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Identifying the change time of multivariate
binomial processes for step changes and drifts
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Abstract

In this paper, a new control chart to monitor multi-binomial processes is first proposed based on a transformation
method. Then, the maximum likelihood estimators of change points designed for both step changes and linear-
trend disturbances are derived. At the end, the performances of the proposed change-point estimators are
evaluated and are compared using some Monte Carlo simulation experiments, considering that the real change
type presented in a process are of either a step change or a linear-trend disturbance. According to the results
obtained, the change-point estimator designed for step changes outperforms the change-point estimator designed
for linear-trend disturbances, when the real change type is a step change. In contrast, the change-point estimator
designed for linear-trend disturbances outperforms the change-point estimator designed for step changes,
when the real change type is a linear-trend disturbance.

Keywords: Multi-binomial processes, Maximum likelihood estimator, Multi-attribute processes, Step change,
Linear-trend disturbance, Root/power transformation
Background
Enabling process engineers and practitioners to monitor
the state of processes by distinguishing between com-
mon and special causes of variation, control charts have
been one of the most widely used statistical process con-
trol tools in industries. When a control chart generates
a signal due to an out-of-control state of a process,
process engineers initiate a search to identify the root
causes of process variation. However, the signaling time
is different from the first time that a change manifests it-
self into the process (change point), and in most ca-
ses there exists a considerable time lag between them.
Therefore, knowing the exact time of the change would
simplify the search for root cause identification and cor-
rective action implementation in order to improve the
quality of processes.
A binomial distribution with parameters n and p is

used to model the number of non-conforming items in a
sequence of n trials for an attribute quality characte-
ristic, in which p denotes the process fraction non-
conforming. In the case of multi-attribute processes, the
multivariate binomial distribution with parameters n and
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pk (k = 1, 2,. . ., q) can be used to model the number of
non-conforming items in a sequence of n trials for each
attribute quality characteristic, in which pk denotes the
process fraction non-conforming of the kth quality
characteristic. The problem of estimating the time of a
change in a univariate binomial distribution for differ-
ent change types of step change, linear-trend disturb-
ance (drift), multiple-step changes, monotonic change,
and other change types defined as a combination of the
above has been addressed in the literature. In a step-
change disturbance, the parameter of the process shifts
to an out-of-control level and remains in that level until
corrective measures are taken. Although a step change
can occur because of tool breakage, the parameter of a
process may gradually drift. In other words, linear-trend
disturbances can occur as a result of tool wear or equip-
ment depreciation. Moreover, a process parameter may
change due to multiple-step changes. A change in sev-
eral parameters at different times or a change in one
parameter at different times can be the results of this
type of change. In monotonic changes, however, the
only assumption is that the change type can be de-
scribed as belonging to a family of monotonic change
types.
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Samuel and Pignatiello (2001) derived the maximum
likelihood estimator (MLE) of a step-change point for bi-
nomial processes. Evaluating the estimator for different
shift sizes, they concluded that it provides accurate re-
sults. In the case of a step change, Perry and Pignatiello
(2005) compared the MLE of the process fraction non-
conforming with the built-in change-point estimators of
the binomial CUSUM and EWMA control charts de-
scribed by Page (1954) and Nishina (1992), respectively.
They showed that the MLE provides better results than
the other two estimators do. Perry et al. (2007) derived
the MLE of a monotonic change point of the process
fraction non-conforming and compared it with the MLE
of a step-change point derived by Samuel and Pignatiello
(2001). They concluded that using their proposed esti-
mator is better when the type of change is only known
to be monotonic. Zandi et al. (2011) proposed an MLE
to estimate the time of a linear-trend change in the
process fraction non-conforming and compared it to the
MLEs derived for step and monotonic change distur-
bances proposed by Samuel and Pignatiello (2001) and
Perry et al. (2007), respectively.
To the best of the authors' knowledge, there are only

two research works available in the literature to estimate
the change point of multi-attribute processes. In the first
work, Niaki and Khedmati (2012a) proposed an MLE of a
step-change point for multivariate Poisson processes and
evaluated its performances using some numerical experi-
ments. They showed that their estimator leads into good
results for all process dimensions. In the second work,
Niaki and Khedmati (2012b) derived an MLE of a linear-
trend change in multivariate Poisson processes and com-
pared its performances with those of an MLE of a step
change for both step-change and linear-trend distur-
bances. However, there is no research work concerning
the change-point estimation of multivariate binomial pro-
cesses, whereas in many situations, monitoring processes
containing several quality characteristics of attribute type,
each following a binomial distribution, is a need. There-
fore, in this paper, we first propose a new multi-attribute
control chart to monitor multi-attribute processes, and
then, we derive the MLEs of both a step-change and
a linear-trend disturbance in the process fraction non-
conforming. Following a signal from the proposed multi-
attribute control chart, the MLEs are applied to estimate
the step-change and linear-trend disturbance points.
The rest of this paper is organized as follows: In the next

