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Abstract: In this paper a network comprising alternative branching nodes with probabilistic outcomes is 

considered. In other words, network nodes are probabilistic with exclusive-or receiver and exclusive-or 

emitter. First, an analytical approach is proposed to simplify the structure of network. Then, it is assumed 

that the duration of activities is positive trapezoidal fuzzy number (TFN). This paper combines the 

randomness and fuzziness and shows that the fuzzy completion time of alternative stochastic network is a 

fuzzy-valued random variable. Then, the probability function of network fuzzy completion time and its 

expected value is defined. Finally, the applications and computations are illustrated in a numerical example. 
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1. Introduction 

In many real-world projects, the realization of 

activities and their durations are non-deterministic. 

A non-deterministic character may be stochastic or 

fuzzy.  

Previous researches supposed that the realization 

of activities and their durations are stochastic 

(Pritsker and Happ, 1966; Pritsker and Whitehouse, 

1966). This is the reason of GERT-type networks 

creation. On the other hand, completion of projects 

on time has a significant effect on their costs, 

revenue and usefulness. So, acquisition of network 

completion time will be valuable. Some new 

analytical methods for determining the completion 

time of GERT-type networks have been proposed 

by Shibanov (2003) and Hashemin and Fatemi 

Ghomi (2005). The main problem of these methods 

is its high complexity of relations and computations.  

Recent works define the fuzzy characters for 

project networks because the fuzzy models are 

closer to reality and simpler to use (Lootsma, 1989). 

Many of new works are related to the fuzzy PERT-

type networks (McCahon and Lee, 1988; Shipley, 

1997; Chanas and Zielinski, 2001; Kuchta, 2001; 

Lin and Yao, 2003; Chen and Hung, 2007) and just 

few of them are related to the GERT-type networks. 

Based on fuzzy GERT-type networks, Gavareshki 

(2004) proposes a new applicable technique for 

research project scheduling. In this project, nodes 

are fuzzy and output activities from nodes of 

network belong to a fuzzy set. This method 

computes the network completion time as a fuzzy 

number. Liu et al., (2004) believe that the 

traditional GERT networks cannot reflect the 

characteristics of real-world network problems and 

uses the triangular fuzzy numbers to formulate the 

fuzzy GERT model. Many of real projects complete 

through the realization of one and only one path of 

various possible network paths, and the aim of the 

present paper is studying this case. Here, these 

networks called alternative stochastic networks. 

This paper combines the randomness and fuzziness 

in the above-mentioned networks. Fuzziness and 

randomness are two basic types of uncertainty. In 

many cases, fuzziness and randomness simultan- 

eously appear in a system. Fuzzy random variable 

(fuzzy-valued random variable) and random fuzzy 

variable are instances of hybrid variable (Liu, 

2008). A fuzzy random variable is a random 

element that takes fuzzy variable values 

(Kwakernaak, 1978,1979). In addition, a random 

fuzzy variable is a fuzzy element that takes random 

variable values (Liu, 2009).  

In this paper, it is supposed that nodes of 

considered network are probabilistic with exclusive-

or receiver and exclusive-or emitter. Although 

many types of fuzzy sets have been used to describe 

uncertainties, triangular and trapezoidal fuzzy sets 

(fuzzy numbers) are applied to describe uncertain 

activity duration in the research (Zhang, 2005). So, 

activity durations are considered positive fuzzy 

number as trapezoidal. First, a new analytical 

approach is proposed to simplify the structure of 

network. This approach transforms the network to 

simpler equivalent network. It is shown that the 

network completion time of these networks is a 

fuzzy-valued random variable. Then, the probability 

function of fuzzy completion time of network has 

been determined. Finally, the expected value of 

fuzzy completion time of network is defined as a 

fuzzy number. The paper has the following 

structure: Section 2 introduces the definitions, 

operations and assumptions. Analytical approach is 
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Mi The structural matrix of subnetwork i,   

  

