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Abstract: Fuzzy set based methods have been proved to be effective in handling many types of uncertain-

ties in different fields, including reliability engineering. This paper presents a new approach on fuzzy relia-

bility, based on the use of beta type distribution as membership function. Considering experts' ideas and by 

asking operators linguistic variables, a rule base is designed to determine the level of reliability of each 

component. Hence, we can determine the level of reliability of components with expending low costs. Also 

in this work a simple approach is presented for reducing the number of rules. The outputs of the presented 

model are fuzzy sets representing the reliability levels of components. In order to determine the level of re-

liability as linguistic variables, a new method is presented. Also the validity of the model is investigated by 

two methods. After determining the level of reliability of each component, the reliability of the composed 

system can be determined by using t-norm and s-norm functions. The system can be parallel, series, paral-

lel-series or series-parallel. The presented model has been applied in a glass manufacturing company. 
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1. Introduction 

The concept of fuzzy reliability has been pro-

posed and developed by several authors (Cai et 

al., 1991; Cai et al., 1995; Chen, 1994; Chen, 

1994). The conventional reliability is considered 

under the probability and binary-state assump-

tions. Cai et al. (1991 and 1995) have given a dif-

ferent insight by introducing the possibility and 

the fuzzy-state assumptions to replace the proba-

bility and binary-state (Jiang and Chen, 2003).  

In the conventional systems, we always give an 

exactly failed or functioning probability for each 

component. However, in practice, when the stress 

or the strength or both of them are fuzzy variables, 

it is very difficult to compute the exact value for 

each component. Currently, by investigating the 

fuzzy reliability of a system, the researchers al-

ways assume that the reliability of each compo-

nent is a fuzzy variable (Mon and Cheng, 1994; 

Utkin and Gurov, 1996; Utkin et al., 1995; Wu H-

c, 1997).  

The design of a fuzzy logic system (FLS) in-

cludes the design of a rule base, input scale fac-

tors, output scale factors, and membership func-

tions. Input scale factors transform the real inputs 

into normalized values, and output scale factors 

transform the normalized outputs into real values 

(Simon, 2002). 

Some studies have shown that FLS perfor-

mance is more dependent on membership function 

design than rule base design (Aytekin, 2003; Cer-

rada et al., 2005; Cordon et al., 2000). Other stu-

dies have discussed rule base design (Cordon et 

al., 2001; Procyk and Mamdani, 1979; Xian-Tu, 

1990). 

In this paper, a new approach is introduced for 

designing membership functions with Beta type 

distribution and designing the rule base. Finally 

we can determine the reliability of each compo-

nent based on experimental data.  

2. Limitations of conventional reliability theory 

Although the probability approach has been 

applied successfully for many real world engi-

neering reliability problems, there are some limi-

tations to the probabilistic method: 

1. Probabilistic methods are based on mass col-

lection of data to achieve the requisite con-

fidence level, but in real world applications, 

sometimes there is insufficient data to accu-

rately handle the statistics of parameters. 

This is particularly true at the tail of the dis-

tributions, where reliability is very high and 

therefore failure observations are extremely 

rare. Also, at early stages of new product 

development, the available data (numbers 

of testing samples, recorded failures on test) 

is limited, so the required confidence level 

may not be met if probability methods are 

used. 
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2. If using probability (random data) only, one 

cannot use certain types of information that 

are important in reliability analysis. Such 

information includes experts' opinions, out-

come from Failure Modes and Effects 

Analysis (FMEA), data from robustness 

studies, and results from functional and per-

formance testing. 

3. The two-state assumption does not provide 

information of any intermediate state: the 

product's state of performance is always ei-

ther functioning (reliability = 1) or failure 

(reliability = 0). 

Due to these limitations, the use of the proba-

bility approach in reliability analysis has been 

much criticized. The most significant limitations 

are input and output that must be in a precise 

probabilistic format and the model to deal with 

this information must also be precise (Haofu, 

2004). 

3. Uncertainty 

Uncertainty exists wherever and whenever 

human beings interact with the real world, in any 

situation in which a person does not quantitatively 

and qualitatively possess the appropriate infor-

mation to describe, prescribe or predict a system, 

its behavior, or other phenomena deterministically 

and numerically. 

In the history of science, there has been a gra-

dual transition in the way uncertainty is viewed. 