section, a new multi-attribute control chart is proposed
based on a transformation method to monitor multi-
attribute processes. In the ‘Multivariate binomial process
modeling and MLE derivation’ section, the model of the
process behavior is described and the MLEs of a step-
change and a linear-trend disturbance are derived. The
performances of the two change-point estimators are
evaluated and are compared in the ‘Results and discussion’
section, in the presence of both step-change and linear-
trend disturbances. Finally, the paper is concluded in the
‘Conclusions’ section.
The proposed multi-attribute control chart
As a generalization of Shewhart-type control charts, most
of multivariate control charts have been constructed based
upon the multivariate normal distribution. Despite the ex-
istence of some skewness in multi-attribute distributions,
the normal distribution is symmetric with zero skew-
ness. As a result, using normal-based control charts with
zero skewness for multi-attribute processes causes some
problems. The main problem is the skewness of these
processes in which inattention leads to poor results in
distinguishing the in- and out-of-control conditions. To
overcome this problem, the root and the power transform-
ation methods proposed by Niaki and Abbasi (2007) and
Abbasi et al. (2011), respectively, are employed to al-
most eliminate the skewness. The following subsection is
devoted to describe the method.
The root/power transformation methods
To eliminate the skewness involved in multi-attribute pro-
cesses, Niaki and Abbasi (2007) first proposed the root
transformation method, in which the skewness of the
transformed attributes becomes almost zero. In this trans-
formation, using the bisection method, a power within
(0,1) is found for each attribute in the vector X = [X1,
X2, . . ., Xq]

' to transform it into a new attribute vector

Y¼Xr ¼ Xr1
1 ;X

r2
2 ; . . . ;X

rq
q

� �0
such that the transformed at-

tribute vector contains attributes of almost zero skewness.
However, this transformation method is only applicable
for right-skewed distributions. Hence, in another work,
Abbasi et al. (2011) extended the root transformation
method and proposed a power transformation technique
for left-skewed distributions as well. In the power trans-
formation method, one first subtracts the observations
from their minimum value and then finds a power within
(0,1) for each attribute in the vector [X −Min(X)] = [(X1 −
Min(X1)), (X2 −Min(X2)), . . ., (Xq −Min(Xq))]

' such that

the transformed attribute vector Y ¼ X�Min Xð Þ½ �1=r ¼

X1 �Min X1ð Þð Þ1=r1 ; . . . ; Xq �Min Xq
� �� �1=rqh i0

contains

attributes of almost zero skewness.
Applying the above transformation methods, an at-

tribute vector with zero skewness is obtained. Conse-
quently, one may assume that the transformed vector
approximately follows a multivariate normal distribution,
and hence, the use of normal-based control charts is
recommended. Moreover, to make sure the transform-
ation works well, the Jarque and Bera (1987) test statistic
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given in Equation 1 is used to test the normality of the
transformed attributes:

JB ¼ M b21=6þ b22=24
� �

; ð1Þ

where M is the number of observations, b1 is the sample
skewness, and b2 is the sample kurtosis. This statistic fol-
lows an asymptotic chi-square distribution with 2 degrees
of freedom and is used to test the null hypothesis that the
transformed attributes are from normal distributions.
Applying this transformation method, attributes with

almost zero skewness that approximately follow multi-
variate normal distribution are obtained. Therefore, the
well-known Hotelling T2 control chart can be used to mo-
nitor the multi-attribute processes.

The multi-attribute T2 control chart based on transformed
data
The Hotelling T2control chart was first introduced by
Hotelling (1947) to come up with the correlation be-
tween the quality characteristics in monitoring multi-
variate processes. This control chart has been designed
based on multivariate normal distribution. We use this
control chart to monitor transformed attribute vector
with approximately multivariate normal distribution.
Consider the observation vector Xij = [Xij1, Xij2, . . .,

Xijq]
' coming from a multivariate binomial distribution

with in-control parameter vector [N', P0
' ] = [(n1, n2, . . .,

nq)
', (p1, p2, . . ., pq)

'] and in-control correlation matrix Σ0,
in which Xijk represents the jth observation in the ith
subgroup of the kth quality characteristic. We apply the
root/power transformation method in order to trans-
form the vector Xij to Yij = [Yij1,Yij2, . . .,Yijq]

' that
approximately follows a multivariate normal distribution
with the mean vector μY and the covariance matrix
CovY.
For the transformed vector, the sample mean vector

for each subgroup of size n is obtained using

—
Yi ¼ 1

n

Xn
j¼1

Yij ; i ¼ 1; 2; . . . ;m: ð2Þ

Then, for each subgroup the T2 statistic is calculated
by

T2
i ¼ n

—
Yi���Y

� �0

Co^v�1
Y

—
Yi���Y

� �
; ð3Þ

in which ��Y ¼ ��Y1 ;
��Y2 ; . . . ;

��Yq

h i0

¼ 1
mn

Xm
i¼1

Xn
j¼1

Yij1;
Xm
i¼1

Xn
j¼1

Yij2; . . . ;
Xm
i¼1

Xn
j¼1

Yijq

" #0

is the estimated in-control mean vector of the process.
The statistic in Equation 3 is plotted on a T2 control

chart with an upper control limit (UCL) of
UCL ¼ q m� 1ð Þ n� 1ð Þ
mn�m� q þ 1

Fα:q;mn�m�qþ1; ð4Þ

where for large number of subgroups may be estimated
by χ2α;q (see Lowry and Montgomery (1995) for more

details). An out-of-control signal is detected when the
T2 statistic exceeds UCL.
Multivariate binomial process modeling and MLE
derivation
In monitoring processes using the T2 control chart, as
long as the plotted points fall below UCL, the process is
assumed in-control. However, when one or more points
exceed UCL, the chart signals a change in the parameters
of the process and the process is assumed out-of-control.
The most important problem is that the chart signals after
a considerable amount of time after the change
point. Therefore, knowing when the change had
actually occurred would substantially improve the
diagnostic procedure.
The MLEs of the change points, designed for step

changes and linear-trend disturbances are derived in the
next two subsections.
The proposed change-point estimator for a step-change
disturbance
In this section, we assume that the real change type
presented in a multivariate binomial process is a step
change and derive the MLE of a change point in the
process fraction non-conforming. We also assume that
the process is initially in-control with known parameter
vector [N', P0

