Niaki and Khedmati Journal of Industrial Engineering International 2013, 9:3

http://www jiei-tsb.com/content/9/1/3

® Journal of Industrial
Engineering International

a SpringerOpen Journal

ORIGINAL RESEARCH Open Access

Identifying the change time of multivariate
binomial processes for step changes and drifts

Seyed Taghi Akhavan Niaki” and Majid Khedmati

Abstract

when the real change type is a linear-trend disturbance.

Linear-trend disturbance, Root/power transformation

In this paper, a new control chart to monitor multi-binomial processes is first proposed based on a transformation
method. Then, the maximum likelihood estimators of change points designed for both step changes and linear-
trend disturbances are derived. At the end, the performances of the proposed change-point estimators are
evaluated and are compared using some Monte Carlo simulation experiments, considering that the real change
type presented in a process are of either a step change or a linear-trend disturbance. According to the results
obtained, the change-point estimator designed for step changes outperforms the change-point estimator designed
for linear-trend disturbances, when the real change type is a step change. In contrast, the change-point estimator
designed for linear-trend disturbances outperforms the change-point estimator designed for step changes,
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Background

Enabling process engineers and practitioners to monitor
the state of processes by distinguishing between com-
mon and special causes of variation, control charts have
been one of the most widely used statistical process con-
trol tools in industries. When a control chart generates
a signal due to an out-of-control state of a process,
process engineers initiate a search to identify the root
causes of process variation. However, the signaling time
is different from the first time that a change manifests it-
self into the process (change point), and in most ca-
ses there exists a considerable time lag between them.
Therefore, knowing the exact time of the change would
simplify the search for root cause identification and cor-
rective action implementation in order to improve the
quality of processes.

A binomial distribution with parameters n and p is
used to model the number of non-conforming items in a
sequence of n trials for an attribute quality characte-
ristic, in which p denotes the process fraction non-
conforming. In the case of multi-attribute processes, the
multivariate binomial distribution with parameters # and
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pr (k=1,2,.., q) can be used to model the number of
non-conforming items in a sequence of # trials for each
attribute quality characteristic, in which p; denotes the
process fraction non-conforming of the kth quality
characteristic. The problem of estimating the time of a
change in a univariate binomial distribution for differ-
ent change types of step change, linear-trend disturb-
ance (drift), multiple-step changes, monotonic change,
and other change types defined as a combination of the
above has been addressed in the literature. In a step-
change disturbance, the parameter of the process shifts
to an out-of-control level and remains in that level until
corrective measures are taken. Although a step change
can occur because of tool breakage, the parameter of a
process may gradually drift. In other words, linear-trend
disturbances can occur as a result of tool wear or equip-
ment depreciation. Moreover, a process parameter may
change due to multiple-step changes. A change in sev-
eral parameters at different times or a change in one
parameter at different times can be the results of this
type of change. In monotonic changes, however, the
only assumption is that the change type can be de-
scribed as belonging to a family of monotonic change

types.
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Samuel and Pignatiello (2001) derived the maximum
likelihood estimator (MLE) of a step-change point for bi-
nomial processes. Evaluating the estimator for different
shift sizes, they concluded that it provides accurate re-
sults. In the case of a step change, Perry and Pignatiello
(2005) compared the MLE of the process fraction non-
conforming with the built-in change-point estimators of
the binomial CUSUM and EWMA control charts de-
scribed by Page (1954) and Nishina (1992), respectively.
They showed that the MLE provides better results than
the other two estimators do. Perry et al. (2007) derived
the MLE of a monotonic change point of the process
fraction non-conforming and compared it with the MLE
of a step-change point derived by Samuel and Pignatiello
(2001). They concluded that using their proposed esti-
mator is better when the type of change is only known
to be monotonic. Zandi et al. (2011) proposed an MLE
to estimate the time of a linear-trend change in the
process fraction non-conforming and compared it to the
MLEs derived for step and monotonic change distur-
bances proposed by Samuel and Pignatiello (2001) and
Perry et al. (2007), respectively.

To the best of the authors' knowledge, there are only
two research works available in the literature to estimate
the change point of multi-attribute processes. In the first
work, Niaki and Khedmati (2012a) proposed an MLE of a
step-change point for multivariate Poisson processes and
evaluated its performances using some numerical experi-
ments. They showed that their estimator leads into good
results for all process dimensions. In the second work,
Niaki and Khedmati (2012b) derived an MLE of a linear-
trend change in multivariate Poisson processes and com-
pared its performances with those of an MLE of a step
change for both step-change and linear-trend distur-
bances. However, there is no research work concerning
the change-point estimation of multivariate binomial pro-
cesses, whereas in many situations, monitoring processes
containing several quality characteristics of attribute type,
each following a binomial distribution, is a need. There-
fore, in this paper, we first propose a new multi-attribute
control chart to monitor multi-attribute processes, and
then, we derive the MLEs of both a step-change and
a linear-trend disturbance in the process fraction non-
conforming. Following a signal from the proposed multi-
attribute control chart, the MLEs are applied to estimate
the step-change and linear-trend disturbance points.

The rest of this paper is organized as follows: In the next
section, a new multi-attribute control chart is proposed
based on a transformation method to monitor multi-
attribute processes. In the ‘Multivariate binomial process
modeling and MLE derivation” section, the model of the
process behavior is described and the MLEs of a step-
change and a linear-trend disturbance are derived. The
performances of the two change-point estimators are
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evaluated and are compared in the ‘Results and discussion’
section, in the presence of both step-change and linear-
trend disturbances. Finally, the paper is concluded in the
‘Conclusions’ section.