Traditionally, the scientific way has strived for 

certainty in all its manifestations.  

The precise laws of Newtonian mechanism are 

good examples of this process. The first stage of 

the transition from the traditional view to the 

modern view of uncertainty began in the late nine-

teenth century, when physics began to study the 

process at the molecular level, which contributed 

to the development of the statistical method. New-

tonian mechanism, which involves only certainty, 

is replaced in statistical mechanisms by probabili-

ty theory, a theory whose purpose is to capture 

uncertainty of a certain type. The second stage in 

the transition of the traditional view to modern 

view of uncertainty began in 1965 when Zadeh 

(1965) published his paper on fuzzy sets. The pa-

per challenged the notion that probability theory 

was the sole agent for uncertainty.  

In the modern view, uncertainty is considered 

essential to science. It is not only an unavoidable 

issue, but also many potential applications, includ-

ing those in reliability engineering (Maglaras, and 

Nikolaidis, 1997). 

4. Uncertainty in reliability engineering 

In reliability engineering, there are several 

kinds of uncertainties, such as imprecise data 

caused by failure time, incomplete data resulted 

from censored tests, and vague descriptions about 

failure. The most important aspects of uncertainty 

are: 

1. Type of uncertainty, 

2. Causes of uncertainty, 

3. Theory used to model uncertainty. 

Reliability engineering theory was developed 

in the 1960s when probability theory and applica-

tion made great progress in many engineering 

areas. Probability theory was used as a primary 

tool to deal with all kinds of uncertainties encoun-

tered in reliability engineering. The different types 

of uncertainties in reliability engineering are enu-

merated in Table 1. 

5. Theories for modeling uncertainty 

At present there are various theories for model-

ing uncertainty, such as probability theory, possi-

bility theory, fuzzy set theory, evidence theory, 

rough set theory, and convex modeling among 

others. In modeling uncertainty, each of these 

theories focuses on either a specific type of uncer-

tainty or a cause of uncertainty or even the specif-

ic type of information needed to process the data. 

An appropriate theory for modeling a specific un-

certainty situation should be determined by the 

property of the situation as specified by cause and 

type of uncertainty and by the requirement of the 

observers. 

Due to the fact that each theory has its own as-

sumptions about available information and con-

tains a certain calculus by which the information 

or data is measured and processed, it is obvious 

that each of the mentioned theories can only be 

appropriate for modeling a limited number of the 

causes or types of uncertainty.  

There is no single theory that can model all 

types of uncertainty and include all kinds of caus-

es of uncertainty. 

Probability theory has been widely used as a 

traditional approach to model the real world prob-

lems in reliability engineering.  
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Table 1: Uncertainties in Reliability Engineering. 

Types of Uncertainty Engineering Example 

Imprecision 

 
Failure time 

Load simulation in the lab 

Measurement accuracy 

Modeling in simplification due to the proposed distribution 

Maintenance 

Operational profile 

External environment 

Incomplete data 

 

Censored testing data 

Lack of data 

Suspended test 

Vagueness Material property 

Soft failure criteria, 

Software failure, 

Human error, 

Operator (customer) description for the 

malfunction phenomenon, 

Linguistic description of characteristics of performance such as "good", "unaccept-

able", etc. 

Maintenance 

Randomness 

 

Component geometry variation 

Material property variation 

Loading and variation 

Input signal and variation 

External environment 

Operating environment 

Frequency of usage 

Measurement error 

Component failure 

Subjectivity Lack of knowledge 

Expert judgment 

Engineering experience 

Complexity Relationships between system and components 

Interaction between subsystems 

Heuristic algorithms 

 

Since probability theory associated with statis-

tics, is only adequate for processing random types 

of uncertainty, there might exist certain degrees of 

risk by only using probability theory in dealing 

with all kinds of uncertainties in reliability analy-

sis. They are less effective in modeling other 

types of uncertainties such as vagueness and im-

precision. 

Probability theory has been widely used as a 

traditional approach to model the real world prob-

lems in reliability engineering. Since probability 

theory associated with statistics, is only adequate 

for processing random types of uncertainty, there 

might exist certain degrees of risk by only using 

probability theory in dealing with all kinds of un-

certainties in reliability analysis. They are less 

effective in modeling other types of uncertainties 

such as vagueness and imprecision. 

