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Abstract The objective of the current paper is to present

an intelligent system for complex process monitoring,

based on artificial intelligence technologies. This system

aims to realize with success all the complex process

monitoring tasks that are: detection, diagnosis, identifica-

tion and reconfiguration. For this purpose, the development

of a multi-agent system that combines multiple intelli-

gences such as: multivariate control charts, neural net-

works, Bayesian networks and expert systems has became

a necessity. The proposed system is evaluated in the

monitoring of the complex process Tennessee Eastman

process.

Keywords Multivariate process � Hotelling T2 control

chart � Multi-agent system � Bayesian network � Neural
network

Introduction

The process monitoring is a critical task in all industrial

plant. It can be realized by the use of three principal

approaches (Venkatasubramanian et al. 2003): (1) the

analytical methods based on mathematics models. These

methods compare the real-system outputs to the mathe-

matical model outputs, (2) the methods based on knowl-

edge (Stamatis 2003; Dhillon 2005) that use the human

knowledge [risk analysis, failures modes effects and criti-

cally analysis (FMECA), decision trees], and (3) the data-

based methods that focus on statistic development of the

process. The last kind of the method uses, generally, the

control charts [(Page 1954), cumulative SUM (CUSUM)

(Roberts 1959)] or exponentially weighted moving average

(EWMA) (Alt et al. 1985) for the fault detection in the

industrial process.

Currently, the manufacturing processes become more

and more complex and multivariate. In these systems, the

operator recuperates a vast data amount to be analysed. The

high volume of data and the big number of process vari-

ables make the operator task fastidious. To avoid such

problems, the data-based methods are more suitable for the

process monitoring. The multivariate control charts

[Hotelling T2 control chart, multivariate CUSUM (MCU-

SUM), multivariate EWMA (MEWMA)] have been used

for the control of multivariate process and have proved

their adequacy to reduce the complexity of such process

monitoring. Moreover, the monitoring of a multivariate

process is a complex task, and it can be devised into four

subtasks which are: the detection of abnormal situation, the

diagnosis of the faults, the identification of variables that

involved in the faults and finally the reconfiguration of the

process (Venkatasubramanian et al. 2003).
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Many researches have used the control charts for pro-

cess monitoring (Yu-Chang et al. 2015; Xia 2015; Ehsan

and Sadigh 2014; Vijayababu and Rukmini 2014; Assareh

et al. 2013). To identify the variables that make an out-of-

control in T2, a decomposition of the statistic T2 into

independent terms has been suggested by Jing et al. (2008).

The ‘‘MYT approach’’ has been applied by Mani and

Cooper (1999) for the variables identification. The ‘‘MYT

approach’’ has a big disadvantage which is the number of

T2 decompositions. For a process with p variables, the

number of decompositions is p!. To reduce this number and

to identify the relationship among the variables, the

Bayesian networks have been applied for variables identi-

fication by Friedman (2000), Li et al. (2006), Li and Shi

(2007), Sylvain (2007).

In this paper, we regroup all the tasks of the multivariate

process monitoring in one approach. Our contribution is to

determine the best combination of multivariate control

charts, neural networks, Bayesian networks, expert sys-

tems. The result of this research is a multi-agent system

that applied to a multivariate process monitoring. This

multi-agent system uses: multivariate control chart for

abnormal detection, neural network for faults diagnosis,

Bayesian network for variables identification and expert

system for reconfiguration task.

The rest of this paper is organized as follows: the pro-

cess monitoring approach is presented in ‘‘The proposed

multi-agent system’’ section with the monitoring algorithm.

In ‘‘Application of the proposed model on the Tennessee

Eastman process’’ section, a case study of simulated Ten-

nessee Eastman process (TEP) (Downs and Vogel 1993) is

employed to illustrate the validity of the proposed

approach, including the detection by multivariate control

charts executor agent (MCCEA), diagnosis by diagnosis

artificial neural network agent (DANNA), identification by

Identification Bayesian network agent (IBNA) and the

reconfiguration by reconfiguration agent (RA). Finally,

conclusions and future works are suggested.

The proposed multi-agent system

The proposed multi-agent system uses a multiple intelli-

gences that are: multivariate control chart, neural network,

Bayesian network and expert system in amulti-agent system.