' ]. Following an unknown point in time τSC
(the step-change point), the process moves to an out-of-
control state with parameter vector [N', P1

' ], where P1 is
given in Equation 5 and δ is the vector of unknown
magnitude of the change. An element δ > 1 in δ denotes
an increase in the corresponding process fraction non-
conforming, while δ < 1 denotes an improvement:

P1 ¼ δP0: ð5Þ

The control chart genuinely (not false alarm) signals
the above change with a delay at time S, when the T2

S

statistic exceeds the UCL of the T2 control chart.

Accordingly, the subgroup averages
—
Y1 ;

—
Y2 ; . . . ;YτSC

―――
come

from the in-control process, while the subgroup averages
YτSCþ1
――――

;YτSCþ2
――――

; . . . ;
—
YS come from the out-of-control

process. As a result, the MLE of the proposed change-point
estimator, denoted by τ̂SC , is obtained as
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τ̂
SC

¼ arg Min
0≤t<S

( t
2
Ln Cov0;Y

�� ��þ n
2

Xt

i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

� —
Yi�μ0;Y

� �
þ S � t

2
Ln Co^v1;Y

�� ��
þ n
2

XS
i¼tþ1

—
Yi�μ^1;Y

� �0

Co^v�1
1;Y

—
Yi�μ^1;Y

� �

)
;

ð6Þ

where μ̂1;Y ¼
XS

i¼τSCþ1

—
Yi=S � τSC and Côv1;Y ¼ n

S�τSC

XS
i¼τSCþ1

—
Yi�μ^1;Y

� �0
—
Yi�μ^1;Y

� �
(see Appendix 1 for details).

The MLE of the change point τ̂SC is the value for τsc that
minimizes Equation 6.

The proposed change-point estimator for a linear-trend
disturbance
Assuming again that the process is initially in-control
with known parameter vector [N', P0

' ], in a linear-trend
disturbance when the T 2

S statistic exceeds the UCL of
the T2 control chart, it is assumed that a change has oc-
curred at an unknown point in time τLT (the change
point under linear trend). As a result the parameter vec-
tor of the out-of-control process becomes [N', P1

' ], where
P1 at different points in time takes a value based on
Equation 7 and vector β contains the magnitude (or
slope) of the linear-trend disturbance:

P1i ¼ P0 þ β i� τLTð Þ ;
i ¼ τLT þ 1; τLT þ 2; . . . :

ð7Þ

Based on the above descriptions, the subgroup aver-

ages
—
Y1 ;

—
Y2 ; . . . ;YτLT

―――
come from the in-control process,

while the subgroup averages YτLTþ1
――――

;YτLTþ2
――――

; . . . ;
—
YS

come from an out-of-control process. As a result, the
MLE of the change point, τ̂LT , is the value of τLT that
minimizes Equation 8 and is obtained as

τ̂LT ¼ argMin
0≤t≤S

( t
2
Ln Cov0;Y

�� ��þ n
2

Xt

i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

� —
Yi�μ0;Y

� �
þ S � t

2
Ln Co^v1;Y

�� ��
þ n
2

XS
i¼tþ1

—
Yi�μ0;Y � β

^
i� tð Þ

� �0

Co^v�1
1;Y

� —
Yi�μ0;Y � β

^
i� tð Þ

� �

)
;

ð8Þ

where

β
^ ¼

XS
i¼τLTþ1

i� τLTð Þ —
Yi�μ0;Y

� �
=

XS
i¼τLTþ1

i� τLTð Þ2

and
Co^v1;Y ¼ n
S � τLT

XS
i¼τLTþ1

—
Yi�μ0;Y � β

^
i� τLTð Þ

� �0

� —
Yi�μ0;Y � β

^
i� τLTð Þ

� �

(see Appendix 2 for details).
In the next section, the performances of the proposed

change-point estimators are evaluated and are compared
using some simulation experiments. The MATLAB 7
software (Math Works, Inc., Natick, MA, USA) is uti-
lized to perform all the programming works of this
research.

Performance evaluation and comparison
Monte Carlo simulations are used to evaluate and to com-
pare the performances of the proposed change-point esti-
mators designed for step changes and linear-trend
disturbances, when the actual changes are of step changes
and linear-trend disturbances in the process fraction non-
conforming of a multivariate binomial process.

Change-point estimators applied to step-change
disturbances
The change point is simulated to occur at τ = 100. Thus,
the first 100 subgroups are randomly generated from an
in-control multivariate binomial distribution with par-
ameter vector [N', P0

' ], using the normal to anything
(NORTA) method (Cario and Nelson 1997; Niaki and
Abbasi 2008). The in-control subgroup averages exceed-
ing the UCL of the proposed control chart are false
alarms. Consequently, these subgroups are discarded
and are replaced with other in-control subgroups. This
is replicated until all of the in-control subgroups are
below UCL. Following subgroup 100, the parameter vec-
tor is changed based on a step-change disturbance given
in Equation 5 where the subgroups are randomly gener-
ated from an out-of-control process with parameter vec-
tor [N', P1

' ]. The subgroup averages are plotted on the
proposed control chart until a signal is generated, and at
this time, the accuracy and the precision measures of
the change-point estimators are computed.

