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Abstract 

Process capability indices show the ability of a process to produce products according to the pre-specified 
requirements. Since final quality characteristics of a product are usually interrelated to its previous amounts 
in earlier workstations, one need to model and consider the relationship among them to assess the process ca-
pability properly. Hence, conducting process capability analysis in multivariate environment is inevitable; 
unfortunately, the analysis in multivariate environment is usually complex and requires extensive calcula-
tions. Sometimes it is preferable to simplify the analysis by assuming independency among quality character-
istics and evaluating process performance with respect to each individual quality characteristic using univari-
ate process capability indices such as CP, CPK, CPM, and CPMK.  However, this simplification introduces some 
error in the analysis leading to under or overestimation of the process capability index. This paper models the 
interrelationship among quality characteristics that are produced in different workstations to provide an over-
all process capability index. Ridge residual regression is used as a vehicle to evaluate process capability and 
helps quality engineers to provide a reasonable quality policy for controlling and reducing variation in quality 
characteristics. 
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1. Introduction 
 

There are several well-known methods for estimat-
ing the potential and actual process capability indi-
ces. Reliable estimation of these indices could be ob-
tained through the reliable estimates of the process 
mean and variance along with careful selection of 
tolerance limits and target values. Process capability 
analysis could be conducted both in univariate and 
multivariate environments. In univariate environ-
ment, a single quality characteristic of a product is 
considered and process performance is evaluated 
with respect to that quality characteristic. Many re-
searchers including Kane [10], Marcucci and Beazley 
[12], Chan et. al. [3], Choi and Owen [6], Spiring 
[23], Koons [11], Wheeler and Chamber [28], Pearn 
et. al. [20], Bissel [1], Pearn W. L. and Chen K. S. 
[17] and Chen J.P. and Chen K.S. [4] have contrib-

uted to the development of univariate process capa-
bility indices when quality characteristic of interest 
follows a normal distribution. Some authors includ-
ing Munechika [14], Clemets [8], Wright [29], 
Somerville and Montgomery [22], Chen and Ding [5] 
and Chou et. al. [7] have discussed and developed 
indices when distribution of the quality characteristic 
under study is non-normal. However, there are many 
situations in which the interrelationship among qual-
ity characteristics of a product must be considered in 
order to evaluate the process performance properly. 
This fact is sometimes overlooked when a set of cor-
related quality characteristics are evaluated individu-
ally using separate univariate capability indices. Such 
an approach ignores the correlation that exists be-
tween the quality characteristics and results in fre-
quent process adjustments and eventually will lead to 
an unstable process. Many authors including Hubele 
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et. al. [9], Chan et. al. [3], Taam et. al. [24], Nicker-
son [16], Niverthi and Dey [17], Shahriari et. al. [22], 
Wang et. al. [27], Wang and Du [25], Wang and 
Hubele [26] and Pearn et. al. [19] have contributed to 
the development of multivariate process capability 
indices. However, most of the proposed procedures 
involve complex calculations which make them less 
attractive to practitioners.  

The purpose of this paper is to develop a procedure 
for evaluating process capability when quality char-
acteristics of a product are the outputs of different 
workstations. The proposed procedure is based on 
ridge regression and leads to proper estimation of the 
process capability indices such as CP, CPK, CPM, and 
CPMK.    
 
 
2. Model description 
 

Consider a product with k quality characteristics 
and each quality characteristic having its own techni-
cal tolerance (TT). In general,  
 
TTi=[LSLi, Ti, USLi] for  i=1,2,…,k,                     (1) 

 
Where LSLi, USLi, and Ti are the lower specifica-

tion limit, the upper specification limit, and the target 
value (if it exists) for the ith quality characteristic, 
respectively. Suppose these quality characteristics are 
the outputs of various workstations or sub-processes. 
It is obvious that the variability in the final product is 
the result of the variability induced in each quality 
characteristic in different workstations. This point is 
discussed in the following example.   
 