The multivariate control charts (T2 control chart, MEWMA

...) can detect successfully the instability of the process, but it

cannot diagnosis the fault that appeared in the process and

cannot identify the causes of the instability. In this paper, we

use an artificial neural network for the faults diagnosis. The

neural networks have demonstrated their ability in the clas-

sification of similar faults. The neural networks take time in

the training phase, and then, the classification will be done

quickly. After detecting the instability usingT2 control chart,

and the diagnosis using neural network, the Bayesian net-

work proposed by Sylvain (2007) is used in the identification

task. To realize a complete monitoring system for multi-

variate process and simplify the reconfiguration task to the

operators that are not specializing in the realm, we developed

an expert system that assures the process correction. The

following paragraphswill describe each of these used agents.

The agent diagram of the proposed approach is shown in

Fig. 1. In this diagram, the actual agent types are represented

by circles. People that must interact with the system are

represented by the unified modelling language (UML) actor

symbol.

The interface agent

The interface agent (IA) is a reactive agent which repre-

sents the interface for the human user access; hence, it

receives the request from the users (monitoring the process

state). Besides this, the IA transforms the agent’s responses

to the users. The IA receives a request from the user about

the process state, and it sends a message to the MCCEA. If

the process is under control, the IA will display to the

operator the decision of the MCCEA. In the other case,

when the process is out of control, the IA waits the

response from the RA and displays it to the user.

The multivariate control chart executor agent

This agent is responsible on the execution of the multi-

variate control charts [T2 control chart (Hotelling 1947),

multivariate CUSUM (MCUSUM) (Pignatiello and Runger

1990), multivariate EWMA (MEWMA) (Lowry et al.

1992)]. The control charts (T2) control chart, MEWMA

Fig. 1 The agents diagram
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and MCUSUM can successfully detect the process insta-

bility, but it cannot give any information about the fault

that appeared in the process and the variables that are

responsible about the process instability. The use of one

chart for process monitoring is not sufficient to detect all

out of control situation. So, to monitor successively the

process, we suggest to use a software agent that can exe-

cute simultaneously a set of multivariate control charts and

detect easily the process instability. These different control

charts are utilized in the design and implementation of the

MCCEA.

The diagnosis artificial neural network agent

We use the neural networks in the diagnosis task because it

demonstrated its efficiency in the resolution of classifica-

tion problem. In addition, the neural networks—after the

learning step—has a short response time and a good clas-

sification rate. We create a classical multilayer perceptron

(MLP), with three layers: (1) the input layer: the number of

neurons in this layer is the number of the process param-

eters, (2) the output layer: in this layer, the number of the

neurons represents the number of classes (faults of the

process), (3) the hidden layer: it is generally known that the

number of neurons in this layer is problematic research.

We carried out a set of tests, and we find that the optimal

number is equal to: (number of neurons in the input layer ?

the number of neurons in the output layer)/2. This neural

network is used in the implementation of the DANNA. So,

in our system the DANNA is responsible for the diagnosis

task. When the process is out of control, DANNA receives

report from the MCCEA. Its principle objective is to find

the fault that appeared in the process. After, it sends a

report to the IBNA.

The identification Bayesian network agent

The IBNA receives report from DANNA about the fault

that appeared in the process. It builds a Bayesian net using

the causal decomposition algorithm of T2 proposed by

Sylvain (2007). It finds the variables involved in the fault.

This agent simplifies the variable identification in the

process. After, it sends report to the RA.

The reconfiguration agent

For the objective, to regroup all the process monitoring

tasks (detection, diagnosis, identification and reconfigura-

tion) in one system, we add the RA which helps the

operator to reconfigure the process after its failure. It

receives report from the IBNA about the variables that

involved in the fault. It must propose a reconfiguration plan

to the operator, to maintain the process. Also, it sends its

reconfiguration plan to the IA. This agent has been

developed using an expert system technology.