The proposed multi-attribute control chart

As a generalization of Shewhart-type control charts, most
of multivariate control charts have been constructed based
upon the multivariate normal distribution. Despite the ex-
istence of some skewness in multi-attribute distributions,
the normal distribution is symmetric with zero skew-
ness. As a result, using normal-based control charts with
zero skewness for multi-attribute processes causes some
problems. The main problem is the skewness of these
processes in which inattention leads to poor results in
distinguishing the in- and out-of-control conditions. To
overcome this problem, the root and the power transform-
ation methods proposed by Niaki and Abbasi (2007) and
Abbasi et al. (2011), respectively, are employed to al-
most eliminate the skewness. The following subsection is
devoted to describe the method.

The root/power transformation methods

To eliminate the skewness involved in multi-attribute pro-
cesses, Niaki and Abbasi (2007) first proposed the root
transformation method, in which the skewness of the
transformed attributes becomes almost zero. In this trans-
formation, using the bisection method, a power within
(0,1) is found for each attribute in the vector X =[X,
Xy, .. .,Xq]' to transform it into a new attribute vector

Y=X" = [X{‘ S X ,X,;q], such that the transformed at-
tribute vector contains attributes of almost zero skewness.
However, this transformation method is only applicable
for right-skewed distributions. Hence, in another work,
Abbasi et al. (2011) extended the root transformation
method and proposed a power transformation technique
for left-skewed distributions as well. In the power trans-
formation method, one first subtracts the observations
from their minimum value and then finds a power within
(0,1) for each attribute in the vector [X - Min(X)] = [(X; -

Min(X,)), (X5 - Min(Xy)), . . ., (X, - Min(X,))]  such that

the transformed attribute vector Y = [X — Min(X)]"/" =

[ = Min(x))/", . (X, = Min(X,))"""] contains

attributes of almost zero skewness.

Applying the above transformation methods, an at-
tribute vector with zero skewness is obtained. Conse-
quently, one may assume that the transformed vector
approximately follows a multivariate normal distribution,
and hence, the use of normal-based control charts is
recommended. Moreover, to make sure the transform-
ation works well, the Jarque and Bera (1987) test statistic
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given in Equation 1 is used to test the normality of the
transformed attributes:

JB = M(5}/6 -+ 53/24). )

where M is the number of observations, b, is the sample
skewness, and b, is the sample kurtosis. This statistic fol-
lows an asymptotic chi-square distribution with 2 degrees
of freedom and is used to test the null hypothesis that the
transformed attributes are from normal distributions.

Applying this transformation method, attributes with
almost zero skewness that approximately follow multi-
variate normal distribution are obtained. Therefore, the
well-known Hotelling 7> control chart can be used to mo-
nitor the multi-attribute processes.

The multi-attribute T? control chart based on transformed
data
The Hotelling T°control chart was first introduced by
Hotelling (1947) to come up with the correlation be-
tween the quality characteristics in monitoring multi-
variate processes. This control chart has been designed
based on multivariate normal distribution. We use this
control chart to monitor transformed attribute vector
with approximately multivariate normal distribution.

Consider the observation vector Xj=/[Xj1, Xj, ...
X,-jq]' coming from a multivariate binomial distribution
with in-control parameter vector [N, Po] = [(n1, 113, . . .,
nq)', pup - pq)v] and in-control correlation matrix X,
in which X, represents the jth observation in the ith
subgroup of the kth quality characteristic. We apply the
root/power transformation method in order to trans-
form the vector Xy to Yy=[Yj1,Yj, ... l’qu]' that
approximately follows a multivariate normal distribution
with the mean vector py and the covariance matrix
Covy.

For the transformed vector, the sample mean vector
for each subgroup of size # is obtained using

- 1 ,
Yi:;;}’ij;z:I,Z,...,m. (2)

Then, for each subgroup the 77 statistic is calculated
by

1

12 = n(%-Y) Covy! (%-¥), 3)

— - - _ ' m n m n m n '
inwhichy = [7i.%.....7%,] =% [sz,hzznﬂ,m,zzx,q

i=1 j=1 i=1 j=1 i=1 j=1
is the estimated in-control mean vector of the process.
The statistic in Equation 3 is plotted on a 7> control
chart with an upper control limit (UCL) of
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q(m—1)(n—1)
mn—m—gq-+1

UCL = a:qmn—m—q+1; (4>

where for large number of subgroups may be estimated
by Xi;q (see Lowry and Montgomery (1995) for more
details). An out-of-control signal is detected when the
T? statistic exceeds UCL.

Multivariate binomial process modeling and MLE
derivation
In monitoring processes using the 7> control chart, as
long as the plotted points fall below UCL, the process is
assumed in-control. However, when one or more points
exceed UCL, the chart signals a change in the parameters
of the process and the process is assumed out-of-control.
The most important problem is that the chart signals after
a considerable amount of time after the change
point. Therefore, knowing when the change had
actually occurred would substantially improve the
diagnostic procedure.

The MLEs of the change points, designed for step
changes and linear-trend disturbances are derived in the
next two subsections.

The proposed change-point estimator for a step-change
disturbance

In this section, we assume that the real change type
presented in a multivariate binomial process is a step
change and derive the MLE of a change point in the
process fraction non-conforming. We also assume that
the process is initially in-control with known parameter
vector [N, Py]. Following an unknown point in time 75c
(the step-change point), the process moves to an out-of-
control state with parameter vector [N, P}], where P; is
given in Equation 5 and 8 is the vector of unknown
magnitude of the change. An element § > 1 in § denotes
an increase in the corresponding process fraction non-
conforming, while § < 1 denotes an improvement:

P, = &P, (5)

The control chart genuinely (not false alarm) signals
the above change with a delay at time S, when the 77
statistic exceeds the UCL of the 7 control chart.

