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Abstract Nowadays, with the increasing pressure of the

competitive business environment and demand for diverse

products, manufacturers are force to seek for solutions that

reduce production costs and rise product quality. Cellular

manufacturing system (CMS), as a means to this end, has

been a point of attraction to both researchers and practi-

tioners. Limitations of cell formation problem (CFP), as

one of important topics in CMS, have led to the intro-

duction of virtual CMS (VCMS). This research addresses a

bi-objective dynamic virtual cell formation problem

(DVCFP) with the objective of finding the optimal for-

mation of cells, considering the material handling costs,

fixed machine installation costs and variable production

costs of machines and workforce. Furthermore, we con-

sider different skills on different machines in workforce

assignment in a multi-period planning horizon. The bi-

objective model is transformed to a single-objective fuzzy

goal programming model and to show its performance;

numerical examples are solved using the LINGO software.

In addition, genetic algorithm (GA) is customized to tackle

large-scale instances of the problems to show the perfor-

mance of the solution method.

Keywords Virtual cell formation � Genetic algorithm �
Workforce assignment � Bi-objective mathematical

programming � Fuzzy goal programming

Introduction

In current competitive business environment, customers

demand diverse products with higher quality at lower costs.

Therefore, manufacturers tend to reduce investment on

tools, parts and area and increase their flexibility. With

more efficient overall control techniques, companies and

businesses use effective approaches in supply, manufac-

turing and distribution. Production costs constitute a sig-

nificant share in the total costs incurred by a company.

Conventional manufacturing systems (e.g., workshop or

flowshop) are not flexible enough to respond to changes.

As a result, cellular manufacturing (CM) as technique,

stem from group technology (GT) has emerged as a

promising manufacturing system. CM is described as a

manufacturing procedure which produces part families

within a cell of machines serviced by operators and/or

robots functioning only within the cell. CMSs have some

advantages, such as reduction in lead times, work-in-pro-

cess inventories, setup times, etc. (Heragu 1994; Wem-

merlov and Hyer 1989). However, the performance of

CMS depends significantly on the stability of demand

reGArding the volume and mix.

Dynamic cellular manufacturing system (DCMS) is one

of the methods proposed for increasing the applicability of

CMS when the demand for products fluctuates. In DCMS,

to meet the demand in each period, the configuration of

cells can be changed from one period to another (Rheault

et al. 1995). However, the actual reconfiguration of cells

may be time-consuming and costly. Furthermore, if these
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changes occur very frequently with stationary machines,

the implementation of these systems is burdensome if not

impossible (Thomalla 2000). In VCMS, unlike traditional

cellular manufacturing, machines are not physically

grouped into cells nor actually moved from their positions.

Hence, some costs like assigning machines to cells or

relocation of machines are not incurred. In VCMS, better

controlling and planning of production is obtained by

grouping of machines into virtual cells. VCMSs are cap-

able of responding to demand fluctuations in a reasonable

amount of time due to their high flexibility.

When a product mix or part demand level changes from

a period to another, the configuration of cells may not be

optimal anymore. In other words, the cells are reconfigured

in the beginning of a period leading to a change in machine

groups and parts families and work teams. Dynamic virtual

cell formation (DVCF), unlike conventional dynamic

manufacturing systems, can be utilized in this reGArd

while reducing some costs, such as actual machine relo-

cation costs. Figure 1 depicts an example of cellular

reconfiguration in a dynamic environment. It is supposed

that there are nine machines which are stationary for two

periods. It can be easily seen that the manufacturing cells

are virtual.

Literature review

DCMS has been a point of attraction to both researchers

and practitioners. Slomp et al. (2005) addressed the design

of VCMS considering the limited availability of workers

and worker skills. They presented a goal programming

formulation, in which in the first stage, jobs and machines

are grouped, and in the second step, workers are grouped to

form a VCMS. Their objective was to assign the available

capacity as efficiently as possible and also to make the

VCMS as independent as possible. Nomden et al. (2006)

reviewed the previous researches in the subject of VCMS.

They addressed several definitions of virtual cells, offered

by several researchers, and presented the potential prob-

lems for future researches. Mak et al. (2007) proposed a

methodology for designing VCMS considering CFP and

production scheduling problems. Their methodology

included (1) a mathematical model for minimizing the total

materials/components travelling distance subject to con-

straints, such as delivery due dates of products, capacities

of resources, and critical tool limitations, and (2) an ant

colony optimization method for solving cell formation and

production scheduling. Liang et al. (2011) surveyed man-

ufacturing resource modelling methods with a focus on

resource element approach. They presented a function-

clustering-degree concept addressing the trade-off between

the granularity and quantity of virtual cells to verify the

reconfiguration of manufacturing systems for solving vir-

tual cell formation problem (VCFP). Mahdavi et al.

(2011a) proposed an FGP-based approach to bi-objective

mathematical model of CFP and production planning in a

DVCMS. The objective of their research was to minimize

the exceptional elements (EEs), holding and backorder

costs in a cubic space of machine–part–worker incidence

matrix. Rezazadeh et al. (2011) presented a mathematical

model for DVCFP in which product mix/demand is variant

in each period. The assumptions of their model were (1)

considering operation sequence for the variety of processes

as alternatives, (2) considering machines time capacity,

maximum cell size and work capacity for each virtual cell.