Simulation experiment 1
Consider a multivariate binomial process with two corre-
lated attributes, an in-control parameter vector [N',P0

' ] =
[(20, 30)', (0.2, 0.15)'] and a correlation between the two at-
tributes of 0.25. For subgroups i = 1, 2,. . ., 100, independent
observations are first generated from the in-control process
using the NORTA method. After subgroup 100, observa-
tions are generated from an out-of-control process with
parameter vector [N',P1

' ]. Obtaining a signal from the con-
trol chart, the change points are estimated using
Equations 6 and 8 for 1,000 simulation runs. Then, the av-
erages, the standard deviations, and the mean square errors
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(MSEs) of the estimates in addition to the expected time
when the control chart signals a change (E(T)) are calcu-
lated and are reported in Table 1. Table 1 also contains the
precision performances of the estimated change points,
in which P̂ τ̂ � τj j ¼ 0ð Þ , P̂ τ̂ � τj j≤1ð Þ , P̂ τ̂ � τj j≤2ð Þ ,
P̂ τ̂ � τj j≤3ð Þ, and P̂ τ̂ � τj j≤4ð Þ are denoted by P0, P1, P2,
P3, and P4, respectively. The estimated probabilities in
parentheses correspond to τ̂SC.
Based on the results in Table 1, the change-point estima-

tor designed for step changes outperforms the one designed
for linear-trend disturbances in terms of both the accuracy
and the precision measures, when the true change type is a
step-change disturbance. In other words, for almost all of
the shift magnitudes, τ̂SC is considerably closer to the actual
change point than τ̂LT is. Furthermore, MSE τ̂SCð Þ is
smaller than MSE τ̂LTð Þ for all of the shift values.

Simulation experiment 2
Consider a multivariate binomial process with five corre-
lated attributes. The sample size and the process fraction
non-conforming of the process are [N', P0

' ] = [(25, 25, 25,
25, 25)', (0.4, 0.27, 0.15, 0.35, 0.21)'] with an in-control
correlation matrix of

Σ0 ¼

1:00
0:15
0:21
0:12

0:15 0:21 0:12 0:35
1:00 0:41 0:18 0:24
0:41 1:00 0:26 0:14
0:18 0:26 1:00 0:32

0:35 0:24 0:14 0:32 1:00

0
BBB@

1
CCCA:
Table 1 Estimated change points and precision performances

δ E(T) Eðτ̂LTÞ Eðτ̂SCÞ MSEðτ̂LTÞ MSEðτ̂SCÞ
(0.7,0) 115.14 93.21 (10.61) 99.45 (4.87) 158.6 24.0

(0.8,0) 143.58 82.60 (24.54) 100.68 (6.84) 904.5 47.3

(0.9,0) 215.07 75.55 (50.83) 107.96 (26.27) 3178.6 752.8

(1.1,0) 203.86 83.38 (56.50) 110.94 (29.96) 3465.4 1016.4

(1.2,0) 139.63 84.40 (23.72) 100.57 (7.69) 805.4 59.4

(1.5,0) 103.74 97.41 (5.99) 98.04 (7.00) 42.6 52.9

(0,0.7) 112.84 94.76 (8.55) 99.53 (3.90) 100.6 15.4

(0,0.8) 141.67 83.63 (23.49) 100.32 (6.92) 819.1 47.9

(0,0.9) 208.11 76.95 (53.36) 106.72 (26.66) 3375.5 755.4

(0,1.1) 197.60 81.32 (49.78) 108.53 (25.28) 2824.9 711.1

(0,1.2) 134.80 86.73 (23.09) 100.92 (6.79) 709.0 46.9

(0,1.5) 103.44 98.02 (4.13) 98.44 (5.43) 20.9 32.0

(0.7,0.7) 107.88 96.39 (6.16) 99.08 (4.45) 50.9 20.7

(0.8,0.8) 126.99 88.45 (17.01) 99.75 (5.62) 422.5 31.7

(0.9,0.9) 199.75 71.63 (43.21) 103.98 (17.51) 2670.2 322.3

(1.1,1.1) 176.76 78.02 (41.05) 103.80 (18.74) 2166.4 365.3

(1.2,1.2) 122.09 90.83 (15.92) 100.04 (7.64) 337.2 58.3

(1.5,1.5) 102.10 97.60 (5.33) 97.26 (7.72) 34.1 67.1

Experiment has a step-change disturbance; standard deviations are shown in paren
Using the NORTA method, the first 100 subgroups are
randomly generated from the in-control process. Follow-
ing subgroup 101, observations are generated from an
out-of-control process based on the step-change disturb-
ance given in Equation 5. The subgroup averages are
then plotted on the proposed control chart until a signal
is generated. Then, the averages, the standard deviations,
the mean square errors, and the precision performances
of the change-point estimates for 1,000 simulation runs
are reported in Tables 2 and 3 for δ < 1 and δ > 1, re-
spectively. Similar to Table 1, the precision performances
of τ̂SC in Tables 2 and 3 are shown in parentheses.
Again, the results in Tables 2 and 3 show that τ̂SC out-

performs τ̂LT for almost all shift magnitudes, since τ̂SC
is closer to the true change point than τ̂LT is. Moreover,
MSE τ̂SCð Þ is smaller than MSE τ̂LTð Þ , and τ̂SC is more
precise than τ̂LT.
Based on the results obtained from the above two

simulation experiments, one can conclude that when the
real change type is a step-change disturbance, the
change-point estimator designed for step changes out-
performs the change-point estimator designed for linear-
trend disturbances for almost all of the shift magnitudes
and process dimensions.