Accordingly, the subgroup averages Y1, Y, ..., Y, come

from the in-control process, while the subgroup averages

Yot s Yeget2 o) Ys come from the out-of-control
process. As a result, the MLE of the proposed change-point
estimator, denoted by 7gc, is obtained as
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t /
%Ln|Cov0,y| + g Z (Yi*po‘y) Covgj{
1

A . - S—t A
T =arg Min (X <Y1—L(0,Y> +TLH|C0V1,Y| )

0<t<S
S , .
+§ Z (Yi_Fl.y> Covy <Yi_F1.Y)
i=tr1
(6)
S r—
where i,y = Z Y;/S—15c and Coviy = .
i=15c+1

S )
Z (l_fi—ﬁl_y) (Yi—ﬁl_y) (see Appendix 1 for details).
i=r5c+1
The MLE of the change point 7gc is the value for 7, that
minimizes Equation 6.

The proposed change-point estimator for a linear-trend
disturbance

Assuming again that the process is initially in-control
with known parameter vector [N, P,], in a linear-trend
disturbance when the T? statistic exceeds the UCL of
the T2 control chart, it is assumed that a change has oc-
curred at an unknown point in time 7y (the change
point under linear trend). As a result the parameter vec-
tor of the out-of-control process becomes [N, P,], where
P, at different points in time takes a value based on
Equation 7 and vector B contains the magnitude (or
slope) of the linear-trend disturbance:

P]i:P0+B(i—TLT) 3 (7)
i:TLT+1,TLT+2,....

Based on the above descriptions, the subgroup aver-
ages Yi,Y,....Y,

7+ come from the in-control process,
while the subgroup averages Y; i1 ,Yr 42 5---, Ys
come from an out-of-control process. As a result, the
MLE of the change point, 7ir, is the value of rir that

minimizes Equation 8 and is obtained as

¢ P , -
3 Ln|Cov0_y‘ + 2 ; (Yi —po‘y) Covoj{

— S—t
x (Yﬁ”‘”) T

Ln | CGVLY |

TLr = arg Min

S ’
0st=8 +g Z (Yi—ﬂo,y —PB(i - f)) C‘A’Vf,xl(
i=t+1
X (Yi*uo.y - é(l - t))
(8)

where

A S _ S 5

B= Z (i = 7ur) (Yi_llo‘Y)/ Z (i —7or)

i=tr+1 i=rr+1

and
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Coviy =o—— > (Yi—uo,y —Bli— TLT))
TILT
A

< (Yi-tox Bl — mur))

(see Appendix 2 for details).

In the next section, the performances of the proposed
change-point estimators are evaluated and are compared
using some simulation experiments. The MATLAB 7
software (Math Works, Inc., Natick, MA, USA) is uti-
lized to perform all the programming works of this
research.

Performance evaluation and comparison

Monte Carlo simulations are used to evaluate and to com-
pare the performances of the proposed change-point esti-
mators designed for step changes and linear-trend
disturbances, when the actual changes are of step changes
and linear-trend disturbances in the process fraction non-
conforming of a multivariate binomial process.

Change-point estimators applied to step-change
disturbances

The change point is simulated to occur at 7 = 100. Thus,
the first 100 subgroups are randomly generated from an
in-control multivariate binomial distribution with par-
ameter vector [N, Py, using the normal to anything
(NORTA) method (Cario and Nelson 1997; Niaki and
Abbasi 2008). The in-control subgroup averages exceed-
ing the UCL of the proposed control chart are false
alarms. Consequently, these subgroups are discarded
and are replaced with other in-control subgroups. This
is replicated until all of the in-control subgroups are
below UCL. Following subgroup 100, the parameter vec-
tor is changed based on a step-change disturbance given
in Equation 5 where the subgroups are randomly gener-
ated from an out-of-control process with parameter vec-
tor [N, P;]. The subgroup averages are plotted on the
proposed control chart until a signal is generated, and at
this time, the accuracy and the precision measures of
the change-point estimators are computed.

Simulation experiment 1

Consider a multivariate binomial process with two corre-
lated attributes, an in-control parameter vector [N, Py] =
[(20,30), (0.2,0.15)] and a correlation between the two at-
tributes of 0.25. For subgroups i = 1, 2,.. ., 100, independent
observations are first generated from the in-control process
using the NORTA method. After subgroup 100, observa-
tions are generated from an out-of-control process with
parameter vector [N, P,]. Obtaining a signal from the con-
trol chart, the change points are estimated using
Equations 6 and 8 for 1,000 simulation runs. Then, the av-
erages, the standard deviations, and the mean square errors
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(MSEs) of the estimates in addition to the expected time
when the control chart signals a change (E(7)) are calcu-
lated and are reported in Table 1. Table 1 also contains the
precision performances of the estimated change points,
in which P(|7 — 7| =0), P(|t —1]<1), P(|7 —1|<2),
P(|t — 1|<3), and P(|7 — 7|<4) are denoted by PO, P1, P2,
P3, and P4, respectively. The estimated probabilities in
parentheses correspond to Tgc.

Based on the results in Table 1, the change-point estima-
tor designed for step changes outperforms the one designed
for linear-trend disturbances in terms of both the accuracy
and the precision measures, when the true change type is a
step-change disturbance. In other words, for almost all of
the shift magnitudes, Tsc is considerably closer to the actual
change point than 7y r is. Furthermore, MSE(7sc) is
smaller than MSE(7 1) for all of the shift values.