The objective of their proposed model was finding opti-

mum number of virtual cells to minimize production,

material transportation, inventory and manufacturing costs

in each period. Nikoofarid and Aalaei (2012) designed a

mathematical model for production planning in a dynamic

virtual cellular manufacturing (DVCM) considering

demand and part mix variation, machine capacity and as

machine and worker availability as the main constraints.

Han et al. (2014) addressed the problem of virtual cellular

multi-period dynamic reconfiguration. They developed a

Fig. 1 Reconfiguration of virtual cells in a dynamic environment
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model to incorporate the parameters of the problems,

including product dynamic demand, machine capacity,

operation sequence, balanced workload, alternative rout-

ings and batch setting. The objective of their mixed integer

programming model is to minimize the total costs of

operation, raw materials movements, inventory holding

and process routes setup. Paydar and Saidi-Mehrabad

(2015) developed a bi-objective possibilistic optimization

mathematical model for formulating the integrated

dynamic virtual cell formation and supply chain problem in

a multi-echelon, multi-product and multi-period network.

They developed a two-stage procedure, in which in the first

stage, the proposed model is converted into an equivalent

auxiliary crisp model, and in the second stage, a revised

multi-choice goal programming approach is used for find-

ing a compromise solution.

Although tremendous amount of research has already

been conducted and published around CMS, the literature

on DVCMS is still scarce. This paper is concentrated on

DVCMS for processing multiple part types using multiple

machine types and workers with different skills consid-

ering multiple candidate machine locations. We assume

that several machines of any machine type are available

for parts processing. In addition, we suppose that each

worker is able to operate more than one machine in one

cell.

In this paper, a DVCMS with several part types

assigned to virtual cells to be processed by machines with

different potential locations and cross-functional workers

in a multi-period planning horizon is studied. In addition,

more than one machine of each type may be available for

part processing; i.e., duplicate machines are also consid-

ered. In this paper, unlike previous researches, we con-

sider virtual cell of workers, machines (with candidate

locations) and parts, simultaneously. The cost (number) of

transportations between cells, as a major issue in

DVCMS, is minimized. Furthermore, the number of

exceptional elements is minimized as an objective func-

tion of the proposed model. The addressed problem is

obviously NP-hard and considering dynamic conditions

makes it even harder. Therefore, deterministic approaches

may fail to efficiently solve real-world instances of the

problem. Hence, metaheuristic approaches should be

applied to obtain a satisfying solution in a reasonable

amount of time. According to the literature and previously

published researches (Mahdavi et al. 2009; Paydar and

Saidi-Mehrabad 2013; Bootaki et al. 2014), genetic

algorithm (GA) is capable of finding efficient solutions in

the cell formation problems, and therefore, this algorithm

is utilized for solving the proposed DVCMS mathematical

problem. The main contributions of this paper to the lit-

erature on DVCMS are as follows:

1. Considering duplicate machines;

2. Simultaneous grouping of workers, machines and parts

into virtual cells;

3. Proposing a bi-objective model that optimizes both:

(a) The exceptional and void elements, and;

(b) The total cost consisted of the fixed setup costs,

the variable machine operation costs and the

worker salary costs;

4. Developing a GA algorithm as a solution approach to

the proposed model.

Problem description and formulation

In this section, the proposed mathematical model is for-

mulated using a 4D machine–part–worker-location inci-

dence matrix.

Sets

i index for part type (i = 1, 2 … , P);

m index for machine type (m = 1, 2 … , M);

w index for worker type (w = 1, 2, … , W);

k index for cell (k = 1, 2, … , C);

l index for location (l = 1, 2, … , L);

t index for time period (t = 1, 2, … , T).

Input parameters

rmw 1 if worker type w is capable of operating machine

type m and 0 otherwise;

aim 1 if part type i can be processed on machine type

m and 0 otherwise;

RWwt available time for worker w in period t;

RMmt available time for machine m in period t;

timw processing time of part i on machine type m with

worker type w;

Dit demand of part i in period t;

SWwt salary cost of worker type w in period t;

Cm fixed investment cost of machine type m;

am variable cost of machine type m.

Decision variables

Ximwklt 1 if part type i is to be processed on machine type

m in location l with worker type w in cell k in

period t and 0 otherwise;

NWwkt number of workers of type w allotted to cell k in

period t;

J Ind Eng Int (2016) 12:343–359 345

123



Yml 1if machine m is located in location l and 0

otherwise;

Flkt 1 if location l is assigned to cell k in period t and

0 otherwise;

Zikt 1 if part i is processed in cell k in period t and 0

otherwise;

Wwkt 1 if worker type w assigned to cell k in period

t and 0 otherwise.

Mathematical model

Min Z1

¼
XT

t¼1

XC

k¼1

XL

l¼1

 
XP

i¼1

XM

m¼1

XW

w¼1

Yml � Flkt � Zikt �Wwkt

�
XP

i¼1

XM

m¼1

XW

w¼1

Yml � Flkt � Zikt �Wwkt � aim � rmw

!

