) is the root cause of difficulty in solv-

ing this problem because it is exponential in n. There-

fore we use a simple Branch-and-Cut approach to 

solve this problem in our algorithm. This makes large 

number of constraints relax initially and introduce in 

a dynamic fashion as violations are detected. This 

simplified version of this approach which does not 

need any programming and could work on LINGO  

[21] is showed below (relation numbers which are in 

brackets relate to second algorithm): 

 

Step 1. If the path for feasibility needs to be incident 

to each cell only at least in one node go to 

Step 5. 

Step 2. Set c: =1 as iteration count. Initialize a linear 

problem in which constraints (3), (4) and (7) 

[(13) and (14)] are introduced. 

Step 3. Solve the model with LINGO 8.00. If the so-

lution is feasible, stop.  

Step 4. Find members of set SA for violated con-

straints (5) [(15)]. Introduce the constraints (5) 

[(15)] for theses members. Set c:=c+1. Go to 

Step 3. 

Step 5. Set c: =1 as iteration count. Initialize a linear 

problem in which constraints (3), (7) and (11) 

[(11) and (13)] are introduced. 

Step 6. Solve the model with LINGO 8.00. If the so-

lution is feasible, stop. 
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Step 7. Find member of set SA for violated constraints 

(5) [(15)]. Introduce the constraints (5) [(15)] 

for theses members. Set c:=c+1. Go to Step 6. 

Now we use a very simple example. Suppose the 

block layout in Figure 11. In this example the follow-

ing lengths are given: 

 

8,76,58,47,36,25,14,32,1 cccccccc =======  

      511,10 == c , 

1011,810,79,53,2 ==== cccc , 

1510,9 =c . 

Now, we start using the algorithm. This block lay-

out does not have a degree 4 node, so after stage 1 we 

should go to Step 2. After solving a model with con-

straints (3), (4) and (7) the following results will be 

taken: 

18,76,56,25,12,18,07,0 ======= xxxxxxx  

Figure 12 shows the corresponding network of the 

answer. The infeasibility of the solution is clear. In 

stage 4, we should form set
1AS . 

)}6,5(),6,2(),5,1(),2,1{()(}1{
11

=�= AA SBS  

Now based on set 
1AS , we must add the following 

constraints because of eliminating the tour: 

36,56,25,12,1 ≤+++ xxxx  

After going back to Step 3 and solving new model, 

we have:  

18,76,58,47,34,36,05,0 ======= xxxxxxx  

as the solution. Figure 13 shows the solution. Again 

we need to add another constraint.  

In stage 4, we find: 

)}8,7(),8,4(),7,3(),4,3{()(}3{
22

=�= AA SBS  

Therefore, the corresponding constraints will be: 

38,78,47,34,3 ≤+++ xxxx  

In stage 3, again we solve the model. This model 

will lead to this answer which its configuration is 

shown in Figure 13: 

18,77,36,23,28,06,0 ====== xxxxxx  

 

Thus, after this step we should stop. The algorithm 

came to its end and the optimal feasible solution of 

this problem was taken. 

  

             
Figure 11. The example. 

 

              
Figure 12. The solution of the first cut. 

 

              
Figure 13. The solution after second cut. 

 

               
Figure 14. The optimal feasible solution. 
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5. Computational results 

Both algorithms were run on a PC (Pentium 3, 

1GHz and 256 MB of RAM). The instances for each 

run were generated randomly in size of 10, 15, 20, 25, 

30, 35, 40 and 45. Also 7 samples for each size were 

used for getting the computational results which is 

mentioned in Table 1.  

The samples were generated in a randomly manner, 

because there aren’t any standard test problems for 

this type of problem.  

We considered degree 2 nodes in our test problems 

which result in having much more variables and con-

straints. 

 Despite this consideration the computational re-

sults show the effectiveness of our algorithms rather 

than Asef-vaziri et al. [3].  

 

 

6. Conclusion 

The authors have considered the shortest path de-

sign problem in this article. Two algorithms were 

developed for this purpose. In the first algorithm we 

used a special characteristic of tree to formulate the 

problem. In each tree, the number of edges is one 

edge less than the number of nodes. In the second 

algorithm, we used the approach which was used by 

Asef-vaziri et al. [3] to solve the SLDP.  

With a little change, the authors could use their 

formulation in our problem. Both algorithms used a 

simple Branch-and-Cut approach to solve the prob-

lem. Using LINGO 8.00 as a commercial ILP solver 

led to computational results which show that the 

problem with size of 45n ≤ can be easily solved by 

these algorithms. 

 

 

 

 

 

Table 1. Results of test problems. 

  1 2 

n 
Number of solved 

test problem 

Time 

(second) 
#Cut* #Constraint 

Time 

(second) 
#Cut* #Constraint 

10 7 1.89 1.14 1.29 2.71 0.29 0.43 

15 7 8.57 1.14 1.29 9.36 1.86 1.86 

20 7 38.93 1.14 2.29 37.21 1.43 3.00 

25 7 93.64 1.71 2.86 96.57 1.57 2.57 

30 7 331.67 2.29 4.00 345.93 2.86 4.71 

35 7 1198.74 3.14 5.43 1306.83 3.29 6.43 

40 7 1655.29 2.67 5.33 1559.86 3.17 6.67 

45 7 6138.44 4.00 7.00 5131.55 5.33 10.17 
* In this column, the number of violated answers of the model is indicated which needs to be added 

some constraints to the model and be solved again. 
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