Simulation experiment 2

Consider a multivariate binomial process with five corre-
lated attributes. The sample size and the process fraction
non-conforming of the process are [N, Po] = [(25, 25, 25,

25,25), (0.4,0.27,0.15,0.35,0.21)] with an in-control
correlation matrix of
1.00 0.15 0.21 0.12 0.35
0.15 1.00 0.41 0.18 0.24
o=| 021 041 1.00 0.26 0.14
0.12 0.18 026 1.00 0.32
035 024 0.14 032 1.00
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Using the NORTA method, the first 100 subgroups are
randomly generated from the in-control process. Follow-
ing subgroup 101, observations are generated from an
out-of-control process based on the step-change disturb-
ance given in Equation 5. The subgroup averages are
then plotted on the proposed control chart until a signal
is generated. Then, the averages, the standard deviations,
the mean square errors, and the precision performances
of the change-point estimates for 1,000 simulation runs
are reported in Tables 2 and 3 for § < 1 and § > 1, re-
spectively. Similar to Table 1, the precision performances
of 7sc in Tables 2 and 3 are shown in parentheses.

Again, the results in Tables 2 and 3 show that 7g¢ out-
performs 7y 1 for almost all shift magnitudes, since 7gc
is closer to the true change point than 71 is. Moreover,
MSE(7sc) is smaller than MSE(71r), and 7sc is more
precise than 7p7.

Based on the results obtained from the above two
simulation experiments, one can conclude that when the
real change type is a step-change disturbance, the
change-point estimator designed for step changes out-
performs the change-point estimator designed for linear-
trend disturbances for almost all of the shift magnitudes
and process dimensions.

Change-point estimators applied to linear-trend
disturbances

Assuming a linear-trend disturbance, in this section, the
performances of the two proposed change-point estimators
designed for step-change and linear-trend disturbances are

Table 1 Estimated change points and precision performances of two different MLEs in simulation experiment 1

8 E(T) E(tyr) E(tsc) MSE(Tir) MSE(Tsc) PO P1 P2 P3 P4
(070) 11514 9321 (1061) 9945 (4.87) 1586 240 0.100 (0410) 0254 (0675 0357 (0.785) 0430 (0.852) 0501 (0.897)
(080) 14358 8260 (24.54) 10068 (6.84) 904.5 473 0.039 (0.246)  0.101 (0.455) 0.157 (0.589) 8 (0.668) 0.236 (0.726)
(090) 21507 7555 (5083) 107.96 2627) 31786 7528 0010(0069) 0037 (0.187) 0068 (0271) 0.089 (0.324) 3 (0.376)
(11,00 20386 8338 (56.50) 11094 29.96) 34654 10164 0019 (0.086) 0053 (0.181) 0076 (0.263) 0.097 (0.337) 3 (0.389)
(120) 13963 8440 (23.72)  100.57 (7.69) 8054 594 0.044 (0212) 0.117 (0430) 0.176 (0.568) 9(0642) 0255 (0.713)
(150) 10374 9741 (599 9804 (7.00) 426 529 0.175 (0.374) 0502 (0.679) 0695 (0.823) 0.790 (0.874) 0.846 (0.909)
007) 11284 9476 (855  99.53 (3.90) 1006 154 0.094 (0.394) 0.264 (0.659) 0407 (0.806) 0496 (0.877) 0559 (0910)
(008) 14167 8363 (2349) 10032 (6.92) 819.1 479 0.043 (0256) 0.116 (0473) 0.167 (0.609) 0.207 (0.695) 0.254 (0.755)
(009) 20811 7695 (5336) 10672 (2666) 33755 7554 0014 (0073) 0046 (0213) 0073 (0.289) 0.098 (0.346) 4 (0.407)
(01.1) 19760 81.32(49.78) 10853 (2528) 28249 7111 0.027 (0.085) 0.059 (0.214)  0.085 (0.289) 6 (0.342) 4 (0.400)
(012) 13480 8673 (23.09) 10092 (6.79) 709.0 469 0037 (0.227) 0.123 (0439) 0.188 (0574) 0.239 (0.656) 0.298 (0.717)
(015) 10344 9802 (4.13) 9844 (543) 209 320 0.181 (0369) 0514 (0675 0755 (0.840) 0.834 (0.894) 0.883 (0.933)
(0707) 10788 9639 (6.16)  99.08 (4.45) 50.9 20.7 0.133 (0445) 0373 (0.711) 0523 (0.840) 0621 (0.900) 0.704 (0931)
(0808) 12699 8845 (1701)  99.75 (562) 4225 317 0.055 (0.340) 0.152 (0.580) 0232 (0.719) 0295 (0.789) 0351 (0.839)
(0909 19975 7163 (4321) 10398 (17.51) 26702 3223 0016(0.113) 0048 (0249) 0078 (0.336) 3 (0.390) 2 (0451)
(1.1,1.1) 17676 7802 (41.05 10380 (1874) 21664 3653 0022(0.117) 0060 (0251) 0088 (0.348) 6 (0.427) 0 (0.476)
(12,1.2) 12209 9083 (1592)  100.04 (7.64) 3372 583 0077 (0.254) 0.187 (0510) 0.264 (0.637) 0328 (0.721) 0374 (0.783)
(1515 10210 9760 (533)  97.26 (7.72) 341 67.1 0.158 (0.276) 0550 (0.596) 0.798 (0.796)  0.855 (0.851) 0.895 (0.884)

Experiment has a step-change disturbance; standard deviations are shown in parentheses.