Change-point estimators applied to linear-trend
disturbances
Assuming a linear-trend disturbance, in this section, the
performances of the two proposed change-point estimators
designed for step-change and linear-trend disturbances are
of two different MLEs in simulation experiment 1

P0 P1 P2 P3 P4

0.100 (0.410) 0.254 (0.675) 0.357 (0.785) 0.430 (0.852) 0.501 (0.897)

0.039 (0.246) 0.101 (0.455) 0.157 (0.589) 0.198 (0.668) 0.236 (0.726)

0.010 (0.069) 0.037 (0.187) 0.068 (0.271) 0.089 (0.324) 0.103 (0.376)

0.019 (0.086) 0.053 (0.181) 0.076 (0.263) 0.097 (0.337) 0.123 (0.389)

0.044 (0.212) 0.117 (0.430) 0.176 (0.568) 0.219 (0.642) 0.255 (0.713)

0.175 (0.374) 0.502 (0.679) 0.695 (0.823) 0.790 (0.874) 0.846 (0.909)

0.094 (0.394) 0.264 (0.659) 0.407 (0.806) 0.496 (0.877) 0.559 (0.910)

0.043 (0.256) 0.116 (0.473) 0.167 (0.609) 0.207 (0.695) 0.254 (0.755)

0.014 (0.073) 0.046 (0.213) 0.073 (0.289) 0.098 (0.346) 0.124 (0.407)

0.027 (0.085) 0.059 (0.214) 0.085 (0.289) 0.106 (0.342) 0.134 (0.400)

0.037 (0.227) 0.123 (0.439) 0.188 (0.574) 0.239 (0.656) 0.298 (0.717)

0.181 (0.369) 0.514 (0.675) 0.755 (0.840) 0.834 (0.894) 0.883 (0.933)

0.133 (0.445) 0.373 (0.711) 0.523 (0.840) 0.621 (0.900) 0.704 (0.931)

0.055 (0.340) 0.152 (0.580) 0.232 (0.719) 0.295 (0.789) 0.351 (0.839)

0.016 (0.113) 0.048 (0.249) 0.078 (0.336) 0.103 (0.390) 0.122 (0.451)

0.022 (0.117) 0.060 (0.251) 0.088 (0.348) 0.116 (0.427) 0.140 (0.476)

0.077 (0.254) 0.187 (0.510) 0.264 (0.637) 0.328 (0.721) 0.374 (0.783)

0.158 (0.276) 0.550 (0.596) 0.798 (0.796) 0.855 (0.851) 0.895 (0.884)

theses.



Table 2 Estimated change points and precision performances of two different MLEs in simulation experiment 2

δ E(T) Eðτ̂LTÞ Eðτ̂SCÞ MSEðτ̂LTÞ MSEðτ̂SCÞ P0 P1 P2 P3 P4

(0.7,0,0,0,0) 103.22 97.18 (3.43) 97.39 (3.69) 19.8 20.4 0.081
(0.150)

0.238
(0.306)

0.434
(0.511)

0.639
(0.668)

0.792
(0.828)

(0.9,0,0,0,0) 161.33 87.38 (38.82) 106.32
(18.37)

1665.3 377.1 0.013
(0.163)

0.059
(0.331)

0.099
(0.444)

0.148
(0.525)

0.180
(0.587)

(0,0.7,0,0,0) 107.52 97.42 (5.76) 99.13 (3.54) 39.9 13.2 0.081
(0.262)

0.240
(0.471)

0.423
(0.639)

0.584
(0.753)

0.698
(0.874)

(0,0.9,0,0,0) 189.00 93.83 (56.78) 112.29
(28.54)

3259.3 965.5 0.020
(0.125)

0.050
(0.230)

0.072
(0.300)

0.101
(0.355)

0.123
(0.414)

(0,0,0.7,0,0) 121.58 93.90 (15.98) 101.50 (6.61) 292.5 45.9 0.059
(0.278)

0.149
(0.466)

0.245
(0.601)

0.340
(0.705)

0.408
(0.784)

(0,0,0.9,0,0) 225.12 106.74
(72.81)

126.97
(47.98)

5342.1 3028.0 0.008
(0.052)

0.036
(0.135)

0.062
(0.203)

0.079
(0.261)

0.099
(0.308)

(0,0,0,0.7,0) 104.69 97.29 (4.03) 98.26 (3.33) 23.7 14.1 0.099
(0.220)

0.274
(0.410)

0.450
(0.590)

0.640
(0.748)

0.784
(0.868)

(0,0,0,0.9,0) 172.99 88.14 (43.42) 110.03
(22.37)

2023.8 600.8 0.017
(0.136)

0.053
(0.258)

0.086
(0.362)

0.114
(0.430)

0.141
(0.485)

(0,0,0,0,0.7) 112.98 95.69 (9.32) 100.31 (4.57) 105.4 21.0 0.085
(0.311)

0.229
(0.530)

0.355
(0.664)

0.456
(0.768)

0.570
(0.844)

(0,0,0,0,0.9) 206.54 93.68 (58.44) 118.83
(42.39)