ð1-1Þ

þ
XT

t¼1

XP

i¼1

XM

m¼1

XL

l¼1

XC

k¼1

XW

w¼1

aim

� rmw 1� Yml � Flkt � Zikt �Wwktð Þ:
ð1-2Þ

Min Z2

¼
XM

m¼1

XL

l¼1

Cm � Yml ð2-1Þ

þ
XT

t¼1

XC

k¼1

XM

m¼1

am � Dit � timw � Ximwklt ð2-2Þ

þ
XT

t¼1

XC

k¼1

XW

w¼1

SWwt � NWwkt: ð2-3Þ

Subject to

Ximwklt � Yml 8 i;m;w; k; l; t: ð3Þ
Ximwklt �Flkt 8 i;m;w; k; l; t: ð4Þ
Ximwklt �Wwkt 8 i;m;w; k; l; t: ð5Þ
Ximwklt � Zikt 8i;m;w; k; l; t: ð6Þ
XM

m¼1

Yml � 1 8 l: ð7Þ

XC

k¼1

Flkt ¼ 1 8 l; t: ð8Þ

XC

k¼1

Zikt ¼ 1 8 i; t: ð9Þ

NWwkt �A�Wwkt 8 k;w; t: ð10Þ

XP

i¼1

XM

m¼1

XL

l¼1

Dit � timw � Ximwklt �NWwkt � RWwt

8 w; k; t:

ð11Þ

XP

i¼1

XW

w¼1

Dit � timw � Ximwklt � Yml � RMmt 8 m; l; k; t:

ð12Þ
XC

k¼1

XW

w¼1

XL

l¼1

Ximwklt ¼ aim 8 i;m; t: ð13Þ

XK

k¼1

Ximwklt � aim � rmw 8 i;m;w; l; t: ð14Þ

Yml 2 0; 1f g 8 m; l: ð15Þ
Flkt 2 0; 1f g 8 l; k; t: ð16Þ
Wwkt 2 0; 1f g 8 w; k; t: ð17Þ
Zikt 2 0; 1f g 8 i; k; t: ð18Þ
Ximwklt 2 0; 1f g 8 i;m;w; l; k; t: ð19Þ
NWwkt � 0 and integer 8 w; k; t: ð20Þ

The model has two objectives: in the first objective in

(1-1), the goal is minimizing the number of exceptional

elements, and in (1-2), the goal is to minimize the total

number of voids; in the second objective, in (2-1), we

minimize the fixed cost associated with machine invest-

ment and installation, and in (2-2), the variable cost of

machines is minimized and (2-3) is to minimize the

workers’ salary cost.

Constraint (3) ensures that if machine m is not assigned

to location l, then certainly Ximwklt equals zero. Constraint

(4) is to ensure that if location l is not assigned to cell k in

period t, then certainly Ximwklt is equal to zero. Constraint

(5) guarantees that if worker type w is not assigned to cell

k in period t, then certainly Ximwklt is zero. Constraint (6) is

for ensuring that if part type i is not assigned to cell k in

period t, then certainly Ximwklt equals zero. Obviously, only

one machine can be location in each location l. This is

considered by Constraint (7). Each location l should be

assigned to one cell k in each period; this fact is modeled

by Constraint (8). Constraint (9) ensures that each part i is

assigned to only one location l in each cell in the tth period.

Constraint (10) determines the number of workers type

w in all cells type k in the tth period where A is a large

positive number.

Constraint (11) ensures that the sum of assigned time

for workforce should not be more than available time. It

is noticeable in this constraint that operations are per-

formed only in cells to which the corresponding workers

are assigned. This is because if NWwkt = 0, then no
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operations in that cell with worker type w can be per-

formed and the left side of the constraint is equal to zero.

Obviously, total assigned time to the machine m in the

cell k in any period should not exceed the available time

for machine m in cell k in each period. This fact is

modeled by Constraint (12). Constraint (13) guarantees

that each part is assigned to be processed on a machine in

a period t with a worker w at a location l and in a cell

k. Constraint (14) expresses the fact that each part could

be manufactured in only one cell and by only one worker.

Constraints (15)–(20) specify the allowed intervals and

types of decision variables.

Linearization of the proposed model

The proposed model is obviously non-linear in the first part

and the second part of the first objective function. Fortu-

nately, most of the software have the ability to solve

complex non-linear models; however, experiences show

that solving such problems is usually time-consuming and

results in local optima. Therefore, a linear model is prac-

tically more preferable and more convenient and efficient

to solve. In addition, solving the model in small sizes uti-

lizing fuzzy goal programming that the genetic algorithm

method may be used for model verification. To linearize

the model, some auxiliary variables and constraints are

required to be defined and added to the original model. To

linearize Eqs. (1-1) and (1-2), an auxiliary variable,

Qimwklt, is introduced as follows:

Qimwklt ¼ Yml � Flkt � Zikt �Wwkt:

Regarding Qimwklt, the following constraints are also

added to the model. It is easy to check that depending on

the values of the binary variables, Yml, Flkt, Zikt and Wwkt,

the defined auxiliary variable, Qimwklt, acts as the multi-

plication of the four binary variables.

