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Abstract
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first

stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each

alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights

since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of

alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for

the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous

stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method

and algorithms.

Keywords Data envelopment analysis � Multi-criteria decision making � Individual rank � Group rank � Cross-evaluation �
Voting

Introduction

Obtaining a group ranking or a winning candidate from

individuals’ preferences on a set of alternatives is an

important group decision problem with social choice and

voting system implications. In a voting system, each voter

ranks the alternatives based on his/her preference, so that

each alternative may receive different votes in different

ranking places. Assume that each voter selects k out of

n alternatives provided k B n and ranks them from the

most to the least preferred. Using the scoring rule, a well-

known ranking system, the total score of each candidate is

the weighted sum of votes he or she receives in different

place, where the value 1 is assigned to the most important

alternative and n to the least important. Determining the

weights used for the different places is clearly an important

issue.

Cook and Kress (1990) proposed the data envelopment

analysis (DEA) technique to obtain the rank order of

alternatives which evaluates each alternative with the most

favourable scoring vector. These authors considered the

number of votes received at a rank position as an output

and used the model with an input equal to unity (Hashi-

moto 1996) and an additional ‘‘assurance region’’ con-

straint (Thompson et al. 1986; Hashimoto and Ishikawa

1993). Green et al. (1996) improved this procedure and

presented a discrimination method using a cross-efficiency

concept, i.e., alternatives take the voters’ preference as

desired for themselves compared to the other alternatives.

Liamazares and Pena (2009) showed some drawbacks

associated with the method presented by Cook and Kress

(1990) and introduced methods which recognize the pref-

erence between the efficient alternatives. Hashimoto (1997)

proposed an AR/exclusion model based upon the concept

of super-efficiency presented by Andersen and Petersen

(1993). Although Green et al. (1996) proposed a rank order

for the alternatives, they did not consider the possibility of

assigning a weight of 0 for a given rank or the difference
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between two given ranks to be 0. Noguchi et al. (2002)

presented a strong ordering to alternatives in which weights

are obtained using the feasible solution region of the con-

straint set in LP. Obata and Ishii (2003) introduced a

method to discriminate efficient alternatives using ranked

voting data without considering information about ineffi-

cient alternatives. As such, the rank order presented using

this method is independent of inefficient alternatives.

Foroughi and Tamiz (2005) extended the model presented

by Obata and Ishii (2003) in order to obtain the rank order

for both efficient and inefficient alternatives. The extended

model contains fewer constraints compared with the model

introduced by Obata and Ishii (2003). Discriminating effi-

cient alternatives by considering their least relative total

scores was presented by Wang and Chin (2007). Wang

et al. (2008) proposed a method to rank multiple efficient

alternatives by comparing the least relative total scores for

each efficient alternative with the best and the least relative

total scores measured in the same range.

Tavana et al. (2007) proposed a new hybrid distance-

based ideal-seeking consensus ranking model. Their pro-

posed hybrid model combines parts of the two commonly

used consensus ranking techniques of Beck and Lin (1983)

and Cook and Kress (1985) into an intuitive and compu-

tationally simple model. Tavana et al. (2008) proposed a

new weighted sum ordinal Consensus ranking method with

the weights derived from a Sigmoid function. They ran

Monte Carlo simulation to compare the similarity of the

consensus rankings generated by our method with the best-

known method of Borda–Kendall and two other commonly

used techniques. They showed although consensus rank-

ings generated by different algorithms are similar, differ-

ences in rankings among the algorithms were of sufficient

magnitude that they often cannot be viewed as inter-

changeable from a practical perspective.