3451.2 2150.0 0.014
(0.100)

0.028
(0.200)

0.055
(0.279)

0.093
(0.340)

0.113
(0.392)

(0.7,0.7,0.7,
0.7,0.7)

101.65 96.05 (4.32) 96.32 (3.98) 34.3 29.4 0.026
(0.037)

0.110
(0.131)

0.262
(0.310)

0.487
(0.548)

0.726
(0.752)

(0.9,0.9,0.9,
0.9,0.9)

144.72 88.20 (27.67) 104.20
(12.74)

904.5 179.9 0.031
(0.232)

0.092
(0.430)

0.155
(0.528)

0.211
(0.608)

0.249
(0.669)

Experiment has a step-change disturbance when δ < 1; standard deviations are shown in parentheses.
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evaluated and are compared in multivariate binomial pro-
cesses with two and five correlated quality characteristics.
Considering the change point at τ = 100, the first 100

subgroups are randomly generated from an in-control
multivariate binomial distribution with parameter vector
[N', P0

' ], using the NORTA method. Following subgroup
100, the parameter vector is changed according to a
linear-trend disturbance given in Equation 7, and as a
result, subgroups are randomly generated from an out-
of-control process with parameter vector [N', P1

' ]. The
subgroup averages are plotted on the proposed control
chart until a signal is generated. At this time, the accur-
acy and the precision measures of the change-point esti-
mators are computed.
Simulation experiment 3
Consider the process in simulation experiment 1. Using
the NORTA method, the first 100 subgroup averages are
generated from the in-control process. After subgroup
100, observations are generated from an out-of-control
process. Following a signal by the proposed control
chart, the change points are estimated using Equations 6
and 8 for 1,000 simulation runs. Then, the averages, the
standard deviations, the mean square errors, and the
precision performances of the change-point estimates in
addition to the expected time when the control chart
signals a change are summarized in Table 4.
The results in Table 4 show that when the real change

type is a linear-trend disturbance, the proposed MLE for
linear-trend disturbances outperforms the one designed
for step-change disturbances in terms of both the accur-
acy and the precision for almost all values of β. That is,
τ̂LT is closer to the true change point than τ̂SC is.

Simulation experiment 4
Considering the process described in simulation experi-
ment 2, 100 subgroups are first randomly generated
from the in-control process. Then, the parameter vector
is changed based on a linear-trend disturbance given in
Equation 7. Consequently, observations are generated
from an out-of-control process. Following a signal from
the control chart, the averages, the standard deviations,
the mean square errors, and the precision performances
of the change-point estimates in 1,000 simulation runs
are reported in Table 5.
Based on the results in Table 5, in the presence of a

linear-trend disturbance, τ̂LT outperforms τ̂SC in terms of
both the accuracy and the precision measures. In other
words, in addition to the better precision performances of
τ̂LT , the estimated change points by τ̂LT are closer to the
real change point than τ̂SC for almost all values of β.



Table 3 Estimated change points and precision performances of two different MLEs in simulation experiment 2

δ E(T) Eðτ̂LTÞ Eðτ̂ SCÞ MSEðτ̂LTÞ MSEðτ̂SCÞ P0 P1 P2 P3 P4

(1.1,0,0,0,0) 161.49 88.15 (38.26) 108.03
(21.11)

1602.9 509.5 0.028
(0.160)

0.067
(0.304)

0.111
(0.412)

0.142
(0.468)

0.176 (0.532)

(1.2,0,0,0,0) 112.17 97.08 (9.28) 100.55 (4.99) 94.7 25.2 0.073
(0.248)

0.219
(0.475)

0.369
(0.615)

0.487
(0.738)

0.588 (0.821)

(1.5,0,0,0,0) 101.13 95.80 (3.09) 96.85 (2.99) 27.1 26.1 0.006
(0.008)

0.034
(0.044)

0.193
(0.203)

0.424
(0.438)

0.685 (0.699)

(0,1.1,0,0,0) 188.57 91.61 (53.06) 115.46
(34.11)

2883.7 1401.3 0.012
(0.099)

0.051
(0.221)

0.082
(0.302)

0.103
(0.374)

0.124 (0.428)

(0,1.2,0,0,0) 126.57 93.47 (19.43) 102.87
(10.71)

419.8 122.8 0.041
(0.195)

0.129
(0.393)

0.195
(0.522)

0.275
(0.631)

0.347 (0.716)

(0,1.5,0,0,0) 101.87 96.38 (3.57) 96.62 (2.51) 25.9 17.7 0.034
(0.061)

0.154
(0.172)

0.329
(0.326)

0.550
(0.563)

0.759 (0.767)

(0,0,1.1,0,0) 213.58 112.39
(72.25)

129.51
(50.21)

5369.7 3389.9 0.010
(0.049)

0.031
(0.119)

0.056
(0.166)

0.082
(0.225)

0.098 (0.269)

(0,0,1.2,0,0) 150.77 92.23 (36.35) 107.34
(17.01)

1380.8 342.7 0.027
(0.142)

0.083
(0.293)

0.134
(0.393)

0.179
(0.480)

0.218 (0.559)

(0,0,1.5,0,0) 105.68 97.68 (4.42) 98.73 (3.55) 25.1 14.2 0.119
(0.202)

0.289
(0.413)

0.468
(0.577)

0.640
(0.730)

0.7€60
(0.846)

(0,0,0,1.1,0) 170.52 88.24 (44.05) 109.18
(20.15)

