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Abstract

Clustering parts and machines into part families and machine cells is a major decision in the design of cellular
manufacturing systems which is defined as cell formation. This paper presents a non-linear mixed integer
programming model to design cellular manufacturing systems which assumes that the arrival rate of parts into cells
and machine service rate are stochastic parameters and described by exponential distribution. Uncertain situations
may create a queue behind each machine; therefore, we will consider the average waiting time of parts behind
each machine in order to have an efficient system. The objective function will minimize summation of idleness cost
of machines, sub-contracting cost for exceptional parts, non-utilizing machine cost, and holding cost of parts in the
cells. Finally, the linearized model will be solved by the Cplex solver of GAMS, and sensitivity analysis will be
performed to illustrate the effectiveness of the parameters.

Keywords: Cellular manufacturing system; Stochastic arrival rate and service rate; Average waiting time; Queuing
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Introduction
Cellular manufacturing system (CMS) is an application
of the group technology concept, which classifies parts
with closest features and processes into the part families
and assigns machines into the cells, with the goal of
increasing production efficiency while decreasing the
unit cost. Some advantages of CMS such as simplifica-
tion of material flow, reduction of transportation and
queuing times, reduction of material handling cost
and setup times, and the increase of machine utilization
and throughput rates are declared in literatures
(Muruganandam et al. 2005; Olorunniwo and Udo 2002;
Wemmerlov and Hyer 1989). The four major decisions
in the implementation of cellular manufacturing systems
are the following:

1. Cell formation: grouping parts with the similar
processes and features into part families and
allocating machines to the cells (Mahdavi et al. 2007;
Muruganandam et al. 2005; Yasuda et al. 2005)
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2. Group layout: laying out cells and machines within
each cell (Mahdavi and Mahadevan 2008; Tavakkoli-
Moghaddam et al. 2007; Wu et al. 2007a)

3. Group scheduling: operating and managing the cell
operation (Mak and Wang 2002; Tavakkoli-
Moghaddam et al. 2010)

4. Resource allocation: assigning resources, such as
tools, materials, and human resources, to the cells
Cesani and Steudel (2005; Mahdavi et al. 2010)

Wu et al. (2007b) considered cell formation, group lay-
out, and group scheduling decisions simultaneously in
their model, which minimize the makespan. They
presented a hierarchical genetic algorithm to solve it.
Logendran (1993) developed a mathematical program-
ming model to minimize part inter-cell and intra-cell
movements and proposed a heuristic algorithm to solve
it. Chen (1998) proposed an integer programming model
to minimize material handling and machine cost and
reconfiguration cost to design a sustainable cellular
manufacturing system in a dynamic environment. Most
of the developed models in cellular manufacturing
systems are cost-based, but there are some models in
which machine reliability is considered simultaneously
with different cost types. A multi-objective mixed
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integer programming model was presented by Das et al.
(2006) that minimizes variable cost of machine and pen-
alty cost of non-utilizing machine as well as inter-cell
material handling cost, and maximizes system reliability
with minimizing failure rate. Machine breakdown cost
(Jabal-Ameli and Arkat 2007) and inverse of the reliabil-
ity of the system (Das et al. 2007) are two more objective
components in order to maximize machine reliability,
which will develop cell performance.
Table 1 Summarized cellular manufacturing system review

Publication Objective

Sarker and Li (1997) Min INTER + OC

Wicks and Reasor (1999) Min INTER + RCC + CI

Chen (1998) Min INTER + OC + MHC + RCC

Chen (2001) Min INTER + OC + IC + SC

Baykasoglu et al. (2001) Min DS + CLV + ECR

Mak and Wang (2002) Min TDT

Muruganandam et al. (2005) Min CLV + MM

Tavakkoli-Moghaddam et al. (2005) Min RCC + MAC + OC + INTER

Das et al. (2006) Min 1.FRM

2.VCM + INTER + NUC

Chan et al. (2006) Min VO + EE, TDT

Saidi-Mehrabad and Safaei (2007) Min MAC + INTER + OC + RCC

Jabal-Ameli and Arkat (2007) Min INTER + MBC

Wu et al. (2007a) Min 1.MM, 2.EE

Wu et al. (2007b) Min CM

Das et al. (2007) Min 1.ISR

2.VCM + INTER + NUC

Mahdavi et al. (2007) Min EE + VO

Schaller (2007) Min PC + MAC + RCC

Safaei et al. (2008) Min INTER + INTRA + CCM + VCM + R

Bajestani et al. (2009) Min 1.CLV

2.INTER + RCC + PUC

Kioon et al. (2009) Min RCC + PM + OC + SCC + HC + PC
INTRA

Safaei and Tavakkoli-Moghaddam
(2009)