Zerafat Angiz et al. (2009) proposed a multi-objective

linear programming DEA based model to select the best

alternative in a group decision-making environment Con-

treras (2010) presented a distance-based consensus model

with flexible choice of rank-position weights in which

preference aggregation is obtained by a ranking of alter-

natives. To do so, a mixed integer linear programming

model was constructed providing the preference of alter-

natives by the vector of weights that minimizes the dis-

agreement across decision makers. In addition to this

model, Contreras (2011) proposed another method that

ranks the alternatives in two stages. First stage is based on

the cross-evaluation methodology in which (1) the rank of

alternatives is computed in their best condition and (2) the

individual rank of each alternative is obtained. In the sec-

ond stage, the group rank of alternatives with common

weights is obtained. Hosseinzadeh Lotfi et al. (2013)

worked on a three-stage process to rank alternatives. Based

on this model, in the first stage the alternatives are evalu-

ated in their best condition with the DEA model. Since the

optimal weights obtained in the first stage are non-unique,

a second stage is introduced in order to limit the vector of

weights. In the third stage, the group rank position is

determined based upon the minimum distance by the mean

rank obtained in the second stage. To discriminate between

efficient alternatives, Soltanifar and Hosseinzadeh Lotfi

(2011) used the voting analytic hierarchy process method

(VAHP).

The DEA evaluation cannot derive a unique optimal

weight vector for the alternatives. So, the problem men-

tioned above makes the cross-evaluation important. In

DEA, to deal with this problem, Sexton et al. (1986)

initially proposed a secondary goal and then Doyle and

Green (1994) and Doyle and Green (1995) suggested the

most widely used secondary goals (i.e., aggressive and

benevolent evaluation). Lianga et al. (2008) extended the

model introduced by Doyle and Green (1994) as utilizing

an alternative secondary goal. Contreras (2012) optimized

the rank positions of alternatives as a secondary goal in

cross-evaluation so that the alternatives could assume tie

ranks.

Ziari, and Raissi (2016) ranked extreme efficient

DMUs that solve the infeasibility and unboundedness

problem of other methods. Their approach minimized the

distance between under evaluation and virtual DMUs.

Hafezalkotob and Hafezalkotob (2017) used the interval

target-based norm and also considered the concept of

degree of preference of interval numbers in order to rank

these numbers. Ziari (2016) developed an alternative

method to convert the nonlinear model of ranking the

DMUs using the L1 norm that has been introduced by

Jahanshahloo et al. (2004). Ding and Kamaruddin (2015)

compared both crisp TOPSIS and fuzzy TOPSIS from

group decision making based on the distance concept.

Tohidi and Razavyan (2012) introduced the recession

direction for a multi-objective integer linear programming

problem.

Gong et al. (2018) used DEA models to evaluate pref-

erence in voting system with abstentions. Ebrahimnejad

et al. (2016) applied the DEA method to rank efficient

alternatives and used simulation to analyse the rankings

and synthesize them into one group ranking. Gong et al.

(2015) proposed the models to evaluate the consensus rank.

Their model is based on minimum cost and maximum

return. They used interval preferences for individual ranks.

Liu et al. (2017) obtained consensus in group decision

making based on an interval-valued trust decision-making

space. Wu et al. (2018) introduced a consensus model for

social network group decision-making problems. Zhang

et al. (2017) presented the consensus models based on

minimum cost by random opinions. Also, they discussed
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sensitivity analysis for different opinions and distributions

of cases.

We propose a three-stage method for the ranking of the

alternatives in a voting system in a way to minimize the

distance between the individual and group ranks. In the first

stage, the optimistic rank of each alternative is determined.

Each alternative is evaluated not only with its optimal

weights but also with the remaining alternatives’ weights,

implying that the vector of optimal weights presented is not

unique. Although the given model has unique objective

values, the vector obtained does not necessarily have a

unique value. Thus, depending on which vector is selected,

the rank position of other alternatives can alter. Conse-

quently, a secondary goal is introduced to limit the optimal

weight vector in the second stage. In the third stage, the

ranking of alternatives is computed by common weights in

a way that the group ranks have minimum distance from

each individual rank by different norms. The proposed

model assigns integer ranks to the alternatives. It is

important to mention that this is a multi-criteria decision-

making model which we solve using mixed integer

programming.

The remainder of this paper is organized as follows. In

‘‘Proposed method’’ section introduces the proposed three-

stage ranking method. In ‘‘Numerical example’’ section a

numerical example is provided to demonstrate the appli-

cability and exhibit the efficacy of the proposed method. In

‘‘Conclusion and future research directions’’ section high-

lights our conclusions and future research directions.