2076.6 490.1 0.017
(0.132)

0.050
(0.264)

0.087
(0.364)

0.127
(0.445)

0.159 (0.496)

(0,0,0,1.2,0) 116.24 95.91 (12.17) 101.42 (5.51) 164.8 32.4 0.070
(0.287)

0.202
(0.492)

0.304
(0.626)

0.419
(0.723)

0.514 (0.797)

(0,0,0,1.5,0) 101.29 96.08 (2.59) 96.04 (3.31) 22.1 26.6 0.012
(0.016)

0.065
(0.071)

0.232
(0.240)

0.461
(0.475)

0.705 (0.729)

(0,0,0,0,1.1) 203.23 100.56
(62.66)

119.71
(36.92)

3922.7 1750.2 0.017
(0.075)

0.037
(0.174)

0.063
(0.248)

0.084
(0.308)

0.100 (0.350)

(0,0,0,0,1.2) 136.76 90.65 (25.51) 104.22
(12.51)

737.4 174.3 0.029
(0.208)

0.097
(0.398)

0.152
(0.524)

0.218
(0.609)

0.272 (0.671)

(0,0,0,0,1.5) 102.88 97.10 (3.09) 97.19 (3.96) 18.2 23.6 0.095
(0.134)

0.244
(0.302)

0.422
(0.512)

0.631
(0.674)

0.810 (0.823)

(1.1,1.1,1.1,
1.1,1.1)

139.07 92.24 (27.44) 104.47
(11.88)

812.7 161.1 0.048
(0.202)

0.125
(0.367)

0.194
(0.507)

0.252
(0.593)

0.302 (0.664)

(1.2,1.2,1.2,
1.2,1.2)

106.03 97.25 (5.39) 98.81 (3.54) 36.6 14.1 0.092
(0.243)

0.272
(0.448)

0.438
(0.595)

0.605
(0.728)

0.743 (0.844)

(1.5,1.5,1.5,
1.5,1.5)

101.01 96.10 (2.42) 96.31 (1.79) 21.1 16.8 0.005
(0.008)

0.040
(0.040)

0.212
(0.237)

0.430
(0.478)

0.713 (0.757)

Experiment has a step-change disturbance when δ > 1; standard deviations are shown in parentheses.
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Moreover, MSE τ̂LTð Þ is smaller than MSE τ̂SCð Þ in most of
the cases.
Finally, according to the results obtained from simula-

tion experiments 3 and 4, one can conclude that when
the real change type is a linear-trend disturbance, the
change-point estimator designed for linear trend outper-
forms the change-point estimator designed for step-
change disturbances, regardless of the shift magnitudes
and the process dimension.

Conclusions
When a control chart generates a signal due to an
out-of-control condition, process engineers initiate a
search to identify and to eliminate the root causes of
process variation. However, the signaling time is different
from the first time that a change manifests itself into a
process (change point), and in most cases, there is a con-
siderable time lag between them. Therefore, knowing the
exact time of a change in a process would simplify the
search procedure to improve the quality of the process by
eliminating the causes of process variation.
In this paper, a new control chart was initially pro-

posed based on a transformation method to monitor
multi-attribute processes. The transformation method
was used to eliminate the skewness of multivariate bino-
mial processes. Then, the MLE of change points
designed for both step changes and linear-trend distur-
bances were derived. Using Monte Carlo simulation ex-
periments involving multivariate binomial processes
with two and five attributes, the performances of the



Table 4 Estimated change points and precision performances of two different MLEs in simulation experiment 3

β E(T) Eðτ̂LTÞ Eðτ̂SCÞ MSEðτ̂LTÞ MSEðτ̂SCÞ P0 P1 P2 P3 P4

(0.001,0) 145.66 108.45 (19.97) 119.61 (15.11) 470.24 612.85 0.023 (0.011) 0.075 (0.032) 0.126 (0.059) 0.168 (0.084) 0.200 (0.102)

(0.002,0) 128.97 105.07 (12.86) 111.78 (9.41) 190.87 227.17 0.038 (0.017) 0.100 (0.051) 0.168 (0.098) 0.229 (0.136) 0.296 (0.165)

(0.003,0) 121.88 103.61 (10.19) 108.36 (8.64) 116.80 144.36 0.048 (0.028) 0.125 (0.077) 0.215 (0.119) 0.295 (0.159) 0.373 (0.217)

(0.005,0) 115.37 102.59 (7.83) 105.50 (7.01) 67.93 79.27 0.060 (0.033) 0.174 (0.099) 0.288 (0.164) 0.394 (0.236) 0.470 (0.315)

(0.01,0) 109.42 101.29 (5.64) 102.80 (4.96) 33.45 32.47 0.093 (0.072) 0.277 (0.179) 0.440 (0.309) 0.544 (0.476) 0.660 (0.625)

(0.05,0) 102.91 98.90 (4.66) 98.83 (5.24) 22.89 28.84 0.422 (0.404) 0.813 (0.775) 0.896 (0.875) 0.933 (0.902) 0.950 (0.924)

(0,0.001) 137.37 106.01 (16.52) 115.31 (12.36) 308.91 387.06 0.027 (0.014) 0.093 (0.051) 0.144 (0.072) 0.190 (0.099) 0.222 (0.123)

(0,0.002) 123.21 103.47 (11.22) 109.04 (8.78) 137.92 158.76 0.042 (0.028) 0.120 (0.067) 0.201 (0.107) 0.280 (0.164) 0.352 (0.213)