Min CCM + VCM + IT + INTER + INTRA
SCC

Saidi-Mehrabad and Ghezavati
(2009)

Min ICM + SCC + NUC

Mahdavi et al. (2010) Min VO + EE

(Tavakkoli-Moghaddam et al. 2010) Min INTRAT + TT + CSC + CM

Mahdavi et al. (2010) Min HC + BC + INTER

MC + RCC + SAC + HIC + FIC

Rafiee et al. (2011) Min INTER + INTRA

OC + PUC + RCC + PRS + SCC + HC +

Ariafar et al. (2011) Min INTER + INTRA
Cellular manufacturing problems can be under static
or dynamic conditions. In static conditions, cell forma-
tion is done for a single-period planning horizon, where
product mix and demand rate are constant. However, in
dynamic conditions, the planning horizon is considered
as a multi-period planning horizon where the product
mix and demand rate differ from one period to another.
In order to reach the best efficiency, there will be diffe-
rent cell formations for each period. Some recent
Problem
definition

Solution
method

Output

SO, MIP B&B CF, PR

SO, DP, MPP, MIP GA CF, MD

SO, DP, MPP, IP DBH CF, RCP

SO, MINLP SMH CF, IL, PL

MO, NLP SA CF, PRP

SO, MINLP GA CF, PS

CO, NLP MA CF

SO, DP, NLP GA, SA, TS CF, RCP

MO, MIP SA CF, PR

SO, NLP, QAP, 2SP GA CF, MSE

SO, DP, MPP, NLP NA CF, CS, PR, RCP, MD

SO, IP B&B CF, PR

MO, IP HGA CF, GL

SO, NLP HGA CF, GL, PS

MO, NLP HIA CF, OPMI

SO, NLP B&B CF

SO, DP, IP CBP, TS CF, RCP

CC SO, DP, MPP, MIP MFA-SA CF, RCP

MO, DP, MINLP MOSS CF, RCP

+ INTER + SO, DP, MINLP B&C CF, PP, PR, RCP, IL

+ RCC + SO, DP, MINLP B&B CF, RCP, BL, IL

SO, STP, MINLP B&B CF

SO, NLP GA CF

MC, MINLP SS CF, PS

SO, DP, MPP, NLP B&B CF, RCP, WA, IL

PL, BL, MD

SO, DP, MIP PSO CF, RCP, PR, PP, IL,
SBQ

CRC + PM

SO, STP, MINLP B&B GL



Fardis et al. Journal of Industrial Engineering International 2013, 9:20 Page 3 of 8
http://www.jiei-tsb.com/content/9/1/20
researches are under dynamic conditions (Kioon et al.
2009; Mahdavi et al. 2010; Schaller 2007).
Inputs of classical cellular manufacturing system prob-

lems are certain, but in real problems, some input pa-
rameters such as costs, demands, processing times, and
setup times are uncertain so that this uncertainty can
affect on the results. Some approaches such as stochastic
programming, queuing theory, and robust optimization
can be applied for uncertain models (Saidi-Mehrabad
and Ghezavati 2009). Ariafar et al. (2011) proposed a
mathematical model for layout problem in cellular
manufacturing systems that the demand of each product
was described by uniform distribution. The objective
function of their model minimizes total cost of inter-cell
and intra-cell material handling, concurrently. It was
solved by the Lingo software. Saidi-Mehrabad and
Ghezavati (2009) presented a stochastic CMS problem
applying queuing theory approach. They assumed parts
as customers and machines as servers, in which the ar-
rival rate of parts and service rate of machines were
identified by the exponential distribution. Their objective
function components are the following: non-utilization
cost, machine idleness cost, and sub-contracting cost.
They computed the utilization factor for each machine
which shows the probability that each machine is busy.
Table 1 illustrates the summarization of more reviewed

literatures consisting objectives, model definitions, solu-
tion methods, and outputs. This helps to compare our
work with previous researches. Table 2 describes the ab-
breviations used in Table 1.
In this paper, we will develop a CMS problem as a

queue system considering the average waiting time of
parts behind each machine and holding cost of parts in
cells. The goal of this model is to minimize summation
of four cost types: (1) the idleness costs for machines,
(2) total cost of sub-contracting, (3) non-utilization cost
of machines in cells, and (4) holding cost of parts in
cells. The rest of the paper is organized as follows: The
proposed model is described in the ‘Mathematical
modeling’ section. In the ‘Experimental results’ section,
the experimental results and sensitivity analysis are
presented. The last section is the ‘Conclusions and
future directions.’