Niaki and Khedmati Journal of Industrial Engineering International 2013, 9:3

http://www jiei-tsb.com/content/9/1/3

Page 6 of 11

Table 2 Estimated change points and precision performances of two different MLEs in simulation experiment 2

6 EN E(tr) E(tsc)  MSE(t1) MSE(¥sc) Po P1 P2 P3 P4
(0700000 10322 9718 (343)  97.39 (369) 198 0081 0238 0434 0639 0792
(0.150) (0.306) 0511 (0.668) (0.828)

(090000) 16133 8738 (3882) 106.32 16653 377.1 0013 0059 0.099 0.148 0.180
(1837) 0.163) 0331 (0.444) (0525) (0587)

007000) 10752 9742 (576)  99.13 (3.54) 399 0.081 0240 0423 0584 0698
0262) 0471) 0639) 0753) 0874)

(009000) 18900 93.83 (56.78) 112.29 32593 965.5 0.020 0050 0072 0.1071 0.123
(28.54) (0.125) (0.230) (0300) (0355) 0414)

(000700) 12158 9390 (1598) 101.50 (661)  292.5 0059 0.149 0.245 0340 0408
0278) (0466) 0601 (0.705) (0.784)

(000900 22512 10674 12697 5342.1 30280 0.008 0036 0062 0079 0.099
(7281 47.99) (0.052) 0.135) (0203) 0261) (0308)

000070) 10469 9729 (403) 9826 (333) 237 0.099 0274 0450 0640 0784
(0.220) 0410) (0.590) (0.748) (0.868)

(000090) 17299 8814 (43.42) 110,03 20238 600.8 0017 0053 0086 0114 0.141
(2237) (0.136) (0258) 0362) (0430) (0.485)

000007) 11298 9569 (932) 10031 (457) 1054 0.085 0229 0355 0456 0570
0311 (0530) (0664) 0.768) (0.844)

000009 20654 93.68 (5844) 11883 34512 21500 0014 0028 0.055 0.093 0.113
4239 (0.100) (0.200) 0279 (0340) 0392)

070707, 10165 9605432 9632 (3.98) 343 0026 0.110 0262 0487 0726
07,07) (0037) 0131 0310 (0548) 0752)
(090909, 14472 8820 (27.67) 104.20 904.5 1799 0031 0092 0.155 0211 0249
09,09 (12.74) 0232) (0430) (0528) (0608) (0669)

Experiment has a step-change disturbance when 6 < 1; standard deviations are shown in parentheses.

evaluated and are compared in multivariate binomial pro-
cesses with two and five correlated quality characteristics.

Considering the change point at 7 = 100, the first 100
subgroups are randomly generated from an in-control
multivariate binomial distribution with parameter vector
[N, Py], using the NORTA method. Following subgroup
100, the parameter vector is changed according to a
linear-trend disturbance given in Equation 7, and as a
result, subgroups are randomly generated from an out-
of-control process with parameter vector [N,P;]. The
subgroup averages are plotted on the proposed control
chart until a signal is generated. At this time, the accur-
acy and the precision measures of the change-point esti-
mators are computed.

Simulation experiment 3

Consider the process in simulation experiment 1. Using
the NORTA method, the first 100 subgroup averages are
generated from the in-control process. After subgroup
100, observations are generated from an out-of-control
process. Following a signal by the proposed control
chart, the change points are estimated using Equations 6
and 8 for 1,000 simulation runs. Then, the averages, the
standard deviations, the mean square errors, and the
precision performances of the change-point estimates in

addition to the expected time when the control chart
signals a change are summarized in Table 4.

The results in Table 4 show that when the real change
type is a linear-trend disturbance, the proposed MLE for
linear-trend disturbances outperforms the one designed
for step-change disturbances in terms of both the accur-
acy and the precision for almost all values of B. That is,
717 is closer to the true change point than 7 is.

Simulation experiment 4

Considering the process described in simulation experi-
ment 2, 100 subgroups are first randomly generated
from the in-control process. Then, the parameter vector
is changed based on a linear-trend disturbance given in
Equation 7. Consequently, observations are generated
from an out-of-control process. Following a signal from
the control chart, the averages, the standard deviations,
the mean square errors, and the precision performances
of the change-point estimates in 1,000 simulation runs
are reported in Table 5.

Based on the results in Table 5, in the presence of a
linear-trend disturbance, 711 outperforms 7Tgc in terms of
both the accuracy and the precision measures. In other
words, in addition to the better precision performances of
7L, the estimated change points by 77 are closer to the
real change point than 7gc for almost all values of B.
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Table 3 Estimated change points and precision performances of two different MLEs in simulation experiment 2