Qimwklt � Yml � Flkt � Zikt �Wwkt þ 3:5� 0

8 i;m;w; l; k; t:
ð21Þ

3:5� Qimwklt � Yml � Flkt � Zikt �Wwkt � 0

8 i;m;w; l; k; t:
ð22Þ

Qimwklt 2 0; 1f g 8 i;m;w; l; k; t: ð23Þ

Fuzzy goal programming-based approach

One of the most important differences between one-ob-

jective and multi-objective optimization is multi-objec-

tive optimization can solve multi-dimensional objective

problems. One of the famous methods for solving multi-

objective problems is goal programming (GP). However,

the application of GP in real-world problems may face

two important difficulties: the first is the mathematical

expression of the decision maker’s imprecise aspiration

levels for the goals and the second is the need to optimize

all goals simultaneously. Fuzzy goal programming (FGP)

is a mathematical decision-making mechanism to incor-

porate uncertainty and imprecision into the formulation.

In practice, a high degree of fuzziness and uncertainty is

included in the data set (Mahdavi et al. 2011b). The FGP

has been tackled through different methods, such as

probability distribution, penalty function, fuzzy numbers,

preemptive FGP, interpolated membership function and

the weighted additive model. Zimmermann first proposed

fuzzy programming for solving the multi-objective linear

programming problems (Zimmermann 1978). A number

of researchers have extended the fuzzy set theory to the

field of goal programming proposed by Narasimhan

(1980). The fuzzy model of a generalized multi-objective

multi-constrained optimization problem (Yang et al.

1991) can be expressed in what follows. Consider a

problem with the following minimization objectives:

Zl Xð Þ� gl l ¼ 1; 2; . . .; b ð24Þ

and subject to constraints:

dj Xð Þ�Dj j ¼ 1; 2; . . .;m; ð25Þ

where l is the index of goals, b represents the number of

fuzzy-minimum goal constraints, gl is the goal value (target

value) for objective l given by the decision maker (DM), X

is a k-dimensional decision vector, goal constraints are

represented by Zl(X) and finally, G ¼ fXjdjðxÞ�Dj; j ¼
1; . . .;mg is the set of system constraints and defines the
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feasible space in which m represents the number of system

constraints.

Let pl denote the maximum tolerance limit for gl
determined by the DM. Thus, using the concept of fuzzy

sets, the membership function of the objective functions

can be defined as follows (Zimmermann 1978):

lZlðXÞ ¼
1

1� ZlðXÞ � gl

pl
0

if ZlðXÞ\gl
if gl � ZlðXÞ� gl þ pl
if ZlðXÞ[ gl þ pl

8
><

>:

8
><

>:

ð26Þ

The term lzl(x) indicates the desirability of solution X in

terms of the objective l. The corresponding graph of

Eq. (26) is shown in Fig. 2.

The a-level sets Zk
l ; 8 l 2 1; 2; . . .; bf g; 8 k 2 0; 1½ �

are defined as:

Zk
l ¼ XjlZl Xð Þ� k; 0� k� 1

� �
; l ¼ 1; 2; . . .b:

Then, the decision space is defined by intersecting the

system constraints with the intersection of k-level sets as

follows:

Z� ¼
\b

l¼1

Zk
l

( )
\

G; 0 � k� 1:

According to the extension principle, the membership

function of Z is defined as follows:

lZðXÞ ¼ min
l¼1;2;...m

lZlðXÞ
� �

:

Finally, the optimal solution, Z� X�, must maximize

lZ(X) by solving the following mathematical programming.

Max Z� ¼ k

s:t:

k� lZlðXÞ; l ¼ 1; 2; . . .; b

djðXÞ�Dj; j ¼ 1; 2; . . .;m

0� k� 1

ð27Þ

The GA approach

GA is inspired by Darwin’s theory of evolution and genetic

knowledge and is based on elitism. It simulates the genetic

evolution of orGAnisms, and its generic usage is as an

optimization method. The excellent books by Davis (1991)

and Goldberg (1989) described many possible variants of

GAs. GA is based on an analogy to the phenomenon of

natural selection in biology. First, a chromosome structure

is defined to represent the solutions to the problem. An

initial solution population is generated either randomly or

using a heuristic. Each chromosome is then improved

through a selection/elitism mechanism. More specifically,

members of the population are selected based on an eval-

uation function, called ‘‘fitness’’, which associates a value

to each member according to its objective function. The

higher a member’s fitness value, the more likely it is to be

selected. Thus, the less fit individuals are replaced by those

with higher value. Genetic operators are then applied to the

selected members to produce a new generation. This

1 

μ

λ

0 

Zl(X)]

Zl(X)
gl pl+ gl

Fig. 2 Membership function related to objectives

3 31412

Fig. 3 Example of chromosome Ymi

1231
3122
2312
1313

Fig. 4 Chromosome demonstration for variable Zikt

1232
3123
2312
1313

Fig. 5 Chromosome representation for variable Flkt

1233
3122
2312
1313
2131
1112

Fig. 6 Chromosome representation for variable wwkt
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process is repeated until some stopping criteria are reached

(Mahdavi et al. 2009). The main components of GA for

implementation are:

1. The scheme for coding.

2. The initial population.

3. Adaptation function for evaluating the fitness of each

member of the population.