Mathematical modeling
Problem description
In this section, a stochastic cellular manufacturing sys-
tem problem will be formulated as a queue system,
which considers parts and machines as customers and
servers with the arrival and service rate of λ and μ, re-
spectively. Also, we consider that at each time, only one
part can be processed by a machine; thus, when a
machine is processing a part, the others should wait,
and a queue will be created behind the machine. The
population of this queue as a new part arrives (birth)
can be increased, or it can be decreased (death) by ser-
vice completion.
In a steady system, to avoid infinite growth of queue,

the service rate must be greater than the arrival rate, so
the utilization factor (probability of being busy) of each
machine (ρ = λ / μ) will be less than 1. Also, as each ma-
chine processes different parts with different arrival
rates, according to this property, the minimum of some
independent exponential random variables with the ar-
rival rate of λ1, λ2, …, λm is also exponential with the ar-
rival rate of λ ¼ ∑m

i¼1λi . Hence, the utilization factor is
ρ = ∑ λi / μ.
Our queue system is formulated as M / M / 1, where

the arrival and processing time of parts are uncertain
and described by exponential distribution, and as it was
mentioned earlier, each machine can process at most
one part at a time. In this problem, the decision maker
needs to allocate parts and machines to cells in order to
minimize objective function value. In the previous work
of Saidi-Mehrabad and Ghezavati (2009), only the im-
pact of utilization factor in designing CMS is considered,
but our study shows the impact of utilization factor and
maximum waiting time of parts simultaneously. Due to
the uncertainty of arrival and service time of parts, the
time that each part spends in the cell is uncertain, and
as the time passes, the parts will be broken. Thus, in
order to avoid long waiting time, a chance constraint is
considered to show that the probability that the average
waiting time of a part behind each machine exceeds the
critical time is less than the service level (α). By knowing
that, this probability affects on the utilization factor.

Notation
Indexes
The following are the indexes:

� i Part index, i = 1, …, p
� j Machine index, j = 1, …, m
� k Cell index, k = 1, …, c

� aij ¼ 1 if machine j processes part i
0 otherwise

�

� Ci Sub-contracting cost per unit for part i
� uj Idleness cost of machine j
� Mm Maximum number of machines permitted in a

cell
� α Maximum allowed probability that the waiting

time behind each machine can be more than the
critical time

� tqj Average time parts spend behind machine j
� t Critical waiting time
� npi Total number of part i



Table 2 Abbreviations used in Table 1

Objective function Abbreviation Problem definition Abbreviation Solution and outputs Abbreviation

Inter-cell material handling
cost

INTER Single objective SO Branch and bound B&B

Intra-cell material handling
cost

INTRA Multi-objective MO Branch and cut B&C

Machine operating cost OC Combined objective CO Genetic algorithm GA

Material moves MM Multi-criteria MC Decomposition base heuristic DBH

Backorder cost BC Multi-period planning MPP Silver meal heuristic SMH

Production cost PC Stochastic problem STP Tabu search TS

Inventory cost IC Dynamic programming DP Hierarchical genetic algorithm AGA

Reconfiguration cost RCC Integer program IP Mean field annealing and simulated
annealing

MFA-SA

Capital investment CI Mixed integer program MIP Multi-objective scatter search MOSS

Machine holding cost MHC Non-linear program NLP Hierarchical approach HIA

System setup cost SC Mixed integer non-linear
program

MINLP CB procedure CBP

Dissimilarity between parts DS Quadratic assignment
problem

QAP Particle swarm optimization PSO

Cell load variation CLV Two-stage scheduling
problem

2SP Scatter search SS

Extra capacity requirement ECR Neural approach NA

Total distance traveled TDT Cell formation CF

Cell setup cost CSC Inventory level IL

Holding cost HC Production level PL

Machine cost MC Backorder level BL

Machine amortization cost MAC Reconfiguration plan RCP

Machine breakdown cost MBC Machine sequence MSE

Failure rate of machine FRM Cell size CS

Machine variable cost VCM Group layout GL

Machine constant cost CCM Process route PR

Machine non-utilization
cost

NUC Machine duplication MD

Total number of voids VO Production plan PP

Total exceptional elements EE Production scheduling PS

Completion time CM Processing part requirement PRP

Inverse of system reliability ISR Optimal preventive maintenance interval OPMI

Purchase cost of machine PUC Subcontracted quantity SBQ

Preventive maintenance
cost

PM Worker assignment WA

Sub-contracting cost SCC

Inventory transportation IT

Intra-cell move time INTRAT

Tardiness time TT

Salary cost SAC

Firing cost FIC
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Table 2 Abbreviations used in Table 1 (Continued)