) E() E(tir) E(isc)  MSE(f1) MSE(isc) Po P1 P2 P3 P4
(1.1,0000) 16149 8815 (38.26) 108.03 16029 509.5 0028 0067 0111 0142 0176 (0532)
21.11) (0.160) (0304) 0412) (0468)
(1200000 11217 9708(9.28) 10055 (499 947 252 0073 0219 0369 0487 0588 (0821)
(0.248) (0475) 0615) (0.738)
(1500000 10113 9580 (309)  96.85 (2.99) 27.1 26.1 0.006 0034 0.193 0424 0685 (0.699)
(0.008) (0.044) (0.203) (0438)
0110000 18857 9161 (53.06) 11546 28837 14013 0012 0051 0.082 0103 0.124(0428)
(3411 (0.099) 0221) (0302) (0374
0120000 12657 9347 (1943) 102.87 4198 1228 0041 0.129 0.195 0275 0347 (0716)
1071 (0.195) (0393) 0522) (0631)
0150000 10187 9638 (357) 9662 (251) 259 17.7 0034 0.154 0329 0550 0759 (0.767)
0061 0.172) (0326) (0.563)
0011000 21358 11239 12951 5369.7 33899 0010 0031 0056 0082 0098 (0.269)
(72.25) (5021) (0.049) 0.119) (0.166) (0.225)
0012000 15077 9223 (36.35) 107.34 1380.8 3427 0027 0083 0.134 0179 0218 (0559)
(701 0.142) (0293) (0393) (0480)
(00,1500) 10568 9768 (442) 9873 (3.55) 25.1 142 0.119 0.289 0468 0640 0.7€60
0202) (0413) 0577) (0.730) (0.846)
0001100 17052 8824 (44.05) 109.18 20766 490.1 0017 0050 0087 0127 0.159 (0496)
(20.15) 0132 (0.264) (0364) (0445)
0001200 11624 9591 (1217) 10142 (551) 1648 324 0070 0202 0304 0419 0514 (0797)
(0.287) (0492) (0626) (0723)
0001500 10129 9608 (259 9604 (331) 22,1 266 0012 0.065 0232 0461 0705 (0.729)
(0.016) 0.071) (0.240) (0475)
00001.1) 20323 10056 11971 39227 1750.2 0017 0037 0.063 0084  0.100 (0350)
(62.66) (36.92) 0075) 0.174) (0.248) (0308
000012 13676 9065 (2551) 104.22 7374 1743 0029 0097 0.152 0218 0272 (0671)
(1251 (0.208) (0.398) (0.524) (0609
(000015 10288 9710 (309  97.19 (3.96) 182 236 0.095 0244 0422 0631 0810 (0.823)
0.134) (0302) 0512 (0674)
(100,00, 13907 92.24 (27.44) 10447 8127 161.1 0048 0.125 0.194 0252 0302 (0664)
1.1,10) (11.88) 0202) (0367) (0507) (0.593)
(121212, 10603 97.25(539) 9881 (3.54) 366 14.1 0092 0272 0438 0605 0743 (0844)
1212) (0243) (0.448) (0.595) (0.728)
(151515 10101 9610 (242) 9631 (1.79) 211 168 0.005 0040 0212 0430 0713 (0757)
1515) (0.008) (0.040) (0237) (0.478)

Experiment has a step-change disturbance when 6 > 1; standard deviations are shown in parentheses.

Moreover, MSE(7 1) is smaller than MSE(7sc) in most of
the cases.

Finally, according to the results obtained from simula-
tion experiments 3 and 4, one can conclude that when
the real change type is a linear-trend disturbance, the
change-point estimator designed for linear trend outper-
forms the change-point estimator designed for step-
change disturbances, regardless of the shift magnitudes
and the process dimension.

Conclusions

When a control chart generates a signal due to an
out-of-control condition, process engineers initiate a
search to identify and to eliminate the root causes of
process variation. However, the signaling time is different

from the first time that a change manifests itself into a
process (change point), and in most cases, there is a con-
siderable time lag between them. Therefore, knowing the
exact time of a change in a process would simplify the
search procedure to improve the quality of the process by
eliminating the causes of process variation.

In this paper, a new control chart was initially pro-
posed based on a transformation method to monitor
multi-attribute processes. The transformation method
was used to eliminate the skewness of multivariate bino-
mial processes. Then, the MLE of change points
designed for both step changes and linear-trend distur-
bances were derived. Using Monte Carlo simulation ex-
periments involving multivariate binomial processes
with two and five attributes, the performances of the
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Table 4 Estimated change points and precision performances of two different MLEs in simulation experiment 3

B EM E(tr) E(tsc)  MSE(ii7) MSE(isc) PO P1 P2 P3 P4
(0001,0) 14566 10845 (1997) 11961 (1511) 47024 61285 0023 (0011) 0075 (0.032) 0.126 (0059) 0.168 (0.084) 0200 (0.102)
(00020) 12897 10507 (1286) 111.78 (941) 19087 22717 0038 (0.017) 0.100 (0.051) 0.168 (0.098) 0.229 (0.136) 0.296 (0.165)
(00030) 12188 10361 (10.19) 10836 (864)  116.80 14436 0048 (0028) 0.125(0.077) 0215 (0.119) 0295 (0.159) 0.373 (0.217)
(00050) 11537 10259 (7.83) 10550 (701)  67.93 7927 0060 (0.033) 0.174 (0.099) 0288 (0.164) 0.394 (0.236) 0470 (0315)
(001,00 10942 10129 (564) 10280 (496) 3345 3247 0093 (0072) 0277 (0.179) 0440 (0309) 0.544 (0.476) 0660 (0.625)
(0050) 10291 9890 (466) 9883 (5.24) 22.89 2884 0422 (0404) 3(0.775) 0896 (0.875) 0933 (0.902) 0.950 (0.924)
(00.001) 13737 10601 (1652) 11531 (1236) 30891 38706 0027 (0.014) 0093 (0.051) 0.144 (0072) 0.190 (0.099) 0222 (0.123)
(00002) 12321 10347 (1122) 10904 (878) 13792 15876 0042 (0.028) 0.120 (0.067) 0201 (0.107) 0280 (0.164) 0.352 (0.213)
(00003) 11782 10333 (829) 10679 (7.73) 7976 10581 0056 (0031) 0.163 (0.078) 0.254 (0.124) 0340 (0.188) 0421 (0.262)
(00.005) 11217 10215 (7.12) 10443 (576)  55.23 5286 0076 (0.041) 0.198 (0.126) 0295 (0214) 0399 (0.301) 0528 (0.424)
0001) 10729 10071 (518) 10193 (379) 2737 1809  0.134 (0084) 0305 (0.263) 0497 (0457) 0666 (0650) 0.792 (0.801)
(0005 10229 9880 (352) 9848 (4.59) 13.82 2336 0400 (0416) 0(0.764) 0908 (0.866) 0.940 (0.905) 0.957 (0.928)