Ai The event of realization of i-th sink node, 

  

ni Number of paths which start from source 

node and terminate in i-th sink node, 

 

ijA  The event of realization of i-th sink node 

through the realization of j-th path leading 

to that node, 

  

ijT  Fuzzy completion time of network by 

realization of i-th sink node through the 

realization of j-th path leading to that node, 

  

ijP  Realization probability of j-th path which 

terminates in i-th sink node, 

  

ip  Realization probability of i-th sink node  

  

kP  Accomplishment probability of k-th 

activity, given that start node of this 

activity has realized, 

  

iT  Fuzzy completion time of subnetwork i (It 

is a fuzzy-valued random variable), 

  

ijS  Activity set of j-th path which terminates 

in i-th sink node, 

  

kt  Duration time of k-th activity (It is a 

positive TFN), 

  

T Fuzzy completion time of network  (It is a 

fuzzy-valued random  variable). 

 

A network can be decomposed to M subnetworks 

in a way that subnetwork i,  i=1,2,…,M  comprises 

all paths which terminates in  i-th sink node. 

Structure of subnetwork  i  is shown by Mi, 

i=1,2,…,M.  

Mi is a matrix with ni rows and N columns. 

Elements of matrix Mi are shown by 
i
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subnetwork i comprises in  parallel alternative 

paths that terminate in i -th sink node. Any of these 

paths are related with one of the rows of Mi (we 

select ii
MM = ). Realization probability of these 

paths is equal with ijP . Length (Time) of these paths 

is a fuzzy number as follows: 
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k S

T ( A ) t
∈
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where ⊕∑ shows the fuzzy summation. 

Although some of the activities of these paths are 

common but 
ii TT = , because when the subnetwork 

i  is realized, one and only one of these paths is 

realized. Therefore, subnetwork i  is equivalent 

with subnetwork  i. Then, the equivalent network 

has (∑∑
= =

M

i

n

j

i

1 1

1) alternative parallel paths.  

4. Fuzzy completion time of network as a fuzzy-

valued random variable 

Kwakernaak (1978) introduced the notion fuzzy 

random variable in the following way. A fuzzy 

random variable T defined on a probability space 

),,( ΡΣΩ is characterized by a map ST →Ω:

such that ωω T
T

→  where S is a collection of all 

piecewise continuous functions ]1,0[→R . Each 

element of S is a membership function of fuzzy 

number. Completion time of network (T) is a fuzzy-

valued random variable. Fuzzy-valued random 

variable is a random variable with fuzzy values as 

fuzzy numbers (in this paper TFN). Realization of 

an alternative stochastic network can be considered 

as a random experiment. Sample space of this 

experiment is: 

∪
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ijA
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Network completion time (T) is a fuzzy-valued 

random variable and defined on Ω  as a function 

with ∑
∈

=⊕=
ijSk

ijkij TtAT )(  rule. The probability 

function of T is as follows: 
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5. Applications and numerical example 

    Many of real-world projects complete through the 

realization of one and only one of the paths of 

project network. These networks are called 

alternative stochastic networks. The network of a 

research project may be an alternative stochastic 

network. Also, the production line of a product may 

be presented as an alternative stochastic network. 

Some of repairing systems can be illustrated as an 

alternative stochastic network. In all above cases, 

activity durations can be defined as fuzzy numbers. 

So, computing the probability function of network 

completion time (It is a fuzzy-valued random 

variable) and its expected value will be useful. 

On a production line a part is manufactured at the 

beginning of the line. Before the finishing, it is 

inspected, with 25% of parts failing the inspection 

and requiring rework. Manufacturing and inspection 

is called activity 1. Reworking is called activity 2. 

30% of the reworked parts fail in the next 

inspection (activity 4). Parts that fail in this 

inspection are scrapped (activity 6). If the part 

passes either of the above inspections, it is sent to 

the final finishing operation (activity 3,5) A final 

inspection (activity 7) rejects 5% of the parts;  these 

are scrapped (activity 8) and accepts 95% of the 

parts (activity 9). The manufacturer intends to know 

what are the probabilities of having non-defective 

and scrapped parts and the corresponding 

probability distribution function of the times will 

take for receipt of non-defective and scrapped parts. 