4. Selection procedure.

5. The genetic operators used for combining the solution

features for producing a new generation.

6. Certain control parameter values (e.g., population size,

number of iterations, genetic operator probabilities,

etc.).

The scheme for coding

For any implementation of GA, the first stage is to map

solution characteristics into the format of a chromosome

string. Each chromosome is made up of a sequence of

genes from a certain alphabet. The alphabet can be a set of

binary numbers, real numbers, integers, symbols, or

matrices Goldberg (1989).

In genetic algorithms, each chromosome represents a

feasible solution in the search space and is formed by a

fixed number of genes. Usually, genes are represented

using binary codes. In this paper, a four-component chro-

mosome is used for solution representation.

The first component of the chromosome, formed according

to the decision variable Yml, is a row vector in which the

number of column represents the location and the valuewithin

the column determines the type of machine. For example, in

Fig. 3, the first element of the vector is 2 meaning that a

machine of type 2 is in located in the location 1.

The next component models the variable, Zikt, and is a

matrix with P rows and T columns. The element in row

p and column t of the matrix shows the number of the cell

in which part p is processed in period t. For instance, in

Fig. 4, the matrix with four rows and four columns deter-

mines the cell numbers for four parts in four periods. The

number 3 in the first row and second column means that

part number 1 in period 2 is processed in cell 3.

The variables Flkt and wwkt are represented using a

similar matrix utilized to code the variable Zikt. The only

difference is that rows in the matrices for Flkt and wwkt

represent locations and workers, respectively. Figure 5

illustrates an example of the matrix for Flkt with the ele-

ment in the first row and the second column being equal to

3; showing that location 1 in period 2 is assigned to the cell

number 2. Similarly, in Fig. 6, the matrix for variable wwkt

is formed by six workforces and four periods. The element

in the first row and the first column specifics that worker 1

in period 1 is assigned to the cell 3.

Parent A

Randomly selected 
crossover points 

Parent B

Offspring A Offspring B

Fig. 7 Uniform crossover

Before mutation After mutationFig. 8 Proposed mutation

Table 1 Operation process times in example 1

Part 1 Part 2 Part 3

W1 W2 W3 W1 W2 W3 W1 W2 W3

M1 0.3 0 0 0 0 0 0 0.3 0.3

M2 0 0 0 0.2 0.4 0 0 0 0

M3 0 0.4 0.2 0 0.3 0.1 0 0 0
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The initial population

Another aspect of GA implementation is generating a set of

initial solutions known as the initial population. The

number of initial solutions to be included in the population

is called population size. The population size is a key factor

in a successful GA implementation. A small population

size increases the speed of the algorithm; however, it may

prevent the algorithm from converging to satisfying solu-

tions. On the other hand, although a large population

usually results in better solutions, it may significantly

increase CPU time (Back et al. 1997)

Fitness function

In GA implementation, a fitness function is used to eval-

uate the chromosomes for reproduction. The purpose of the

fitness function is to measure the quality of the candidate

solutions in the population with respect to the objective and

constraint functions of the model. The fitness function is

Table 2 Machines available

times, machines fixed costs and

machines variable costs in

example 1

M1 M2 M3

RM 70 70 70

C 500 400 350

a 20 30 25

Table 3 Machines available

times, workers hiring and

number of available workers in

example 1

W1 W2 W3

RW 60 60 60

SW 400 500 450

AW 4 4 4

Table 4 Output information of the proposed model related to assign machines and workers to each cell in each period using LINGO in example

1

Parts assigned to Machines in Worker assigned to Location assigned to

Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3

Period 1 3 – 1, 2 1 – 1, 3, 2, 1 – 1, 3 3 – 4, 2, 1

Period 2 3 – 1, 2 1 – 1, 3, 2, 1 – 1, 3 4 – 3, 2, 1

Table 5 Output information

related to assign each machine

to the locations using LINGO in

example 1

L1 L2 L3 L4

M1 0 0 1 1

M2 1 0 0 0

M3 0 1 0 0

M2

WORKER 1

P1
virtual cell 3

virtual cell 1

period 2

WORKER 1 WORKER 3

M1 M3

P2

M1 P3

M2

WORKER 1

P1
virtual cell 3

virtual cell 1

period 1

WORKER 1 WORKER 3

M1 M3

P2

M1 P3

Fig. 9 Cell reconfiguration schema in each period for example 1
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calculated according to Eq. (27), where k is the same �,
and a penalty function is used in fitness function (Z�

X) to

satisfy the constraints.

Z�
X ¼ min

Z�

1þ penalty function

� �
:

Selection rule

The roulette wheel selection procedure, as proposed by

Goldberg (1989), is the selection strategy used in the

proposed algorithm. The goal of the selection strategy is

to allow the ‘‘fittest’’ individuals to be considered more

often to reproduce children for the next generation. Each

individual is assigned a probability of being selected

based on its fitness value. Although individuals with

higher fitness value have a higher selection probability,

all individuals in the population should be given a

chance to be selected. Hence, after ranking the individ-

uals, the parents are selected randomly based on their

fitness.

Genetic operators

Reproduction is carried out by applying crossover and

mutation operators on the selected parents to produce off-

spring. The crossover and mutation operators for the pro-

posed algorithm are discussed in what follows.