Proposed method

Individual rank position

One of the most important aspects of decision making is to

obtain a group ranking using the individual ranking for a

certain set of alternatives. Assume that n alternatives

fx1; . . .; xng with n� 3 have to be assigned to k k� nð Þ
places. There are many methods for determining the ranks

of alternatives using their weights. For instance, scoring

rules compute the score for each alternative based on its

rank position in the individual preference and then rank the

alternatives by the sum of resulting scores. Assuming that

vij indicates the number of votes that xi receives in the jth

rank position and wj represents the weight or score asso-

ciated with vij, then the aggregate value is defined for the

alternative xi as the weighted sum of the votes receives in

different places, i.e., VðxiÞ ¼
Pk

j¼1 wjvij. Therefore, the

alternatives can be ranked by comparing their aggregate

values. Moreover, the voting system can be used to rank

the alternatives. The value of 1 and n are given to the most

and least important (preferences) alternatives, respectively.

In addition, the ranks are distinct. Hence, the rank vector of

alternatives is from 1 to n defining a linear order for the

alternatives. Hosseinzadeh Lotfi et al. (2013) suggested a

three-stage method in order to rank alternatives. They

employed a model for ranking alternatives in the first stage

by considering the best rank position of the alternative

under evaluation. To do this, a mixed integer linear model

is solved as follows (see Model 1):

min roo ð1Þ

s:t:
Xk

j¼1

wo
j vij �

Xk

j¼1

wo
j vhj þ doihM� 0; 8i; h; i 6¼ h;

ð1aÞ
doih þ dohi ¼ 1; 8i; h; i 6¼ h; ð1bÞ

doih þ dohl þ doli � 1; 8i; h; l; i 6¼ h 6¼ l; ð1cÞ

roi ¼ 1þ
X

i 6¼h

doih; 8i; ð1dÞ

wo
j 2 /; 8j; ð1eÞ

doih 2 0; 1f g; 8i; h; ð1fÞ

whereM is a large positive number. wo
j indicates associated

weights of votes in the jth place when alternative xo is

evaluated and vij shows the number of votes that the

alternative xi is received in the jth place. Accordingly,

VoðxiÞ ¼
Pk

j¼1 w
o
j vij states the aggregate value of votes as

the optimal weight vector of the alternative under evalua-

tion. Let VoðxiÞ�VoðxhÞ then the rank position of xi is

better than xh, and in addition, doih ¼ 0 represents a better

rank position for xi rather than xh, where doih is a binary

variable. If doih ¼ 0, then constraint (1a) in Model (1) is

obtained as follows:

Xk

j¼1

wo
j vij �

Xk

j¼1

wo
j vhj þ doihM� 0

)
Xk

j¼1

wo
j vij �

Xk

j¼1

wo
j vhj ) VoðxiÞ�VoðxhÞ

Therefore, the rank position of xi is better than that of xh.

The constraints (1a) are redundant if doih ¼ 1. It is presumed

that alternatives are ranked from 1 to n, implying that the

alternatives do not have equal ranks which makes con-

straints (1b) and (1c) necessary. Constraints (1b) demon-

strate that VoðxiÞ and VoðxhÞ are comparable, i.e., either the

rank position of alternative xi is better than xh or the rank

position of alternative xh is better than xi. Constraints (1d)

indicate the number of times that x1 is worse than x2 and

the Term Ro ¼ ðro1 ; . . .; ronÞ explains the preference vector

obtained in the evaluation of alternative xo. It should be
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noted that the weights are computed assuming that the

alternatives are located in the best rank position. In addi-

tion, the rank of each alternative is integer-valued.

In order to establish a consensus between several DMs

about selecting weights, a feasible set / is defined for the

weights. This includes minimum information about the

discrimination between the components of the weight

vector wo. Therefore, the set / should be specified as

/ ¼ wo 2 Rkjwo
1 �wo

2 � � � � �wo
k � 0;

Pk
j¼1 w

o
j ¼ 1

n o
. If

the set / contains only one vector, the rank position of

alternatives will be then given based on their aggregate

values. As previously mentioned, the set / includes the

preference vectors between weights, so that an order is

determined for alternatives using VoðxiÞ based on each

vector wo. As a result, a criterion is proposed to charac-

terize the set / in the evaluation of alternatives. For

example, the set / can be defined as / ¼ fwo 2 Rkjwo
1 �

wo
2 �wo

2 � wo
3;w

o
2 � wo

3 �wo
3 � wo

4; . . .g which shows the

discrimination between the components of the weights

vector (for example, see Contreras et al. 2005; Cook and

Kress 1996).