The proposed monitoring algorithm

Start

Get data from data base

Create the MCCEA

MCCEA runs the controls charts

If(MCCEA-decision=stable-process)Then

MCCEA sends report to the IA

Else

Create the DANNA

Create the IBNA

Create RA

DANNA creates the ANN using MLP

IBNA creates the Bayesian net

For (i=1 to number of observations) Do

DANNA gives its diagnosis of the observation i

DANNA sends the diagnosis to the IBNA

End For

IBNA receives the diagnosis from DANNA

IBNA uses BN to find the variables that are out of

control

IBNA sends the report to the RA

RA receives report about the variables involved in the

fault

RA finds the reconfiguration plan

RA sends report to the IA

IA receives report from RA

End If

End

Application of the proposed model
on the Tennessee Eastman process

Introduction to the Tennessee Eastman process

The Tennessee Eastman process (TEP) is proposed by

Downs and Vogel (1993) to provide a simulated model and

to evaluate the monitoring methods of industrial complex

process. The process consists of five principal units: a

condenser, a separator, a reactor, a compressor and a

stripper. Four gaseous reactants (A, C, D and E) and inert B

are fed to the reactor. It produces two components (G and

H) and the undesired by-product F. The reaction equations

are listed in equation number (1–4). All the reactions are

irreversible, exothermic and approximately first order with

respect to the reactant concentrations. The reaction rates

are expressed as Arrhenius function of temperature. The

reaction producing G has higher activation energy than that
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producing H, thus resulting in more sensitivity to temper-

ature (Fig. 2).

The TEP process proposed by Downs and Vogel (1993)

is open loop unstable, and it should be operated under

closed loop. In this article, we use this control structure to

evaluate the performance of our approach on fault diag-

nosis. The reactor product stream is cooled through a

condenser and fed to a vapour–liquid separator. The vapour

exits the separator and recycles to the reactor feed through

a compressor. A portion of the recycle stream is purged to

prevent the inert and by-product from accumulating. The

condensed component from the separator is sent to a

stripper, which is used to strip the remaining reactants.

Once G and H exit the base of the stripper, they are sent to

a downstream process which is not included in the diagram.

The inert and by-products are finally purged as vapour

from vapour–liquid separator. The process provides 41

measured and 12 manipulated variables, denoted as

XMEAS(1) to XMEAS(41) and XMV(1) to XMV(12),

respectively. Their brief descriptions and units are listed in

Tables 1 and 2. Fifteen preprogrammed faults IDV(1) to

IDV(15) of TEP are given to represent different conditions

of the process operation, as listed in Table 3.

AðgÞ þ CðgÞ þ DðgÞ �! GðlÞ ð1Þ

AðgÞ þ CðgÞ þ EðgÞ �! HðlÞ ð2Þ

AðgÞ þ EðgÞ �! FðlÞ ð3Þ

3DðgÞ �! 2FðlÞ ð4Þ

Simulation and results analyses

The proposed approach has been implemented using the

Java environment Netbeans IDE. Also, we use the agent

design platform Java Agent Development framework

JADE. To simplify the development of the neural network

and Bayesian network with Netbeans, java offers many

libraries. Moreover, we use Jess Tab which is a rule engine

for the Java platform to produce our rules in the knowledge

Fig. 2 Tennessee Eastman control problem
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base. In this work, we use FIPA Agent Communication

specifications that deal with Agent Communication Lan-

guage (ACL) messages , message exchange interaction

protocols and content language representations.

In this section, we evaluate the performances of the

proposed approach on concrete example which is the TEP

process. The used data represent 480 observations training

for each fault and 800 tests for each faults, in addition to

the normal period. The observations of training have been

obtained with the simulation of each fault in a period of

24 h; moreover, the observations of the test set have been

obtained in a period of 40 h. Variables are sampled every

3 min.

– The Detection

All the persons that are worked on TEP take rate to

obtain wrong alarm equal to 0:01%. In this work, we

use the T2 control chart for instability detection. A

performance of detection system is evaluated by

calculating its reliability (Kononenko 1991). The

detection reliability is defined as: (the number of

obtained alerts in the test period/the total number of

sample in the period test).

The MCCEA runs the T2 control chart; if it detects an

abnormal process state, it sends message to the DANNA.

The detection reliability obtained in this work is the same

that been obtained by Sylvain (2007). Figure 3 shows the

detection reliability of MCCEA, and some faults are

easily detectable [IDV (1), IDV (2), IDV (4), IDV (5),

IDV (6), IDV (7), IDV (8), IDV (10), IDV (12), IDV

(14)]. But other faults are difficult to detect [(IDV (3),

IDV (9) and IDV (15)]. The last faults [(IDV (3), IDV (9),

IDV (15)] are very identical. So the use of one chart (in

this work, we use the T2 control chart) is not sufficient.