Uniform crossover

For every pair of randomly selected parents, a small pro-

portion of randomly selected genes is exchanged. The

crossover process is illustrated in Fig. 7. Individuals parent

A and parent B produce offspring A and offspring B after

applying the crossover. We define parent A as the direct

parent of offspring A, and parent B as the direct parent of

offspring B.

Mutation operator

The conventional mutation operator randomly alters the

value of the genes according to a small probability of

mutation; thus, it is merely a random walk and does not

guarantee a positive direction toward the optimal solution.

The proposed heuristic mutation remedies this deficiency.

In this scheme, an individual is randomly chosen from the

population (Fig. 8).

Parameters

The parameters required to run the algorithm are popula-

tion size, number of generations, number of iterations,

crossover and mutation probabilities. These parameters

have a crucial role in the performance of the GAs. The

number of generations is a function of the size of the

Table 6 Obtained values for FGP variables

Variable k Z1 Z2

Value 0.812501 198 161,400
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Fig. 10 Convergence of k in

example 1

Table 7 In the interpretation of

the results obtained from the

proposed GA in example 1

L1 L2 L3 L4

M1 1 1 0 0

M2 0 0 0 1

M3 0 0 1 0
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problem at hand. As the solution space extends, the GA

requires a larger number of generations to reach a satis-

fying convergence point. Population size may vary

depending on the application. The number of iterations

must be adjusted to allow the GA to complete the con-

vergence process. The crossover operator has a significant

effect on the performance of GA, and therefore, usually, a

relatively large probability value is considered for this

parameter. Mutation operator is basically used to maintain

diversity in the population and is performed with a low

probability.

Computational results

Solving the model with LINGO software

In this section, we present an example for which the branch

and bound in the LINGO software and the genetic algo-

rithm are utilized as solution methods. In addition, to

evaluate the performance of the proposed model, a com-

parison of the outcomes is provided.

This example includes three cells, three parts, three

machines, three workers, four locations and two periods

in which all the presented hypothesis in ‘‘Problem

description and formulation’’ are valid. Our goal is

determining machine locations and cells and worker

assignments.

Our data for the model include aim which is a 2D vari-

able to determine part–machine relations and is shown by

the following matrix:

Table 8 Output information of the proposed model related to assign the machines and workers to each cell in each period using the genetic

algorithm in example 1

Parts assigned to Machine in Worker assigned to Location assigned to

Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3

Period 1 3 1, 2 – 1 1, 2, 3 – 1 1, 2 – 2 1, 3, 4 –

Period 2 – – 1, 2, 3 – – 1, 2, 3 – – 1, 3 – – 1, 3, 4

M2 P1
virtual cell 3 period 2

WORKER 1 WORKER 3

M1 M3

P2

M1

P3

M2

WORKER 1

P1
virtual cell 2

virtual cell 1

period 1

WORKER 1 WORKER 2

M1 M3

P2

M1 P3

Fig. 11 Cell reconfiguration schema in each period for example 1 in the MATLAB software

Table 9 GAP of between LINGO and GA

Algorithm Objective function values

k Z1 Z2

LINGO 0.812501 198 161,400

The proposed GA 0.77273 201 163,200

GAP (%) 4.8 1.5 1.1
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aim ¼
1 0 1

0 1 1

1 0 0

Another input is rmw that determines the worker–ma-

chine assignments as shown as follows:

rmw ¼
1 0 0

1 1 0

0 1 1

Demand volume for each part in each period is given by:

Dit ¼
30 100

70 80

90 60

The time spent for processing each part on each machine

by each worker is represented by a 3D matrix as follows

(Table 1).

The other input parameters for machines and workforces

are depicted in Tables 2 and 3, respectively.

FGP model of the problem is coded and solved using the

LINGO Software run on a desktop PC equipped with an

Intel� CoreTM i3 @ 3200 GHz and 4 GBs of RAM running
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Fig. 12 Convergence of k in

example 2

Table 10 Output information related to assign each machine to the

locations used genetic algorithm in example 2

L1 L2 L3 L4 L5 L6

M1 1 0 0 0 0 1

M2 0 1 0 0 1 0

M3 0 0 1 1 0 0

Table 11 Output information of the proposed model related to the machines and workers to each cell in each period using the genetic algorithm

in example 2

Parts assigned to Machine in Worker assigned to Location assigned to

Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3

Period 1 – 1, 2 3, 4, 5 – 1, 2, 3 1, 2 – 2, 4 1 – 2, 4, 6 1, 5

Period 2 2, 3, 4 1, 5 – 1, 2, 2, 3 1, 3 – 1, 4 4 – 2, 4, 5, 6 1, 3 –

Period 3 5 – 1, 2, 3, 4 1 – 1, 2, 3 4 – 1, 3 1 – 3, 5, 6

Table 12 Obtained values for GA variables in example 2

Variable k Z1 Z2

Value 0.92646 880 486,000
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Fig. 13 Cell reconfiguration schema in each period for example 2 in the MATLAB software
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Microsoft WindowsTM 7 Ultimate. The results were

obtained after 13 h and 54 min. In Table 4, parts, machines

and locations assignments to cells in each period are pre-

sented. In the results, for example, in cell 3 in the first

period, two machines of type 3, one machine of type 1 and

one machine of type 2 are assigned.