 
3. Typical Example 
 

Consider the product in Figure 1 which has four 
quality characteristics X1, X2, X3 and X4 representing 
part length, step length, head diameter, and step di-
ameter, respectively. All the characteristics are vari-
able types with specific technical tolerances. 

 
 

 

 

 

 

Figure 1. Quality characteristics of a product. 

 
 

Appendix 1 presents the detailed operational se-
quences and workstations required to produce the 
above product. The major steps involved in worksta-
tions (WS) are as follows:  
a) Selecting a free length rod with the external diame-

ter X31 (in WS # 1 as denoted in Appendix 1). 
b) Cutting the rod to length X11 (in WS # 2). 
c) Surface machining to final diameter X32 (in WS # 

3). 
d) Machining the step in length X21 (in WS # 2) with 

proper cutting depth so that the final step diameter 
will be X41 (in WS # 3). 

e) Face machining and rounding edge such that X22 
(in WS # 3) will be the step length. The quality 
characteristic X12 (in WS # 3) denotes the part 
length.  

f) Improving the mechanical properties through heat 
treatment. The final quality characteristics, X1, X2, 
X3 and X4 are the outputs of these sub-processes. 

Since heat treatment can cause dimensional 
changes in the part, quality characteristics of the 
product will be a function of the relevant characteris-
tics in the previous workstations. However, this func-
tion is generally unknown and process designers can 
introduce the variables involved in the function by 
the means of logical relations and cause and effect 
analysis in production technology. Furthermore, by 
getting appropriate samples and analyzing the corre-
lation coefficients matrix, the analyst can get some 
information about the impact and contribution of 
each workstation on the quality characteristics of in-
terest. In the illustrated example, the quality charac-
teristics can be considered to be related to Xij’s as 
follows: 
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Dispersion analysis of the quality characteristics 

shows that the final value of the ith quality character-
istic that is shown by Yi is influenced by the opera-
tions done in the m previous workstations. If the 
value of the ith quality characteristic in workstation j 
is shown by Xij then Yi for each quality characteristic 
is a function of Xijs in m previous workstations, i.e.:        

 
Yi=fi (Xi1, Xi2, …, Xim) i=1,2,…,k                    (3) 
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The parameters of the model can be estimated by 
applying Ordinary Least Square (OLS), when no cor-
relation exists among independent variables, or ridge 
regression method, when independent variables are 
correlated. According to Neter et. al. [15] the results 
from the regression analysis are still applied if the 
following conditions hold:  
1. The conditional distributions of Yi, given Xi, are 

normal and independent. 

2. The Xi’s are independent random variables, whose 
probability distribution does not involve the regres-
sion parameters. 

As long as these conditions are met, all results on 
estimation still hold even though the Xi’s are now 
random variables.  Let µij and σij be the mean and 
variance of the ith quality characteristic in workstation 
j with technical tolerances given by [LSLij, Ti, USLij]. 
In general, one of the two following cases may occur: 

 
 
a) Quality characteristics in different workstations are 

independent 
 
In this case, the ith quality characteristic of the final 

product can be represented using the following gen-
eral linear regression model: 
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where Ui is white noise having normal distribution 

with mean zero and a given variance. The regression 
coefficients can be estimated by ordinary least 
squares estimators. If Xijs follow normal distribution, 
then Yi also has a normal distribution with the follow-
ing parameters: 
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Proper estimates of 
iŶµ  and 

iŶσ can be obtained 

through reliable estimations of 
ijµ and

ijσ . When Xijs 
are assumed to be normal random variables, the most 
typical process capability indices namely CP, CPK, 

CPM, and CPMK can be calculated using the following 
equations: 
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If the distributions of Xijs are non-normal, different 
approaches such as data transformation and quantile 
estimation can be used to modify process capability 
indices. However, many researchers prefer quantile 
estimation over other methods recommended for non-
normal situations. In quantile estimation method, ap-
propriate quantiles of the distribution of Yi are se-
lected such that the desired portion of the distribution 
lies between the selected upper and lower quantiles. 
For illustration purposes, suppose Yi, 99.865 and Yi, 0.135 
are used as the upper and lower quantiles of the dis-
tribution of Yi such that 99.73 percent of the distribu-
tion lies between them. When these quantities are 
used in the analysis, the process capability indices 
would be modified to:  
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In the non-normal case, if we can find a distribu-
tion form for the data, one that provides a reasonable 
fit, then we can obtain more accurate measures of the 
quantiles leading to better estimation of the process 
capability indices.    