Secondary goal

In general, Model (1) is run n times and introduces a rank

vector in each run. We say a rank matrix R of order n is

generated in which the oth column is given by

Ro ¼ ðro1; . . .; ronÞ. Since the ranks presented can be changed

due to the non-uniqueness of the optimal weights obtained

from Model (1), the elements of the rank matrix R,

excluding the diagonal elements, can then vary depending

on which vector is used. In fact, there exists a problem

similar to the problem of the cross-evaluation using DEA.

The vector of weights derived from the evaluation using

DEA is not unique. As a result, roi ; ði 6¼ oÞ may not take a

unique value. To solve this problem, the DEA applies a

secondary goal. In here, we suggest the following sec-

ondary goal in order to limit the optimal solutions obtained

by the evaluation of alternatives in the first stage:

min
Xn

o¼1

roo þ e
Xn

o¼1

X

i\o

Xk

j¼1

wjo � wji

�
�

�
� ð2Þ

s:t:
Xk

j¼1

wjovij �
Xk

j¼1

wjovhj þ dihoM� 0; 8o; i; h; i 6¼ h;

ð2aÞ
diho þ dhio ¼ 1; 8o; i; h; i 6¼ h; ð2bÞ

diho þ dhlo þ dlio � 1; 8o; i; h; l; i 6¼ h 6¼ l; ð2cÞ

rio ¼ 1þ
X

i6¼h

diho; 8o; i; ð2dÞ

wjo 2 /; 8o; j; ð2eÞ

diho 2 0; 1f g; 8o; i; h: ð2fÞ

Using Model (1), each alternative is evaluated provided

the alternative under evaluation is estimated in the opti-

mistic case. Therefore, the weights obtained from each run

of Model (1) can vary significantly from each other. Hence,

in Model (2), Model (1) is written in an integrated form in

order to select close-up weights for each alternative where

each alternative is evaluated independently. Moreover,

using Model 2, the weights can be compared with each

other. As mentioned earlier, M is a large positive number.

The term wji signifies the weights assigned to the jth place

in the evaluation of alternative xi. The term vij gives the

number of votes that the alternative xi receives in the jth

place. Furthermore, diho is the same as the binary variable

doih. The term rio indicates the element of the rank matrix R

that lies in the ith row and the oth column. Model (2) is a

two-objective model which minimizes the sum of the ranks

and the difference of the weights obtained using Model (1)

as the first and second objectives, respectively. The pur-

pose of the model is to choose the alternative under eval-

uation which has the best rank position. The coefficient e is
suggested as the difference of the weights where e is a non-
Archimedean number. Moreover, Model (2) is a nonlinear

model, meaning that it can be converted to a mixed integer

linear model via changes of the variables woj � wij ¼ dwoij.

Therefore, the constraints dwoij �woj � wij and

dwoij �wij � woj, for all i; j; i\o, are added to the model. In

order to obtain the rank matrix R that includes the indi-

vidual ranks, the following model is solved:

min
Xn

o¼1

roo þ e
Xn

o¼1

X

i\o

Xk

j¼1

dwijo ð3Þ

s:t:
Xk

j¼1

wjovij �
Xk

j¼1

wjovhj þ dihoM� 0; 8o; i; h; i 6¼ h;

ð3aÞ
diho þ dhio ¼ 1; 8o; i; h; i 6¼ h; ð3bÞ

diho þ dhlo þ dlio � 1; 8o; i; h; l; i 6¼ h 6¼ l; ð3cÞ

rio ¼ 1þ
X

i6¼h

diho; 8o; i; ð3dÞ

dwijo �wjo � wji; 8o; i; j; i\o; ð3eÞ

dwijo �wji � wjo; 8o; i; j; i\o; ð3fÞ

wjo 2 /; 8o; j; ð3gÞ
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diho 2 0; 1f g; 8o; i; h; ð3hÞ

dwijo � 0; 8o; i; j: ð3iÞ

Group rank position

As previously mentioned, Ro ¼ ðr1o; . . .; rnoÞ denotes the

rank vector presented in the evaluation of alternative xo. In

order to obtain a group rank RG ¼ ðrG1 ; . . .; rGn Þ considering
Ro ¼ ðr1o; . . .; rnoÞ obtained from Model (3), in the third

stage, a multi-objective mathematical model is provided.