In Table 5, assignments of machines to locations are

presented. It should be noted that the locations of machines

are determined in the first period and are fixed for all

periods. For instance, the machine, M2, is assigned to

location 1 for all periods.

For more understanding of the results, the reconfigura-

tions of this example are depicted in Fig. 9.

In Table 6, the obtained values for the FGP variables are

presented. The optimized values of the first and second

objective functions (Z1 and Z2) are 198 and 161,400,

respectively.

Solving example 1 using genetic algorithm (GA)

We coded the proposed GA solution method by MATLAB

2010 and applied the program to the same numerical

example solved by the LINGO Software using the same

desktop PC mentioned above and discussed in ‘‘Solving the

model with LINGO software‘‘. In the results, obtained after

330 s, k was 0.77273 for which Fig. 10 illustrates the

Table 13 Output information related to assign each machine to the

locations used genetic algorithm in example 3

L1 L2 L3 L4 L5 L6

M1 1 0 0 0 0 0

M2 0 0 1 0 0 1

M3 0 0 0 1 1 0

M4 0 1 0 0 0 0

period 2

M2

WORKER 1

P1
virtual cell 2

virtual cell 3

period 1

WORKER 2
WORKER 1

M1 M3

P2
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P4P5
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period 3
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Fig. 15 Cell reconfiguration schema in each period for example 3 in the MATLAB software
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convergence in 24 iterations. In this figure, vertical and

horizontal axes show k and the number of iterations,

respectively.

Therefore, the obtained values translate into the matrix

depicted in Table 7.

For the parts, machines and workers, the best solution is

derived from Ximwklt. The corresponding values are pre-

sented in Table 8.

For more understanding of the solution, the reconfigu-

rations of this example are given in Fig. 11.

To illustrate the performance of the proposed method,

the difference percentage GAP between the proposed GA

and LINGO results is calculated which is shown in

Table 9.

The performance GAP shows that the proposed GA

outperforms LINGO Solver with a significant GAP.

Consideration of some examples with greater

dimensions

For further investiGAtion, we considered the second

example with the greater dimensions. It has three periods,

five types of parts, three types of machines, four types of

workers, three cells and eight locations. After entering

input data to the model, the results were obtained as

follows:

Table 14 Output information of the proposed model related to assign machines and workers to each cell in each period using the genetic

algorithm

Parts assigned to Machine in Worker assigned to Location assigned to

Cell 1 Cell 2 Cell

3

Cell 1 Cell 2 Cell

3

Cell

1

Cell

2

Cell

3

Cell 1 Cell 2 Cell

3

Period

1

1, 3, 4, 5, 6, 8, 7, 9,

10

2 1, 2, 3,

4

2 1, 2 1 1, 2, 4,

6

3

Period

2

1, 4, 5, 8, 6, 9, 10 1, 2, 3, 4, 6, 7, 8 1, 2, 3 2, 4 1, 2 1, 3 1, 3, 5 2, 6

Period

3

1, 3, 4, 5, 6, 7, 8,

9

2 10 1, 2, 3,

4

2 3 1, 2 1 2 1, 2, 3,

4

6 5

For more understanding, reconfigurations of this example are given in Fig. 15

Table 15 Obtained values for GA variables in example 3

Variable k Z1 Z2

Value 0.84897 1405 961,200

Table 16 Comparison of the proposed GA and LINGO for small-sized examples

No. of

example

Example size Objective value (k) CPU time GAP

(%)
No. of part

types

No. of

machine

types

No. of

worker types

No. of

cells

No. of

locations

No. of

periods

GA LINGO GA LINGO

1 2 2 2 2 3 2 0.93325 0.93325 0:02:55 1:08:04 0

2 2 3 3 2 4 2 0.83241 0.86241 0:03:46 6:10:36 3

3 3 3 3 3 4 2 0.77273 0.812501 0:05:30 13:54:00 4.8

Table 17 Comparison of the proposed GA and LINGO for medium-sized test examples

No. of

example

Example size Objective value (k) CPU time GAP

(%)
No. of part

types

No. of

machine

types

No. of

worker types

No. of

cells

No. of

locations

No. of

periods

GA LINGO

(Zbest)

GA LINGO

(Zbest)

1 4 3 3 2 6 2 0.88157 0.92573 0:14:35 15:00:00 4.7

2 5 3 4 3 8 3 0.92646 0.97332 0:22:07 15:00:00 4.8

3 6 4 4 3 8 3 0.87427 0.93241 0:38:24 15:00:00 6.2
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The model is solved in about 22 min (1327 s) and

achieved the solution. k is converged to 0.92646 and

Fig. 12 depicts this convergence. The vertical axis depicts

the value for k and the horizontal axis represents the

number of iterations. After 65 iterations, k was converged

to the aforementioned value.

The obtained values for the variables are presented as

follows (Tables 10, 11, 12).

For more understanding, reconfigurations of this exam-

ple are given in Fig. 13.