 
 

b) Quality characteristics in different workstations 
are not independent 

 
When the independent quality characteristics are 

correlated, intercorrelation or multicollinearity is said 
to exist. Multicollinearity leads to high variation in 
the estimated regression coefficients. There are dif-
ferent remedial measures available to lesser the ef-
fects of multicollinearity. However, according to 
Neter et. al. [15] ridge regression seems to be the 
most effective remedy. Ridge regression is modified 
general version of regular least square method by 
using the biasing constant K which is a number grater 
than zero. When K is zero, Ridge regression acts as 
OLS and elsewhere, the regression coefficients ob-
tained are biased but more stable. It is vital that the 
value of K remains as low as possible and still be 
great enough to provide a good estimate. Refer to 
Montgomery and Freidman [13] for more details. It is 
noted that the biased estimates have much less mean 
square error compared to the unbiased estimates. 
Generally speaking, an estimator that has only a 
small bias but is substantially more precise is the pre-
ferred estimator because it will be closest to the true 
value of the parameter. By using appropriate standard 
statistical software the method of ridge regression 
could easily be applied to equation 4 to estimate the 
regression coefficients. Due to the presence of multi-
collinearity, equation 6 needs to be modified to the 
following equation:  
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However, the rest of the relationships presented in 
the previous section remain unchanged.  

 
 

4. Numerical Example 
 

To illustrate the steps involved in the calculation 
of the proposed procedure, consider the example dis-
cussed earlier. For the sake of simplicity, we only 
consider the step length (called X2) of the rod. Based 
on the engineering analysis, it seems that two of the 
workstations have profound effect on the quality of 
the step length. As illustrated in appendix 1, the final 
step length X2 with technical tolerance given by     
USL= 80.4, T=80.2 and LSL=79.9 may be modeled 
as a function of its previous amounts, X21 and X22, 
produced in the two previous workstations. This is 
generally shown as ),( 22212 XXfX = . 

Suppose each of the mentioned quality characteris-
tics follows a normal distribution with the parameters 
given in table 1. Further assume that these quality 
characteristics are statistically under control and it is 
desired to perform process capability analysis. 

 
Table 1.  Parameters of the quality characteristics.    

Quality Characteristic X2 X22 X21 
Mean 80 81.4 82.5 
Standard Deviation 0.1 0.3 0.3 

In order to assess the overall capability of this 
process, 40 samples where each sample consists of 
three observations is collected. Table A-1 in the 2nd 
appendix shows the collected data.  

Note that in this example, since the quality charac-
teristics have the same dimensional scale, there is no 
need to standardize the data.  The correlation coeffi-
cients presented in table 2 is indicative of some corre-
lation among the three quality characteristics.   

Table 2. Correlation matrix for the quality characteristics.  

 X2 X22 X21 
X2 1.00 0.16 0.24 
X22 0.16 1.0 0.41 
X21 0.24 0.41 1.00 

Pass 2000 statistical software was applied to the 
data presented in Table A2 and the following ridge 
regression equation with a biasing factor of K=0.005 
which helped the regression coefficients to remain 
constant was obtained: 

21222 130.0063.0108.64ˆ XXX ++=  
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Figure 2 presents the normal probability plot for 
the residuals. This figure confirms the normality as-
sumption. 
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Figure 2. Normal probability plot of residuals with 95% confidence 

interval. 

 Using equations 5 and 15, the parameters of the 
final quality characteristic X2 can be calculated as 
follows:  
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Once these values are replaced in equations 7 
through 10, the true process capability indices for the 
rod’s step length are computed as CP=1.83, CPK=0.45, 
CPM=0.34 and CPMK=0.14. Now the process engineer 
can use the appropriate index or indices to make the 
required adjustments to the process.   