The run of many control charts simultaneously will

augment the reliability of detection.

– The Diagnosis

This task is realized by the DANNA. When it receives

message from the MCCEA that the process is not stable,

it creates the neural network using MLP, for the purpose

Table 1 Measurement variables in the Tennessee Eastman process

Variable Description Units

XMEAS(1) A feed (stream 1) kscmh

XMEAS(2) E feed (stream 3) kg/h

XMEAS(4) Total feed (stream 4) kg/h

XMEAS(5) Recycle flow (stream 8) kscmh

XMEAS(6) Recycle flow (stream 6) kscmh

XMEAS(7) Reactor pressure kPa gauge

XMEAS(8) Reactor level %

XMEAS(9) Reactor temperature C�

XMEAS(10) Purge rate (stream 9) kscmh

XMEAS(11) Product sep temp C�

XMEAS(12) Product sep level %

XMEAS(13) Prod sep pressure kPa gauge

XMEAS(14) Prod sep underflow (stream 10) m3=h

XMEAS(15) Stripper level %

XMEAS(16) Stripper pressure kPa gauge

XMEAS(17) Stripper underflow (stream 11) m3=h

XMEAS(18) Stripper temperature C�

XMEAS(19) Stripper steam flow kg/h

XMEAS(20) Compressor work kW

XMEAS(21) Reactor cooling water outlet temp C�

XMEAS(22) Separator cooling water outlet temp C�

Variable Description Stream

XMEAS(23) Component A 6

XMEAS(24) Component B 6

XMEAS(25) Component C 6

XMEAS(26) Component D 6

XMEAS(27) Component E 6

XMEAS(28) Component F 6

XMEAS(29) Component A 9

XMEAS(30) Component B 9

XMEAS(31) Component C 9

XMEAS(32) Component D 9

XMEAS(33) Component E 9

XMEAS(34) Component F 9

XMEAS(35) Component G 9

XMEAS(36) Component H 9

XMEAS(37) Component D 11

XMEAS(38) Component E 11

XMEAS(39) Component F 11

XMEAS(40) Component G 11

XMEAS(41) Component H 11

Table 2 Manipulated variables in the Tennessee Eastman process

Variable Description

XMV(1) D feed flow (stream 2)

XMV(2) E feed flow (stream 3)

XMV(3) A feed flow (stream 1)

XMV(4) Total feed flow (stream 4)

XMV(5) Compressor recycle valve

XMV(6) Purge valve (stream 9)

XMV(7) Separator pot liquid flow (stream 10)

XMV(8) Stripper liquid product flow (stream 11)

XMV(9) Stripper steam valve

XMV(10) Reactor cooling water flow

XMV(11) Condenser cooling water flow

XMV(12) Agitator speed
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to find the fault that appeared in the process. In the next

paragraph, we will show the diagnosis obtained by the

DANNA and we will evaluate the acquired results to the

result of other classifiers proposed in the literature.

Diagnosis of the known faults in the Tennessee

Eastman problem

We have done the diagnosis of all the faults, i.e. IDV (1)

to IDV (15) in TEP, as shown in Fig. 4. The used neural

network is a MLP of three layers:

– The input layer contains 53 neurons that represent the

process parameters,

– The hidden layer contains 34 neurons (number of

neurons in input layer ? number neurons in output

layer/2),

– The output layer contains 15 neurons that represent the

process faults.

Table 4 represents a comparison between the diagnosis

realized by DANNA, and some other approaches

proposed to the TEP faults diagnosis. Sylvain (2007)

used Bayesian network for classification; however, the

PC1DARMF (Li and Xiao 2011) is a supervised pattern

classification method which uses one-dimensional

adaptive rank-order morphological filter.

Diagnosis of IDV (4), IDV(9), IDV(11) in TEP

The most difficult faults to be classified in the TEP are:

IDV (4), IDV (9) and IDV (15). The created neural

network composed by 53 neurons (TEP parameters) in

the input layer, 28 neurons in the hidden layer and 3

neurons in the output layer. Table 5 presents the rate of

correct classification of the faults IDV (4), IDV (9) and

IDV (15) of the TEP. It is a comparison between the

DANNA diagnosis and the approach which proposed

by El-Ferchichi (2013).