(0001,0001) 13496 10596 (1485 11461 (1140) 25586 34334 0026 (0016) 0082 (0.046) 0.144 (0081) 0.191 (0.111) 0242 (0.132)
(0002,0002) 12192 103.10(11.79) 10824 (894) 14865 14784 0050 (0.024) 1(0060) 0212 (0.104) 0.298 (0.158) 0367 (0.212)
(0003,0003) 11638 10274 (933) 10618 (7.39) 9453 9286 0040 (0.28) 1(0080) 0.229 (0.149) 0306 (0.224) 0398 (0.278)
(00050005 111.50 101.52(7.13) 10378 (527)  53.10 4209 0067 (0051) 0230 (0.144) 0350 (0.256) 0452 (0.366) 0.552 (0.471)
(001,001) 10703 10059 (479) 10140 (554) 2331 3267 0112(0094) 0334 (0277) 0548 (0492) 0713 (0.692) 0.824 (0.821)
(005005 10218 9840 (367)  97.98 (5.70) 1599 3651 0372(0380) 0762 (0.737) 0876 (0.839) 0904 (0.867) 0933 (0.892)

Experiment has a linear-trend disturbance; standard deviations are shown in parentheses.

change-point estimators were evaluated by comparing
them in the presence of real step-change and real linear-
trend disturbances. The results showed that the change-
point estimator designed for step changes outperforms the
change-point estimator designed for linear-trend distur-
bances when the true change type is a step-change distur-
bance, regardless of the shift magnitudes and process
dimensions. In contrast, the change-point estimator
designed for linear-trend disturbances outperforms the
change-point estimator designed for step changes when
the true change type is a linear-trend disturbance, regard-
less of the shift magnitudes and process dimensions.

Appendix
Appendix 1
Denoting the MLE of the change-point estimator designed
for step changes by 7gc, the likelihood function for the

transformed vector Yj; is (Johnson and Wichern 2007)

7sc 1

L(7sc, uyy:Coviy|Y) |1/2

(27’[)q/2|C0V01y
s 1

X
i=15c+1 (2”)q/2 |COV1,Y ’ 12

where oy, M1y, Covyy, and Covyy are in-control and
out-of-control mean vector and covariance matrix of
vector Y, respectively. The logarithm of the likelihood
function when the constant term is shown by Kis

Ln (L (z'gc, ey, COVLY\Y)> — K- —Ln‘CovOY’

B ;jzi: {(Yﬁuo.y)/c‘“’& <Yruo,y)}
(10)

S —
f%LnKovl,ﬂ

NIS

3 [ ot ()]

*”/2(\_1*"0.\{)/(:0"6.\1{ (Yi*Fo.Y)

©)

*”/2(Yi*P1.Y)IC°V;\1{ (Yi*llly) ,
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Table 5 Estimated change points and precision performances of two different MLEs in simulation experiment 4

Page 9 of 11

B EM  E@Rw) E(tsc) MSE(fi1) MSE(isc) Po P1 P2 P3 P4

(0.001,000,) 15189 11467 127.18 763.64 1089.2 0011 0048 009 0.133 0177
(2362) (1873) 0014) (0.036) (0.057) (0070) (0.083)

(0.003,000,) 12585 10814 113.12 21347 2473 0037 0.100 0.164 0214 0267
(12.14) 868) 0016) (0.040) (0.065) 0.107) (0.148)

(0.005,0,00,) 11816 106.15 109.08 98.85 1204 0037 0.114 0.187 0.248 0319
(7.81) 6.15) 0017) 0.052) (0.100) 0.142) 0.182)

(001,000,0) 11071 10283 104.14 3126 317 0054 0.171 0290 0413 0534
4.82) (382) (0.036) (0.120) 0221) (0347) (0.486)

(00.001,00,0) 14688 114.19 12401 67851 8592 0019 0.049 0.100 0.145 0.185
(21.85) (1681) (0.009) 0.034) (0.056) 0.077) .10

(00.003,00,0) 12395 10748 11179 16591 207.7 0034 0.096 0172 0234 0295
(1049) 830 0018) 0051 (0.083) 0.122) (0.155)

(00.005,00,0) 11654 10502 108.11 81.71 986 0041 0.130 0221 0296 0363
(7.52) (574) 0032) (0.081) (0.120) 0.176) 0229

(00.01,00,0) 10987 10251 103.54 2290 365 0068 0211 0352 0485 0621
4.09) (4.89) (0.047) (0.143) 0270) (0407) (0558)

(0,0,0.001,0,0) 14168 11281 12118 547,65 6727 0018 0062 0.099 0.146 0.205
(19.59) (14.98) 0014) (0.030) (0.059) (0.085) ©0.114)

(00,0003,0,0) 12006 10696 11008 14905 1578 0041 0112 0.160 0225 0286
(1003) (7.49) 0016) (0.047) (0.087) (0.130) 0.174)

(0,0,0.005,0,0) 11369 10431 106.10 60.59 65.1 0041 0.133 0227 0308 039
(6.48) (528) (0.037) (0.084) (0.146) (0.230) 0319

(0,0,0.01,0,0) 10842 10156 10238 2239 179 0.101 0282 0457 0642 0777
447) (349) (0.084) 0243) (0429) 0616) 0751