Example 3: In this example, we considered a problem

with ten parts, three workers, four machines, three cells,

three periods and six locations. We ran the model, and after

6 h (21,560 s), the solution was found. At last, k value was

converged to 0.84897 after 138 iterations. Figure 14 depicts

these values for iteration larger than 64.Vertical axis shows k
value, and horizontal axis depicts the iterations.

Output values for the variables are as follows

(Tables 13, 14, 15).

Computational results for the proposed GA

To show the effectiveness of the proposed GA in solving

the proposed model, first three small-sized examples

which can be solved optimally using LINGO are pre-

sented. The results of solving these examples using the

LINGO and the proposed GA are compared in Table 16.

The relative differences between the objective values,

achieved by the two methods, are shown as GAP in

Table 16. According to this table, in the worst case,

solution GAP between the proposed GA and the global

optimum found by the LINGO software is 4.8 %. This

shows that the proposed GA is capable of obtaining the

near optimal solutions in a reasonable computational time.

As shown in Table 16, the LINGO software has solved

the third example in a time equal to 13:54:00 which is not

a reasonable computational time for solving a small-sized

example.

To demonstrate the performance of the proposed GA in

solving medium-sized examples, three test problems, in

which LINGO fails to solve optimally, are designed and

solved using the proposed GA. In a maximization prob-

lem, the LINGO software found a possible interval for

optimum value of objective function (Z�) that is limited

by the Zbound and Zbest values, where Zbest B Z� B Zbound.

Zbest shows the best known feasible objective function

value, and Zbound represents the upper bound of the

objective function. Approaching to the current values for

the best known solution and the bound, Zbest is either the

optimal solution, or very close to it. At such a point, the

solver can be interrupted and report the current best

solution with the aim of shortening additional computa-

tion time. Therefore, we limit runtime to 15 h to save

computational effort and report the best solution obtained

after 15 h. To validate the results found by GA, the

solutions achieved by GA for three examples are com-

pared with Zbest obtained by LINGO after 15 h. These

results are shown in Table 17. The GAP between the

objective value of the proposed GA and Zbest in the worst

case is 6.2 %. This confirms that the proposed GA is able

to obtain solutions to those examples effectively. In

Table 18 Comparison of the proposed GA and LINGO for large-sized test examples

No. of

example

Example size Objective value (k) CPU time GAP

(%)
No. of part

types

No. of

machine

types

No. of

worker types

No. of

cells

No. of

locations

No. of

periods

GA LINGO

(Zbest)

GA LINGO

(Zbest)

1 7 3 3 2 8 2 0.86731 0.82367 1:43:36 15:00:00 5

2 8 3 3 3 6 3 0.85294 – 2:50:14 – –

3 9 4 3 2 8 3 0.8245 – 4:12:47 – –

4 10 4 3 3 6 3 0.84897 – 5:59:20 – –

Table 19 Results of the test
Problem category Objective function Computational time

lGA - lLINGO P value l0GA � l0LINGO P value

Small -0.0233 0.096 -0.292 0.099

Medium -0.04972 0.004 -0.60762 0.000

Large Not applicable
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addition, computational time for those examples by GA is

less than 40 min showing its superior efficiency. To

evaluate the performance of the proposed GA in solving

the large-sized examples, four random instances are

solved by GA and LINGO, and the obtained results are

shown in Table 18. LINGO solver is not capable of even

finding feasible solutions for the last three test problems

even after 15 h. However, GA has solved these examples

in less than 6 h. Moreover, in the first example of

Table 18, the solution obtained by GA is better than Zbest,

achieved by LINGO after 15 h.

To further clarify the superiority of the proposed algo-

rithm, a statistical test is conducted for each group of

problems. More specifically, a paired t test is utilized to

compare the objective function value and computational

time of the proposed algorithm and those of LINGO solver.

The results of the test are presented in Table 19. In this

Table, lLINGO and lGA are the mean objective function

value for LINGO and GA, respectively, and l0LINGO and

l0GA are the mean computational time for LINGO and GA,

respectively.

Conclusions

In this paper, a bi-objective mathematical model for

dynamic virtual cellular manufacturing system is devel-

oped which have several advantages toward the previous

researches in the literature. One of the majors to another

researches is introducing method to the assignment of

workers alongside assignment of machines to locations in

DVCMS which this mater concludes to complexity of the

model. However, considering these features simultane-

ously causes to better planning and close to real-life sit-

uations. The most important features of this paper is as

follows:

1. Developing the dimensions of cellular manufacturing

problem, including machines, parts, workers and

locations leading to a more realistic model.

2. Assigning workers, location to machines and parts to

cells to operation processing in dynamic virtual

cellular manufacturing system simultaneously.

3. Calculating the number of inter-cell transportations

cost and exceptional elements in dynamic virtual

cellular manufacturing system.

4. Calculating machine variable and fixed costs in each

periods and also workforce hiring cost.

5. Forming virtual cells in each period.

Further researches on the proposed model may be

attempted in future studies by incorporating the following

issues:

• Developing a mathematical model with considering

uncertainty with fuzzy parameters;

• Operation scheduling can be considered in virtual

cellular manufacturing problem;

• Distances between each machine and transportation

of materials can be added to the mathematical

model.
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