This model selects a common vector of weights from the

set / that minimizes the disagreement between all indi-

vidual and group ranks. Hence, the distance function

dpðRG;RÞ ¼
Pn

h¼1 d
pðRG;RhÞ ¼

Pn
h¼1

Pn
i¼1 jrGi � rihjp

� �1
p,

in which rGi is the ith component of the group rank and rih
which measures the rank of xi in the evaluation of xh, is

used to minimize the distance between the individual and

group ranks. The metrics l1, l2, and l1 are defined for

p ¼ 1, p ¼ 2, and p ¼ 1, respectively, where:

d1ðRG;RÞ ¼
Xn

h¼1

Xn

i¼1

jrGi � rihj; d2ðRG;RÞ

¼
Xn

h¼1

Xn

i¼1

ðrGi � rihÞ2
!1

2

and d1ðRG;RÞ

¼ max
i;h

jrGi � rihj:

Considering these, the following model is introduced:

min d1 RG;R
� �

ð4Þ

min d2 RG;R
� �

ð4aÞ

min d1 RG;R
� �

ð4bÞ

s:t:
Xk

j¼1

wjvij �
Xk

j¼1

wjvhj þ dihM� 0; 8i; h; i 6¼ h;

ð4cÞ
dih þ dhi ¼ 1; 8i; h; i 6¼ h; ð4dÞ
dih þ dhl þ dli � 1; 8i; h; l; i 6¼ h 6¼ l; ð4eÞ

rGi ¼ 1þ
X

i 6¼h

dih; 8i; ð4fÞ

wj 2 /; 8j; ð4gÞ

dih 2 0; 1f g; 8i; h: ð4hÞ

It should be noted that the group rank estimated by the

metrics l1 and l2 is the consensus rank that can be inter-

preted as the median and mean distance statistics, respec-

tively. Indeed, the median and mean ranks are obtained

based on the median and mean of the row ranks of each

alternative in the rank matrix R produced by Model (3).

The rank group is computed in a way that has a minimum

distance from the group rank of each alternative using its

corresponding median and mean ranks, respectively. It is

important to mention that the outlier ranks have a less

preference by using the metric l1 and the metric l2 con-

siders the effect of a rank with different weights for each

alternative. The metric l1 also minimizes the maximum

distance between the individual and group ranks. Note that

it avoids creating the maximum distance between two

ranks for one place. It is obvious that Model (4) is a non-

linear model. In order to write a mixed integer linear

model, we use the following relationships:

• Nonnegative variables dr1ih are defined to obtain the

linear form of d1 RG;Rð Þ provided that

dr1ih ¼ rGi � rih; 8i; h. Therefore, the constraints

dr1ih � rGi � rih and dr1ih � rih � rGi ; 8i; h are added to the

linear model.

• In order to have a linear form for d2 RG;Rð Þ, the

derivative of the distance function with respect to rGi
can be calculated because of the convexity property of

d2 RG;Rð Þ. That is;
•

dðd2ðRG;RÞÞ
d rGið Þ ¼

Xn

h¼1

rGi � rih
� �

¼ nrGi �
Xn

h¼1

rih

!

¼ n rGi � 1

n

Xn

h¼1

rih

!