The alternative stochastic network for the above 

production line is illustrated in Fig. 2. The network 

in Fig. 2 comprises two sink nodes. In other words, 

it comprises two subnetworks: 

Subnetwork 1 and subnetwork 2 are shown in 

Fig. 3 and Fig. 4 respectively. 

 

 

 

 

 

             

 

 

  

Figure 2: Network in the numerical example. 

 

 

 
Figure 3: Subnetwork 1. 

 

 

 
Figure 4: Subnetwork 2. 

 

 

 
Figure 5: Subnetwork 1. 

 

 

 
Figure 6: Subnetwork 2. 
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Figure 7: Equivalent network. 

 

Structural matrixes of above subnetworks are as 

follows: 



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
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Activity set of paths and their realization 

probabilities are: 

9731 tttt +++  

== 973121 PPPPP (1) (.75) (1) (.95) = .7125 

975421 tttttt +++++  

== 97542122 PPPPPPP (1)(.25)(1)(.7)(1)(.95)=.16625 

6421 tttt +++  

== 642111 PPPPP (1) (.25) (1) (.3) = .075 

8731 tttt +++  

== 873112 PPPPP (1) (.75) (1) (.05) = .0375 

875421  tttttt +++++  

== 87542113 PPPPPPP (1)(.25)(1)(.7)(1)(.05) = .00875 

P P P P1 11 12 13= + + =.075 + .0375 + .00875 = .12125 

P P P2 21 22= + = .7125 + .16625 = .87875 

Therefore, the equivalent subnetworks 1  and 2  

will be as shown in Fig. 5 and Fig. 6. Hence, the 

equivalent network is as shown in Fig. 7. 

    Suppose that the duration of activities are 

trapezoidal numbers as shown in Table 1. 

    Now, the probability function of completion time 

of network (which is a fuzzy-valued random 

variable) can be obtained as follows: 

Table 1: Duration of activities as positive trapezoidal numbers. 

k a b c d 

1 1 2 4 5 

2 2 3 5 6 

3 1.5 2 3 3.5 

4 2.5 3 4 4.5 

5 0.5 1 2 2.5 

6 0.5 1.5 3.5 4.5 

7 1 2 3 4 

8 2 3 4 5 

9 1.5 2.5 4 5 

 

 

 

 

It is obvious that, 3,2,1)),(( 11 == jATTP j  and 

2,1)),(( 22 == jATTP j  for sink nodes 1, 2 can be 

computed. 

    By using formula (1) the expected network 

completion time can be computed as trapezoidal 

number. 

∑ ∑
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j
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i
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1 1

)( � )( ijAT  

                = 0.075 � (6,9.5,16.5,20) 

  ⊕ 0.0375� (5.5,9,14,17.5) 

  ⊕ 0.00875� (9,14,22,27) 

  ⊕ 0.7125� (5,8.5,14,17.5) 

  ⊕ 0.16625� (8.5,13.5,22,27) 

   =(5.935625,9.473125,15.5875,19.35) 

6. Conclusion 

    This paper has shown that a stochastic network 

with alternative branching node and fuzzy activity 

durations is a suitable tool to describe non-

deterministic projects. In this paper, the network 

completion time, as a non-deterministic character of 

alternative networks, has been determined as a 

fuzzy-valued random variable. Then, the probability 

function of this fuzzy-valued random variable and 

its expected value has been defined. Consequently, 

it is shown that the expected network completion 

time can be obtained as a fuzzy number. In this 
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ATji

ATji

ATjiATTp ij
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study, nodes of network were probabilistic with 

exclusive-or receiver and exclusive-or emitter. 

Considering the other types of nodes can be good 

subjects for future studies. Also, it is supposed that 

the activity durations are positive trapezoidal fuzzy 

numbers. Future studies can be considered with 

other types of fuzzy numbers. Similar computations 

can be done with α -cut set of activity durations. 
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