The fuzzy set concept (Maglaras and Nikolai-

dis, 1997) was introduced to model linguistic-like 

variables. It has been found a wide range of appli-

cations in dealing with uncertainties involving 

vagueness, subjectivity, incompleteness, and im-

precision in nature. Fuzzy set based methods have 

been proved to be effective in handling multiple 

types of uncertainties in different areas, including 

reliability engineering (Kanagawa and Ohta, 

1990; Wang et al., 1998; Wang et al., 1999; Za-

deh, 1965).  

6. Developing the membership function  

An important aspect about fuzzy modeling is 

defining the membership functions. There are 

many articles, where the different types of mem-

bership functions such as triangular and bell 

shaped are studied, but all of them are considered 

as static models. In this paper, a new approach is 

introduced to assign more flexible membership 

functions under different situations with optimis-

tic and pessimistic conditions. A modified Beta 

type distribution function is used for this purpose. 

The beta distribution shows the optimistic and 

pessimistic states that can be presented by:  

whwl
a xx

ba

ba
x )1(

)(

)().(
))(( −

+Γ

ΓΓ
=µβ                    (1) 



A fuzzy reliability model for series-parallel systems                                                                                                                                                          13 

where Wl and Wh are the pessimistic and optimis-

tic values. 

To be able to use the beta distribution function 

as the membership function of fuzzy reliability, 

Equation (1) is normalized such that the probabil-

istic distribution function (1) is changed to possi-

bility function as (Khanmohammadi et al., 2000): 

ba

ba

a

ba
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ba
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x
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+

−
=µβ                   (2) 

where a=(1-Wl)/2 and b=(1-Wh)/2. The parame-

ters a and b may be multiplied by a suitable factor 

α to have appropriate shapes depending on Wl and 

Wh. Figure 1 shows some typical beta shaped 

membership functions for different situations. 

7. Determining the fuzzy reliability of a me-

chanical system as a case study 

Figure 2 shows a conceptual modeling of re-

liability for each component of a mechanical sys-

tem. The reliability of each component depends 

on different factors in various conditions. Some of 

them are mutually dependent and some others are 

independent. The reliability of component i can be 

presented as a function of different factors as fol-

low:   

),,,( LEEMfR ii =                                        (3) 

where Ri is reliability of ith component, M is the 

material of each component, Ei is the expert's 

ideas, on the levels of failure.  

It can be defined by linguistic variables such as 

completely failure, failure, semi-failure, healthy 

and completely healthy - that can be determine by 

membership function with beta type distribution 

as presented by Equation (2) - and L is the lifetime 

of each component at the time of determining the 

reliability. It is a quantitative variable, but in order 

to coordinate with other variables, we are consi-

dering it as a linguistic variable. It can be very 

old, old, medium, new and very new. E is failure 

signal such as sound, frequency of vibrations and 

smell.  

Sounds of components are used to determine 

the reliability of components. They can be quan-

titative variables in terms of decibel or linguistic 

variables such as very much, much, medium, a 

little and feeble, calculated by bell shaped mem-

bership function: 

2)(1

1
),,(),(

cud
dcubelltuA

−+
==µ         (4) 

where µ A (u,t) is membership function of each 

element u of universe in fuzzy value A at time t, d 

is a parameter that determines shape of function. 

It is selected 0.0625 by trial and error in this 

work; U is the array of universe; c is the median 

of fuzzy value A at time t. Vibration, smell and 

lifetime of components can be defined by linguis-

tic variables calculated by bell shaped member-

ship function Equation (4). The algorithm for de-

termining the reliability of component is denoted 

by the following stages at each time t. 

 

 

Figure 1: Typical beta type membership functions. 

Conceptual modeling of reliability

Level of 
reliability

Stage 1
Inputs

Stage 2
process

Stage 3
outputs

Factors:
-Level of failure
-Sound
-Smell
-Vibration
-lifetime

Making
Rule base &
Rule reduction

Linguistic values
Convert to the
Fuzzy values

If level of failure is ai,
Level of sound is bi,
Level of smell is ci,
Level of vibration is 
di, Level of lifetime is 
ei, Then level of 
reliability is ri

Fuzzy 
values
Convert to
The crisp
values

(min sse)
 

Figure 2: Conceptual modeling of reliability. 