– The Identification

The IBNA is the responsible on the realization of the

identification task using Bayesian net. It receives a

report about the fault that appeared in the process from

DANNA. To develop the Bayesian network, Sylvain

(2007) used the causal decomposition of T2. Figure 4

presents the Bayesian network that is created in the

normal functionality of process. We take rate of false

alarm ¼ 0:005. The IBNA takes the observation that

represents the fault, and then, it finds the variables that

are involved in the fault. The variables involved in the

fault have probability value under 0.995. We take the

case of the observation 240 of IDV (5) that is classified

as an IDV (4). The IBNA detects two variables that

have a probability value under 0.995. The two variables

are (XMV11) and (XMEAS21). The IBNA sends the

variable identification to the RA.

– The Reconfiguration

The RA receives report from IBNA which contains the

identification of the variables that cause the process

instability. In our example, the identified variables are

(XMV11) and (XMEAS21). The RA finds that: the

variable (XMV11) represents the liquid cooling flow to

the condenser, whereas the variable (XMEAS21)

Table 3 The known faults of

the Tennessee Eastman process
Variable Description Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step

IDV(2) B composition, A/C ratio constant (Stream 4) Step

IDV(3) D feed temperature (stream 2) Step

IDV(4) Reactor cooling water inlet temperature Step

IDV(5) Condenser cooling water inlet temperature Step

IDV(6) A feed loss (stream 1) Step Step

IDV(7) C header pressure loss-reduced availability (stream 4) Step

IDV(8) A, B, C feed composition (stream 4) Random variation

IDV(9) D feed temperature (stream 2) Random variation

IDV(10) C feed temperature (stream 4) Random variation

IDV(11) Reactor cooling water inlet temperature Random variation

IDV(12) Condenser cooling water inlet temperature Random variation

IDV(13) Reaction kinetics Slow drift

IDV(14) Reactor cooling water valve Sticking

IDV(15) Condenser cooling water valve Sticking

Fig. 3 The detection reliability
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represents the cooling liquid temperature at the reactor

outlet. In conclusion, these two variables involved in the

fault IDV (5), so the fault that appeared in the process is

the IDV (5) and not the IDV (4). It proposes the

reconfiguration plan to the operator. The development of

this agent requires knowledge of an expert human, which

we will use to find the ideal reconfiguration plan.

Conclusion

An approach with several intelligences has been proposed

in this paper for multivariate process monitoring. In this

approach, we use the perfect tool for the realization of each

task in a complex process monitoring. We use the multi-

variate control charts in the detection task. We utilize the

Fig. 4 The Bayesian network that used in the development of IBNA

Table 4 Classification rate of

the known 15 faults in TEP
Faults DANNA (%) Sylvain (2007) (%) PC1DARMF Li and Xiao (2011) (%)

IDV(1) 97.01 97.5 30

IDV(2) 95.34 98.125 95

IDV(3) 82.10 22 0.00

IDV(4) 97.34 82.375 25

IDV(5) 96.67 98 100

IDV(6) 100 100 65

IDV(7) 97.67 100 0.00

IDV(8) 100 97 5

IDV(9) 79.06 22.625 0.00

IDV(10) 71.42 86.875 15

IDV(11) 69.1 75.5 0.00

IDV(12) 96.67 98.25 5

IDV(13) 100 76.125 5

IDV(14) 93.02 98.75 5

IDV(15) 92.69 23.5 0.00

Table 5 Classification rate of IDV (4), IDV (9) and IDV (15) in TEP

Faults DANNA (%) El-Ferchichi (2013) (%)

IDV(4) 97.34 67.37

IDV(9) 100 66.25

IDV(15) 100 33.75
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artificial neural network classifier with MLP algorithm in

the diagnosis task. For the identification task, we exploit

the Bayesian network that has been proposed by Sylvain

(2007). Moreover, to help the operators that are not spe-

cializing in realm, to realize the correction actions of the

process, we suggest developing an expert system for

reconfiguration task. To facilitate the use of the proposed

approach with high efficiency, we integrate the different

proposed subsystem (detection, diagnosis, identification

and reconfiguration) in one system that is multi-agent

system. The proposed model has been evaluated on a

multivariate process (Tennessee Eastman process).