:

ð5Þ

The minimum value of d2 RG;Rð Þ is obtained by setting

the derivative equal to 0. Hence, we have

min
i

d2 RG;R
� �

¼ min
Xn

i¼1

dðd2ðRG;RÞÞ
d rGið Þ � 0

�
�
�
�

�
�
�
�

¼ min
Xn

i¼1

n rGi � 1

n

Xn

h¼1

rih

!�
�
�
�
�

�
�
�
�
�

¼ min
Xn

i¼1

jrGi � �rij ð6Þ

where �ri ¼ 1
n

Pn
h¼1 rih is interpreted as the mean value of

the ith row ranks of the alternative xi. Thus, the nonnega-

tive variables dr2i ¼ rGi � �ri; 8i are defined and the con-

straints dr2i � rGi � �ri and dr2i � �ri � rGi ; 8i are added to the

linear form of the model.

• The term dr1 ¼ maxi;h jrGi � rihj is considered to derive
the linear form of d1ðRG;RÞ subject to dr1 � dr1ih .

Considering the above, the linear form of Model (4) is as

follows:
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min
Xn

i¼1

Xn

h¼1

dr1ih

min
Xn

i¼1

dr2i

min dr1

ð7Þ

s:t:
Xk

j¼1

wjvij �
Xk

j¼1

wjvhj þ dihM� 0; 8i; h; i 6¼ h;

ð7aÞ
dih þ dhi ¼ 1; 8i; h; i 6¼ h; ð7bÞ
dih þ dhl þ dli � 1; 8i; h; l; i 6¼ h 6¼ l; ð7cÞ

rGi ¼ 1þ
X

i 6¼h

dih; 8i; ð7dÞ

dr1ih � rih � rGi ; 8i; h; ð7eÞ

dr1ih � rGi � rih; 8i; h; ð7fÞ

dr1 � dr1ih ; 8i; h; ð7gÞ

dr2i � 1

n

Xn

h¼1

rih � rGi ; 8i; ð7hÞ

dr2i � rGi � 1

n

Xh

h¼1

rih; 8i; ð7iÞ

wj 2 /; 8j; ð7jÞ

dih 2 0; 1f g; 8i; h; ð7kÞ
dr1ih ; d

r2
i ; d

r1 � 0; 8i; h: ð7lÞ

The above model is a mixed integer multi-objective

model which can be solved using many methods. To solve

Model (7), the weighted sum method is used so that the

used weights are standardized. Therefore, the objective

functions of Model (7) can be replaced with one objective,

min v1
n2

Pn
i¼1

Pn
h¼1 d

r1
ih þ v2

n

Pn
i¼1 d

r2
i þ v3d

r1 , to compute

the group rank position of the alternatives where v1, v2, and

v3 are the weights assigned to the three objectives by the

DMs and are nonnegative values. If the DMs wish the

group rank close to the median value, v1 will take a bigger

value than v2 and v3. The weight v2 will have the most

importance if the value of v2 is more than other weights.

In fact, if the DM wants the group rank close to the

median value, then he can use the metric l1. In this case,

the outlier ranks have less preference. If the DM wants the

group rank close to the mean value, then he can use the

metric l2. In this case, the effect of a rank with different

weights is presented. l1 minimizes the maximum distance

between the individual and group rank. Therefore, the DM

can compute the group rank position of alternatives by

different norms. The pseudocode of our algorithm is pre-

sented here:

Numerical example

In this section, we apply our method to Green et al. (1996)

problem where voters are asked to rank seven alternatives.

Table 1 shows the number of votes for each alternative.

Let the consensus of DMs on selecting the weights that

show the discrimination between the components of the

weight vector be given by / ¼ fw1 �w2 � 0:01;w1þ
w2 ¼ 1g. The set / can be interpreted as the weight of the

first position of votes is more than the second position. The

lower value for the weight of the second position is 0.01,

and the sum of the both places is equal to one. As previ-

ously mentioned, the alternatives are evaluated in their

optimistic cases as the best rank position for the alterna-

tives is computed in Stage 1. Since Model (1) may have

multiple optimal weights, so the secondary goal is sug-

gested to deal with the above mentioned problem. Hence,

Model (3) is run in order to obtain the rank matrix R. This

minimizes the rank position of the alternative under eval-

uation as well as the weights difference considered in the

first and second position votes. Table 2 shows the rank

position of all the alternatives in Stage 2. The weighting

vector is presented in Table 3.