 

Figure 3: Surface plots of total rule R and reduced rule RR. 
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7.1. Stage 1 

Step 0. Determine the factors affecting reliability. 

In this work we have factors, such as failure, 

sound, smell, vibration and life time.  

Step 1. Determine the universes of discourses for 

factors.  

Step 2. Find the states of factors by asking the 

machines operators and obtain the linguistic va-

riables at different times. In this work the states 

for linguistic variables in Table 2 are considered. 

Step 3. Determine the medians and shape factors 

for different linguistic values that were deter-

mined in Step 1.  

Step 4. Calculate the membership functions of 

linguistic values at any time t, using Equation (2) 

for failure, and Equation (4) for sound, smell, vi-

bration, lifetime and reliability. 

7.2. Stage 2 

Step 1. Make the rule bases as: 

If the level of failure is ai and level of sound is 

bi and level of smell is  ci  and   level of vibration is  

di and level of  lifetime is  ei , then the level of  

reliability is ri . Or simply: 

If  iS   then  ii Rr ⇒  

where  Si  is the composition of the fuzzy sets of 

different factors at any particular time with special 

conditions, ri is level of the reliability of compo-

nent at the particular time with ith condition, and 

Ri is the ith rule at the particular time with ith con-

dition. 

In this work, we have 5 states and 5 factors. 

Hence there will be 312555 =  conditions that must 

be considered but the outputs of many of them are 

similar or have overlaps with each other. We in-

vestigated majority of conditions by using of ex-

perts' ideas. Finally, 50 conditions were chosen 

and the total rule base was made.  

Step 2. Rule reduction:  

When the number of factors and conditions are 

too many, then there will be overlaps between the 

rules, making related calculations complex. In 

order to overcome this drawback the number of 

rules must be reduced. In this work we have com-

pared the rule matrixes. If sum of squared errors 

between elements of two rules Ri and Rj is less 

than a predefined parameter such as α, one of 

them will be rejected. Hence, the new rule base is 

obtained. Figure 3 shows the surface plots of total 

rule and reduced rule, calculated in Step 1 and 

Step 2. 

7.3. Stage 3: Determining final reliability 

In this stage, with having the rule base and 

fuzzy values of factors we can determine the le-

vels of reliabilities of components as fuzzy sets at 

various times. In order to determine the nearest 

standard linguistic variable of reliabilities with the 

obtained fuzzy sets, we can use several methods 

that one of them is Minimum Sum of Squared 

Distance that is used in this paper. 

Sum of squared distance between the obtained 

fuzzy set and the linguistic variables for reliabili-

ty, is calculated by the following formula: 

 
2

33
2

22
2

11 )()()[( riririid µµµµµµ −+−+−=  

2/12
55

2
44 ])()( riri µµµµ −+−+                      (5) 

 

where iµ is the calculated membership and rµ  is 

the predefined linguistic variable for reliability. 

Then we choose the linguistic variable with the 

minimum sum of squared distance for the current 

calculated reliability. For example suppose the 

obtained reliability is: 

r =    0.2373    0.2373    0.2373    0.3333    0.3333 

Then by considering different levels of relia-

bilities as shown in Table 3, the level of reliability 

is "reliable". 

Where: 

Cu = Completely unreliable 

Un = Unreliable 

Fr = Fairly reliable 

R = Reliable 

Cr = Completely reliable 

 

 

Table 2: Linguistic variables and their states. 

levels of failures: 
complete failure, failure, semi-failure, healthy, 

complete healthy. 

sound:  very much, much, medium, little, feeble. 

smell:  very much, much, medium, little, feeble. 

vibration:  always, usually, some times, seldom, never. 

lifetime: very old, old, medium, new, very new. 

reliability: 
completely reliable, reliable, fairly reliable, 

unreliable, completely unreliable. 
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r1 

r3 

r5 

r4 

r6 

r7 

r8 

r2 

8. The model validity  

We can consider the validity of the model with 

two methods: 

• Studying input-output of the model, 

• Sensitivity analysis method. 

8.1. Studying input-output of the model 

When the model behaves logically, if all inputs 

are inappropriate (which means they are in the 

worst situation), the output of the model will be 

expected to be completely unreliable. 

And if all inputs are appropriate (which means 

they are in the best situation), the output of the 

model will be expected to be completely reliable. 