(0,0,0,0.001,0) 15212 11354 125.78 72613 1001.9 0015 0.066 0.106 0.158 0.189
(2331) (1838) 0014) 0.042) (0058) (0.080) 0.092)

(00,0,0.003,0) 12459 10736 112.24 18097 2240 0036 0.096 0.156 0219 0278
(11.27) 861 0017) (0052) (0.086) 0.124) (0.158)

(0,0,0,0.005,0) 11759 10596 108.94 9567 1196 0039 0.109 0.189 0.249 0314
(7.76) 630) (00.24) 0071 11 (0.153) (0200)

(00,0,001,0) 11068 10301 104.22 3272 345 0.065 0.174 0279 0412 0547
4.87) 4.09) (0.040) 0119 (0.200) 0317) (0476)

(00,0,00001) 14557 11413 123.88 67877 8208 0032 0073 0.106 0.152 0.197
(21.90) (1584) (0.009) (0.030) (0.056) 0072) (0.099)

(00,0,00.003) 12204 107.10 11142 16238 186.30 0032 0083 0.144 0213 0269
(1058) (748) 0013) (0.034) 0.075) 0.112) 0.150)

(0,0,0,0,0.005) 11536 105.18 107.15 70.77 84.21 0038 0.131 0231 0302 0366
663) (537) (0.021) (0.079) 0.137) (0.192) (0.241)

(00,0,0001) 10915 10228 103.13 2076 19.48 0.060 0237 0387 0551 0705
(3.95) 3612 (0.059) (0.200) (0340) (0501) 0637)

(0.001,0.001, 13681 11099 11866 395.10 504.68 0020 0082 0.130 0.173 0212
0.001,0.001,0001) (1557) (1252) 0015) (0.039) (0062) (0.080) (0.105)
(0.003,0.003, 11734 10587 10865 9257 109.36 0050 0.139 0.203 0273 0333
0.003,0.003,0.003) (7.63) (5.88) 0015) (0.058) (0.098) (0.148) 0.198)

(0.005,0.005, 11191 10397 105.09 4850 4736 0.041 0132 0236 0345 0441
0.005,0.005,0.005) 572 “63) 0031 (0.100) 0.192) (0.269) 0378)
(001,001,001,001,001) 10745  101.19 101.85 927 968 0.106 0346 0570 0765 0905
(281 @251 0.101) 0318) (0558) (0.750) 0877)

Experiment has a linear-trend disturbance; standard deviations are shown in parentheses.
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There are three unknown parameters (75, Hi,y, and
Covyy) in Equation 10 that should be estimated. In
order to find 7gc, one must first estimate py,y and Covyy
for all possible values of the change point. To do this, the
MLE of the out-of-control mean vector and covariance
matrix, denoted by fi; y and Cov,y, respectively, are first

derived as
s
Yoy
ﬁl,Y = —i;rs_c+rlsc ) (11)
Covyy = “ S (Yi*ﬁn) (Yi*ﬁn)- (12)
S —15c e '

Then, the estimated unknown parameters in Equations 11
and 12 for all the potential values of 7, are obtained and
are substituted in Equation 13 to find the MLE of the
change point:

t e [ ! =
ELH‘COV&Y} +3 > (‘G*Fo,y) Covoy (Yi*Fo.y)
fsc = arg Min s =1

R +

s .
—t A n v A P N
5 L“‘C(’VLY‘ +§ E (Yi*lll,y) Co"l;{(Yi*lll.Y)
i=t+1

(13)

Appendix 2

Denoting the MLE of the change-point estimator
designed for linear-trend disturbances by 7ir, the likeli-
hood function of the transformed vector Yj; is

L (TLT7 Wy, Coviy|Y)

7] — —
q 1 e*”/z(Yi*I-‘o.Y)/Co"ﬁ'(Yi*l‘oy)

= (27'[)q/2{C0V0yy|1/2

s 1
|1/2e

% *”/Z(Yi*llox’I;(i*TLT)),COV;{' (Yi’l‘oy*ﬁ(i*n-'f)) ,
i (2m)1/? |Coviy

(14)

where po,y and Covgy are the in-control mean vector
and covariance matrix, and p;y and Cov;y are the
out-of-control mean-vector and covariance matrix of vector
Y, respectively. As a result, the logarithm of the likelihood
function in which the constant term is denoted by K is

Ln (L(TLT, Wiy Covlly‘Y)) =K — %Ln|Cov0,y|

TLT

- gz [(Yiflv‘o,y) /Cov(;;( (ﬁ*FO.y)] - wh‘movu{{
=1

- g y {(Yi*llo,y -BGi— TLT)>,C0V1]1( (Yifuovy —B(i— TLT))}.

=t r+1

(15)

There are three unknown parameters 711, B, and Covyy
in Equation 15. Again, we first calculate the MLEs of the
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unknown parameters in Equations 16 and 17 for all of the
possible values of the change point:

> G-a) (F-—toy)

/[\5: i=ry7+1 . . (16)
Z (l — TLT)2
i=tr+1
S /
Covyy = — Z (Yi—llo_y —Bli— TLT)) (17)
LT i—rr+1

x (‘?i—llo,y - é(l - TLT))-

Then, the estimated parameters [AS and Covyy are
substituted in Equation 18 in order to find the MLE of
the change point:

¢ HN (o "cav-L (T
3 Ln|C0V0‘y{ + 2 Z (Yl *Fo,y) COVO;{ (Yl 7“0,Y>

i=1
S—t
+

Ln|C6v1_y|

s ,
+g Z (Yi_FO.Y —-Bli- f)) Covyy

i=t+1

% (Yi-toy — Bl - 1))

Tyt = arg Min
gOStSS

(18)
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