 
 
5. Conclusions 

 
Univariate process capability indices are well 

known to quality engineers in different industries. 
They could be easily applied to estimate potential and 
actual process performance when process is under 
statistical control. Due to existence of correlation 
among quality characteristics, process capability 
analysis in multivariate environments is not usually 
an easy task to perform. In this paper, by applying 

regression method, final quality characteristic was 
modeled as a function of its previous amounts in ear-
lier workstations and a relatively easy method based 
on multivariate ridge regression analysis was devel-
oped to estimate four typical common process capa-
bility indices known as CP, CPK, CPM, and CPMK. 

This new approach has the following advantages: 

1. It is constructed based on a well-known multiple 
regression method which can be easily calculated 
using statistical packages.   

2. It can be applied to estimate many well-known 
process capability indices for both cases of normal 
and non-normal distributions.    

3. The critical workstations can be identified using 
the regression coefficients. 

A numerical example was also considered to model 
the interrelationship among quality characteristics in 
various workstations and to show the efficiency of 
the proposed method in terms of the amount of com-
putations involved. 
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Appendix 1 

 
The operational sequence in each workstation for the illustrated example is as follows: 

Starting point: Selecting a free length rod with the external diameter X31 . 
 

 
 

 
 
 
 

1st workstation: Cutting the rod to length X11 . 
 

 

 

 

 
 

 
 

 
 

2nd workstation: Surface machining to final diameter X32 and machining the step in 
length X21 with proper cutting depth so that the final step diameter will be X41 . 

 
 
 
 
 

 
 

 
 
 
 

3rd workstation: Face machining and rounding edge such that X22 will be the step 
length and X12 denotes the part length. 

 

 
 
 
 
 
 
 
 
 
 

4th workstation: Heat treating the final quality characteristics such as X1, X2, X3, 
and X4 are the final outputs of all sub-processes  (Refer to Fig. 1). 

X31 

X31 

X32 X41 

X41 X32 

X22 
X12 

X21 
X11 

X11 



 
 
 
 
26      S. Raissi and R. Noorossana 
 

 

 

Appendix 2 
 

TableA1. 40 samples on the step length of the rod in three workstations (WS) 
related to numerical example. 

Step length in Step length in Sample 
No. Final WS 

(X2) 
WS # 3 

(X22) 
WS#2 
(X21) 

Sample 
No. Final WS 

(X2) 
WS # 3 

(X22) 
WS#2 
(X21) 

1 80.0 81.6 82.8 21 79.9 81.4 82.5 
2 80.0 81.7 82.1 22 80.1 81.7 82.6 
3 80.1 81.3 82.2 23 80.0 81.6 82.2 
4 80.0 81.0 82.3 24 79.9 81.4 82.3 
5 80.2 81.4 82.4 25 79.9 81.8 82.8 
6 80.0 81.5 82.3 26 80.0 81.1 82.3 
7 80.0 81.5 82.6 27 79.8 81.1 82.6 
8 80.1 81.1 82.6 28 79.9 81.1 82.4 
9 80.0 81.0 82.5 29 80.1 81.6 82.5 

10 80.1 81.2 82.9 30 80.0 81.3 82.9 
11 80.0 81.4 82.5 31 80.1 81.3 83.1 
12 80.0 81.6 82.3 32 80.0 81.8 82.7 
13 79.9 80.9 82.0 33 80.1 81.5 83.0 
14 80.0 81.5 82.3 34 79.9 81.3 82.0 
15 80.2 81.8 82.7 35 80.0 81.2 82.6 
16 80.2 81.5 82.9 36 79.9 81.0 82.7 
17 79.9 81.2 82.4 37 79.9 81.8 82.0 
18 79.8 81.7 82.4 38 80.0 81.9 82.7 
19 79.9 81.2 82.0 39 79.9 80.9 82.3 
20 80.0 81.6 82.3 40 80.0 81.7 82.6 
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