And if all inputs are moderately appropriate 

(which means they are in the medium situation), 

the output of the model will be expected to be 

moderately reliable. 

After these situations have been designated as 

inputs of the model, the outputs were obtained as 

it was expected. 

8.2. Sensitivity analysis method 

In this method, the level of effect on reliability 

of each factor is being considered. Two different 

states are considered. 

In state one, it is supposed that the situation of 

the reliability is "completely reliable" (r = 0.9). 

That means all factors have appropriate situation 

(xi = 0.1). If all factors are fixed and one of them 

changes, then the levels of reliabilities will be 

changed as shown in Figure 4. 

In this Figure, plot 1 shows the variations of 

the levels of failures, that means all factors are 

fixed and only the level of failure changes, plot 2 

represents variations of life time, plot 3 shows 

variations of sound, plot 4 represents variations of 

the smell and plot 5 shows the variations of the 

vibration. As it is clear in the Figure, with increas-

ing of each factor, the level of reliability decreas-

es, although the levels of effects are different. Plot 

1 has the most effect and plot 5 has the least ef-

fect. 

In state two, it is supposed that the situation of 

the reliability is "completely unreliable" (r = 0.1) 

that means all factors have inappropriate situation 

(xi = 0.9). If all factors are fixed and one of them 

changes, then the levels of reliabilities will be 

changed as shown in Figure 5. 

In this Figure, plot 1 shows the variations of 

the levels of failures, plot 2 represents variations 

of life time, plot 3 shows variations of sound, plot 

4 represents variations of the smell and plot 5 

shows the variations of the vibration. As it is 

shown in the Figure, the level of reliability in-

creases, by decreasing each factor, although the 

levels of effects are different. Plot 1 has the most 

effect and plot 5 has the least effect.  

 

 

 

 
Figure 4: Effects variations of factors in state 1. 

 
Figure 5: Effects variations of factors in state 2. 

 

 

 

Figure 6: Block diagram of components. 
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Table 3: Levels of reliability. 

Current 

reliability 

0.2373    0.2373    0.2373 0.3333    

0.3333 
2/12))(( rirdi −∑  

Cu 

 

Un 

 

Fr 

 

R 

 

Cr 

1.0000   0.3333   0.1111   0.0526 

0.0303 

0.3333   1.0000   0.3333   0.1111    

0.0526 

0.1111   0.3333   1.0000    

0.3333    0.1111 

0.0526    0.1111   0.3333   

1.0000   0.3333 

0.0303    0.0526   0.1111   

0.3333    1.0000 

0.7775 

 

0.7283 

 

0.6562 

 

0.5037 * 

 

0.5373 

Table 4: The fuzzy inputs. 

components memberships 

s1 

s2 

s3 

s4 

s5 

s6 

s7 

s8 

0.0000    1.0000    0.3333    0.0642    0.0000 

0.0303    0.0526    0.0303    0.0010    0.0000 

0.0000    0.3333    1.0000    0.3333    0.0000 

0.0000    0.1111    0.3333    0.0526    0.0000 

0.0000    0.0526    0.1111    0.0526    0.0000 

0.0000    0.0010    0.0313    0.2373    1.0000 

0.0000    0.0010    0.0313    0.0526    0.0313 

0.0000    0.0010    0.0313    0.2373    0.3333 

Table 5: The fuzzy outputs. 

Componens 

reliabilities 
memberships 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

r8 

0.1111    0.3333    0.3333    0.3333    0.2373 

0.0526    0.0526    0.0526    0.0526    0.0526 

0.2373    0.3333    1.0000    0.3333    0.2373 

0.2373    0.3333    0.3333    0.3333    0.1111 

0.1111    0.1111    0.1111    0.1111    0.1111 

1.0000    0.3333    0.2373    0.2373    0.1111 

0.0526    0.0526    0.0526    0.0526    0.0526 

0.3333    0.3333    0.2373    0.2373    0.1111 

Table 6: Determining the reliability of the total system. 