Hiring cost HIC

Process routes setup cost PRS

Corrective repair cost CRC

Machine idleness cost ICM
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� Cu Maximum number of cells
� λi Mean arrival rate for part i
� μj Mean service rate for machine j
� Uij Cost of part i not utilizing machine j
� hi Holding cost per unit for part i

Decision variables
The following are the decision variables:

� Xik ¼ 1 if part i is assigned to cell k
0 otherwise

�

� Y jk ¼ 1 if machine j is assigned to cell k
0 otherwise

�

� ρj Utilization factor for machine j (the value of
ρ indicates the probability in which machine j
is busy)

Mathematical model
In this section, details of the mathematical formulation
which we are interested will be described. For this pur-
pose, the following formulations are presented:

Min Z ¼
X
j

1−ρj
� �

uj þ
X
k

X
j

X
i

CiaijXik 1−Y jk
� �

þ
X
k

X
j

X
i

UijXikY jk 1−aij
� �

þ
X
k

X
j

X
i

hiaijXikY jk

npi

ð1Þsubject toX
k

Xik ¼ 1 i ¼ 1; 2;…; p; ð2Þ
X
k

Y jk ¼ 1 j ¼ 1; 2;…;m; ð3Þ

ρj−
X
k

X
i
λiaijXikY jk

μj
¼ 0 j ¼ 1;…;m; ð4Þ

X
j

Y jk≤Mm k ¼ 1; 2;…; c; ð5Þ

P tq j > t
� �

≤α; ð6Þ
ρj≤1 j ¼ 1; 2;…;m; ð7Þ
Xik ;Y jk∈ 0; 1f g; ρj ≥ 0: ð8Þ

Equation 1 indicates the objective function which can
compute the total idleness cost for machines in cells,
sub-contracting cost, resource underutilization cost, and
holding cost of parts in cells. Set constraint (2) restricts
that each part is allocated to only one cell. Set constraint
(3) ensures that each machine is allocated to only one
cell. Set constraint (4) computes the utilization factor.
Set constraint (5) guarantees that the number of ma-
chines in each cell will not exceed the maximum num-
ber. Equation (6) is a chance constraint and ensures that
the probability that the average waiting time of parts be-
hind each machine exceeds the critical time is less than
the service level (α). Set constraint (7) says that the pro-
portion of time that the machine is processing a part
must be less than or equal to 1. Set constraint (8) speci-
fies binary and non-negative variables.

Linearization of the model
As the objective function has non-linear terms, we can
change it to a mixed integer linear programming. For
this purpose, we replace a new binary variable Zijk in-
stead of the multiple of Xik and Yjk. We reformulate the
model, and the three auxiliary constraints (10), (11), and
(12) are added to the model to guarantee the correctness

of the replacement. Constraint (6) is equal to e−μj 1−ρjð Þt≤
α and contains a non-linear equation; therefore, Equa-
tion 14 denotes the linear form of this constraint.

Min Z ¼
X
j

1−ρj
� �

uj þ
X
k

X
j

X
i

CiaijXik

−
X
k

X
j

X
i

CiaijZijk

þ
X
k

X
j

X
i

Uij 1−aij
� �

Zijk

þ
X
k

X
j

X
i

aijZijk

npi
:

ð9Þ

Subject to constraints (2), (3), (5), (7), and (8),

Zijk≤Xik∀i; j; k; ð10Þ
Zijk≤Y jk∀i; j; k; ð11Þ
Xik þ Y jk−Zijk≤1∀i; j; k: ð12Þ

Constraints (4) and (6) are changed as follows:

ρj−
X
k

X
i
λiaijZijk

μj
¼ 0 ∀j ð13Þ

−μj 1−pj
� �

t≤lnα∀j: ð14Þ



Table 3 Effectiveness of queuing approach in a CMS problem

Problem information

Problem
number

Number of parts × number of
machines × number of cells

Maximum number of machine
allowed in each cell

Idleness
rate cost

Average
utilization factor
(%)