From the simulation results, we find that the proposed

classifier gives a good result compared with some works

applied on Tennessee Eastman process. In addition, the

proposed approach gives good results for each task in the

process monitoring. In the case study, we have seen that

some faults are difficult for detecting; our future works will

concentrate on the development of the detection task. The

developed reconfiguration agent realizes the reconfigura-

tion tasks for known faults, and we will focus also on

adding the reconfiguration plan in case when a new fault

appear in the process.

Acknowledgments The authors would like to express their sincere

appreciation for all support provided.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Alt FB, Kotz NL, Johnson C (1985) R, Read multivariate quality

control. Encycl Stat Sci 6:111–122

Assareh H, Noorossana R, Mengersen K-L (2013) Bayesian change

point estimation in poisson-based control charts. J Ind Eng Int

9:32

Dhillon B (2005) Reliability, quality, and safety for engineers. CRC

Press, Boca Raton

Downs JJ, Vogel EF (1993) A plant-wide industrial process control

problem. Comput Chem Eng 17(3):245–255

Ehsan B, Sadigh R (2014) Economic design of Hotellings T 2 control

chart on the presence of fixed sampling rate and exponentially

assignable causes. J Ind Eng Int 10:229–238

El-Ferchichi S (2013) Ph.d. Thesis: selection and extraction of

attributes for classification problem, National School of engi-

neering of Tunis

Friedman N (2000) Using Bayesian networks to analyze expression

data. J Comput Biol 7(3–4):601–620

Hotelling H (1947) Multivariate quality control. In: Eisenhart C,

Hastay MW, Wallis WA (eds) Techniques of statistical analysis.

McGraw-Hill, New York, pp 111–184

Jing L, Jionghua J, Jianjun S (2008) Causation-based T 2 decom-

position for multivariate process monitoring and diagnosis.

J Qual Technol 40(1):1–13

Kononenko I (1991) Semi-naive bayesian classier, proceeding of the

European working session on learning on machine learning,

pp 206–219

Li H, Xiao D (2011) Fault diagnosis of Tennessee Eastman process

using signal geometry matching technique. J Adv Signal Proc

(83). doi:10.1186/1687-6180-2011-83

Li J, Shi J, Satz D (2006) Modelling and analysis of disease and risk

factors through learning Bayesian network from observational

data, Technical report

Li J, Shi J (2007) Knowledge discovery from observational data for

process control using causal Bayesian networks. IIE Trans

39(6):681–690

Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A

multivariate exponentially weighted moving average control

chart. Technometrics 34(1):46–53

Mani S, Cooper GF (1999) A study in causal discovery from

population-based infant birth and death records. In: Proceeding

of the AMIA annual fall symposium. Philadelphia, pp 315–319

Page ES (1954) Continuous inspection schemes. Biometrika

41:100115

Pignatiello J, Runger G (1990) Comparisons of multivariate cusum

charts. J Qual Technol 22(3):173186

Roberts SW (1959) Control chart tests based on geometric moving

averages. Technometrics 1(3):239250

Stamatis DH (2003) Failure mode and effect analysis: FMEA from

theory to execution. ASQ Quality Press, Milwaukee

Sylvain V (2007) Diagnostic et surveillance des processus complexe

par rseaux baysiens.(Diagnosis and monitoring of complex

process using bayesian networks), doctoral thesis, University of

Angers, French

Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri S (2003) A

review of process fault detection and diagnosis, part I: quanti-

tative model-based methods. Comput Chem Eng 27(3):293–311

Vijayababu V, Rukmini V-K (2014) Economic design of x-bar

control charts considering process shift distributions. J Ind Eng

Int 10:163171

Xia P (2015) Horizontal cumulative variance chart: A quality control

scheme monitoring shifts in process variation. Int J Ind Syst Eng

Yu-Chang L, Chao-Yu C, Chung-Ho C (2015) Robustness of the

EWMA median control chart to non-normality. Int J Ind Syst

Eng

118 J Ind Eng Int (2016) 12:111–118

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1186/1687-6180-2011-83

	On the use of multi-agent systems for the monitoring of industrial systems
	Abstract
	Introduction
	The proposed multi-agent system
	The interface agent
	The multivariate control chart executor agent
	The diagnosis artificial neural network agent
	The identification Bayesian network agent
	The reconfiguration agent
	The proposed monitoring algorithm

	Application of the proposed model on the Tennessee Eastman process
	Introduction to the Tennessee Eastman process
	Simulation and results analyses

	Conclusion
	Acknowledgments
	References