Current 

reliability 

0.0012    0.0113    0.0274  0.0167    

0.0060 
2/12))(( rirdi −∑  

Cu 

 

Un 

 

Fr 

 

R 

 

Cr 

1.0000   0.3333   0.1111    0.0526  

0.0303  

0.3333   1.0000   0.3333    0.1111    

0.0526 

0.1111   0.3333   1.0000    0.3333    

0.1111 

0.0526    0.1111   0.3333   1.0000   

0.3333 

0.0303    0.0526   0.1111   0.3333    

1.0000 

1.0529 

 

1.0919 

 

1.0325 

 

1.0718 

 

1.0213* 

9. Determining the series-parallel systems 

In order to determine the reliability of a series- 

parallel system, first we can divide the network to 

several subsystems and determine the reliability of 

each one and then with connecting the subsys-

tems, the reliability of the system is determined. 

In this paper, the levels of reliabilities are cal-

culated as fuzzy sets. Besides, there are t-norm 

and s-norm functions in the fuzzy field (Xu et al., 

2003)  that are similar to classic series-parallel 

systems and they have some specifications that 

match those of classic systems. Hence, t-norm and 

s-norm functions are respectively used for series 

and parallel systems. Finally the reliability of the 

system is determined as a fuzzy set that is con-

verted to the linguistic variables by using Mini-

mum Sum of Squared Distance method as ex-

plained before. 

10. Case study 

As a case study, the presented model has been 

applied to a part of the production line of “Jamgin 

Sardar Glass” company, a glass manufacturer 

company in Iran. 

The mentioned production line consists of 

components that its block diagram is shown in 

Figure 6. According to the presented model com-

position of fuzzy input factors for components are 

as Table 4. The designed rule base is: 

 

R = 

   1.0000    0.3333    0.1111    0.0526    0.0303 

    0.2373    0.3333    0.3333    0.3333    0.1111 

    0.1111    0.3333    1.0000    0.3333    0.1111 

    0.1111    0.3333    0.3333    0.3333    0.2373 

    0.0303    0.0526    0.1111    0.3333    1.0000 

Hence the outputs for components are as 

shown in Table 5. 

After the reliabilities of components are deter-

mined, the system will be divided to the sub sys-

tems where the whole reliability is calculated by 

using t-norm and s-norm functions. These func-

tions are of different types such as: Drastic prod-

uct, Bounded difference, Einstein product, Prod-

uct Algebraic, Hamacher product and Minimum.  

Considering that each of these types have their 

own special specifications, after several tests it is 

found that the Einstein product and Hamacher 

product types are more appropriate for t-norm (se-

ries) and s-norm (parallel) in reliability systems. 

Hence by considering the two functions s-norm 

(a, b, ‘h’),  t-norm (a, b, ‘e’) and according to the 

relations between components, the reliability of 

the total system is calculated as: 

L1 = s-norm (r2,r3,’h’) 

     = 0.2683    0.3571    1.0000    0.3571    0.2683 

L2= t-norm (L1,r4,’e’) 

    = 0.0298    0.1190    0.3333    0.1190    0.0637   

L3= s-norm (r6,r7,’h’) 
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     = 0.1529    0.2683    0.2683    0.3571    1.0000 

L4 =  t-norm (L3,r5,’e’) 

      = 0.0170    0.0298    0.0298    0.0397    0.1111 

L5 = s-norm (L2,L4,’h’) 

     = 0.0458    0.1423    0.3467    0.1500     0.1618 

L6= t-norm (r1,L5,’e’) 

     = 0.0109    0.0474    0.1156    0.0500    0.0180 

L7= t-norm (L6,r8,’e’) 

     = 0.0012    0.0113    0.0274    0.0167    0.0060 

Finally by using Minimum Sum of Squared 

Distance Method the reliability of the total system 

is determined "completely reliable" as shown in 

Table 6. 

11. Conclusion 

In this paper, a new fuzzy reliability model 

was proposed that does not have the limitations of 

conventional reliability. Although the concept of 

fuzzy reliability had been previously presented 

and developed by several authors, the proposed 

fuzzy model in this paper is based on membership 

functions and has been designed based on beta 

type distribution that it is more flexible than the 

other models and the new model could determine 

the reliability of each component with expending 

minimum time and cost. It also models the uncer-

tainties caused by imprecise, incomplete and va-

gue data. 

The proposed model is not only usable in the 

case study, but can be also applied in all compa-

nies that are faced with imprecise, incomplete and 

vague data. 

At last, after the reliabilities of components 

were determined, the reliability of a series-parallel 

system was obtained by using t-norm and s-norm 

functions. 
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