Number of inter-
cellular movement

P1 30 × 10 × 3 4 300 24.27 43

P2 460 31.27 40

P3 654 34.66 38

P4 850 44.52 32

P5 905 48.36 30

P6 1,025 56.83 25

P7 1,350 59.90 21

P8 1,600 62.05 20

P9 2,105 65.12 16

P10 2,678 69.97 13

P11 38 × 10 × 3 4 300 46.91 52

P12 460 47.56 51

P13 654 48.55 50

P14 850 48.64 50

P15 905 48.71 49

P16 1,025 48.93 49

P17 1,350 49.63 49

P18 1,600 49.80 48

P19 2,105 49.96 48

P20 2,678 50.25 48
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Experimental results
Consider a manufacturing system consisting of ten ma-
chines to process parts, wherein the decision maker
should allocate machines and parts to three cells. Also,
the maximum number of machines permitted to be lo-
cated is four. In this section, we present some numerical
examples which have been generated randomly, to illus-
trate the effect of changing the main parameters (α, t,
uj), on the number of sub-contracting movements and
utilization factors. The proposed mixed integer model
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Figure 1 Relationship curve between average utilization factor and n
was performed by GAMS and Cplex solver and was run
on a processor Intel Core 2 Duo CPU running at 2 GHz
with 2-GB RAM.
In Table 3, the results associated to solve two sets of

examples for ten times for each is shown, where only
idleness cost is not fix, and the impact of its changes on
the average utilization factor and the number of sub-
contracting movements are illustrated. As the utilization
factor of the machines is directly related to the idleness
cost, it can be found that the more the average of
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umber of sub-contracting movements of set problem 1.
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Figure 2 Relationship curve between service level and number of sub-contracting movements.
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idleness cost leads to the better design of cellular manu-
facturing system. It means more costs lead to a higher
utilization factor. Also, more utilization factor may lead
to less number of sub-contracting movements. Results
of both sets show the same changes.
Figure 1 indicates the relation between the average

utilization factor and number of sub-contracting move-
ments of set problem 1. It can be found that by increas-
ing idleness cost, the average utilization factor will be
increased, too. As the term ∑(1 − ρj)uj indicates, the dir-
ect relation between idleness cost and utilization factor
is established. Therefore, in order to minimize this term,
by increasing idleness cost, idleness rate of machine
must be decreased. This means that the probability that
each machine is busy increases. Therefore, the total
number of sub-contracting movements must be de-
creased in order to decrease idleness of each machine.
The less total number of sub-contracting movements
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Figure 3 Relationship between critical waiting time and number of su
makes the queue system be more populated. Therefore,
the total objective function value will be minimized.
The effect of service level's changes (the maximum

allowed probability that the waiting time behind each
machine can be more than the critical time) on the sub-
contracting movements is shown in Figure 2. This figure
illustrates that for a fixed critical waiting time, if the ser-
vice level (α) increases, the upper bound of utilization
factor (ρj) will increase, where this growth may cause
decreasing in the total number of sub-contracting
movements.
Figure 3 demonstrates the relation between changes of

critical waiting time and number of sub-contracting
movements. If we assume all the parameters to be fixed
except the service level (α), increasing the critical
waiting time may lead to the reduction of the number of
sub-contracting movements, which is due to the increase
of the upper bound of the utilization factor.
1.5 2 2.5

aiting time

b-contracting movements.
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Conclusions and future directions
We have developed a stochastic CMS model that
considers the arrival rate of parts into cells and machine
service rate as uncertain parameters. The proposed non-
linear mixed integer programming model was linearized
using auxiliary variables. Then, the linearized model was
solved using the Cplex solver of GAMS. As the CMS
problem is NP-hard, by increasing the size of the prob-
lem, GAMS stops solving it; due to the increase of
computational time, the branch-and-cut algorithm is un-
able to give good solutions. Therefore, it is necessary to
present a heuristic or meta-heuristic approach to solve
this model for large-scale problems. Also, the following
directions can be applied for further considerations:

1. Developing the proposed model under new
stochastic parameters such as capacities, lead times,
and machine failures.

2. Analyzing the defined problem under scenario-based
planning approach and robust optimization theory.

3. Incorporating our objectives with productivity and
production planning aspects in uncertain situations.
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