In the third stage, the distance between the group rank

RG and each column of the rank matrix is minimized by

considering the metrics l1, l2, and l1 where the DM

Start;
For i=1,…,n 

{
Run model (1) to find the individual ranks and call it vectors Ri;
Run model (3) as the secondary goal model and improve the vector Ri;
}

Run model (7) to find the group rank and call it vector RG;
Print RG ;

End.
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presents the weights as v1 ¼ 0:4, v2 ¼ 0:4, and v3 ¼ 0:2. In

this stage, the weights are obtained based on the common

vector of weights, /. The resulting group rank is

RG ¼ ð3; 1; 5; 4; 2; 6; 7Þ. The weight vector obtained from

the optimal solution is w ¼ ð0:622; 0:378Þ. It should be

noted that different values of v1, v2, and v3 selected by the

DMs give a different group rank. In fact, if the DMs wish

the group rank to have the least distance with the median

values of the rank matrix, he/she can consider v1 to be the

most important. Similarly, the most preference can be

given to v2 when the DMs desire to obtain the group rank

close to the mean of the rank matrix. v3 also can take a

higher value than v1 and v2, when the DMs want to mini-

mize the maximum difference. Thus, the choice of v1, v2,

and v3 reflect the DM’s objectives.

We have w ¼ ð0:622; 0:378Þ in the numerical example

and use the votes in Table 1. We obtain the following

results:

Voðx1Þ ¼ 23:684

Voðx2Þ ¼ 24:976

Voðx3Þ ¼ 21:694

Voðx4Þ ¼ 22:646

Voðx5Þ ¼ 23:976

Voðx7Þ ¼ 11:34

Voðx6Þ ¼ 21:684

If VoðxiÞ�VoðxhÞ, then the rank position of xi is better than
that of xh. Therefore, R

G ¼ ð3; 1; 5; 4; 2; 6; 7Þ:

Conclusion and future research directions

In this study, we proposed a three-stage method to rank

alternatives in the voting system. In the first stage, the rank

position of each alternativewas computed based on theweight

vector of the alternative under evaluation. Themodel in Stage

1 was run n times to produce a set of rankings for each run.

Consequently, a rank matrix of order nwas obtained in which

the ith column signifies the rank vector when the alternative

under evaluation is xi. Since the vector of weights obtained in

the first stage is not a singleton, the rank position of the

alternative under evaluation remains unchanged, but the rank

matrix obtained can then vary when the weights change. To

deal with this problem, a secondary goal was defined in Stage

2 of the method. The secondary goal aimed at minimizing

weights differences in each alternative. In the third stage of the

method, the group rank position of alternatives was computed

using the CSW for all the alternatives based on a distance of

individual rank positions. In fact, the third stage determined a

consensus solution for the group so that the ranks obtained

have a minimum distance from the ranks acquired by each

alternative in the previous stage. The minimum distance can

be obtained by the metrics l1, l2, and l1 as selected by the

DMs. In thismodel, all threemetrics can be employed, and the

DMs can choose one, two, or three of them. The DMs can use

the metrics l1 and l2 when the group rank close to median and

mean values are required, respectively. The DMs also can

consider l1 to obtain a group rank as it minimizes the maxi-

mum distance between the individual and group ranks. The

proposedmodel is amulti-criteria decision-makingmodel that

can be converted to a model with one objective by the

weighted sum method.
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Table 1 The votes

Alternatives First place Second place

x1 32 10

x2 28 20

x3 13 36

x4 20 27

x5 27 19

x6 30 8

x7 0 30

Table 2 Rank position of alternatives in the second stage

Alternatives r1i r2i r3i r4i r5i r6i r7i

x1 1 2 6 5 3 4 7

x2 2 1 6 4 3 5 7

x3 5 2 1 3 4 6 7

x4 5 1 4 3 2 6 7

x5 3 1 6 4 2 5 7

x6 1 3 6 5 4 2 7

x7 2 1 6 4 3 5 7

Table 3 The value of weights
Alternatives w1 w2

x1 0.714 0.286

x2 0.643 0.357

x3 0.516 0.484

x4 0.578 0.422

x5 0.643 0.357

x6 0.857 0.143

x7 0.643 0.357
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