(0,0.003) 117.82 103.33 (8.29) 106.79 (7.73) 79.76 105.81 0.056 (0.031) 0.163 (0.078) 0.254 (0.124) 0.340 (0.188) 0.421 (0.262)

(0,0.005) 112.17 102.15 (7.12) 104.43 (5.76) 55.23 52.86 0.076 (0.041) 0.198 (0.126) 0.295 (0.214) 0.399 (0.301) 0.528 (0.424)

(0,0.01) 107.29 100.71 (5.18) 101.93 (3.79) 27.37 18.09 0.134 (0.084) 0.305 (0.263) 0.497 (0.457) 0.666 (0.650) 0.792 (0.801)

(0,0.05) 102.29 98.80 (3.52) 98.48 (4.59) 13.82 23.36 0.400 (0.416) 0.810 (0.764) 0.908 (0.866) 0.940 (0.905) 0.957 (0.928)

(0.001,0.001) 134.96 105.96 (14.85) 114.61 (11.40) 255.86 343.34 0.026 (0.016) 0.082 (0.046) 0.144 (0.081) 0.191 (0.111) 0.242 (0.132)

(0.002,0.002) 121.92 103.10 (11.79) 108.24 (8.94) 148.65 147.84 0.050 (0.024) 0.121 (0.060) 0.212 (0.104) 0.298 (0.158) 0.367 (0.212)

(0.003,0.003) 116.38 102.74 (9.33) 106.18 (7.39) 94.53 92.86 0.040 (0.28) 0.131 (0.080) 0.229 (0.149) 0.306 (0.224) 0.398 (0.278)

(0.005,0.005) 111.50 101.52 (7.13) 103.78 (5.27) 53.10 42.09 0.067 (0.051) 0.230 (0.144) 0.350 (0.256) 0.452 (0.366) 0.552 (0.471)

(0.01,0.01) 107.03 100.59 (4.79) 101.40 (5.54) 23.31 32.67 0.112 (0.094) 0.334 (0.277) 0.548 (0.492) 0.713 (0.692) 0.824 (0.821)

(0.05,0.05) 102.18 98.40 (3.67) 97.98 (5.70) 15.99 36.51 0.372 (0.380) 0.762 (0.737) 0.876 (0.839) 0.904 (0.867) 0.933 (0.892)

Experiment has a linear-trend disturbance; standard deviations are shown in parentheses.

Ln L τSC;μ1;Y;Cov1;Y Yj Þ
� �

¼ K � τSC
2

LnjCov0;Y� ���
� n

2

XτSC
i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

—
Yi�μ0;Y

� �	 
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change-point estimators were evaluated by comparing
them in the presence of real step-change and real linear-
trend disturbances. The results showed that the change-
point estimator designed for step changes outperforms the
change-point estimator designed for linear-trend distur-
bances when the true change type is a step-change distur-
bance, regardless of the shift magnitudes and process
dimensions. In contrast, the change-point estimator
designed for linear-trend disturbances outperforms the
change-point estimator designed for step changes when
the true change type is a linear-trend disturbance, regard-
less of the shift magnitudes and process dimensions.
� S � τSCð Þ
2

Ln Cov1;Y
�� ��

� n
2

XS
i¼τSCþ1

—
Yi�μ1;Y

� �0

Cov�1
1;Y

—
Yi�μ1;Y

� �	 

:

ð10Þ
Appendix
Appendix 1
Denoting the MLE of the change-point estimator designed
for step changes by τ̂SC , the likelihood function for the
transformed vector Yij is (Johnson and Wichern 2007)
LðτSC;μ1;Y;Cov1;Y Yj Þ ¼
YτSC
i¼1

1

2πð Þq=2 Cov0;Y
�� ��1=2 e�n=2

—
Yi�μ0ð

�
YS

i¼τSCþ1

1

2πð Þq=2 Cov1;Y
�� ��1=2 e�n=2
where μ0,Y, μ1,Y, Cov0,Y, and Cov1,Y are in-control and
out-of-control mean vector and covariance matrix of
vector Y, respectively. The logarithm of the likelihood
function when the constant term is shown by K is
;YÞ0Cov�1
0;Y

—
Yi�μ0;Yð Þ

—
Yi�μ1;Yð Þ0Cov�1

1;Y
—
Yi�μ1;Yð Þ;

ð9Þ



Table 5 Estimated change points and precision performances of two different MLEs in simulation experiment 4

β E(T) Eðτ̂LTÞ Eðτ̂SCÞ MSEðτ̂LTÞ MSEðτ̂SCÞ P0 P1 P2 P3 P4

(0.001,0,0,0,0) 151.89 114.67
(23.62)

127.18
(18.73)

763.64 1089.2 0.011
(0.014)

0.048
(0.036)

0.096
(0.057)

0.133
(0.070)

0.177
(0.083)

(0.003,0,0,0,0) 125.85 108.14
(12.14)

113.12
(8.68)

213.47 247.3 0.037
(0.016)

0.100
(0.040)

0.164
(0.065)

0.214
(0.107)

0.267
(0.148)

(0.005,0,0,0,0) 118.16 106.15
(7.81)

109.08
(6.15)

98.85 120.4 0.037
(0.017)

0.114
(0.052)

0.187
(0.100)

0.248
(0.142)

0.319
(0.182)

(0.01,0,0,0,0) 110.71 102.83
(4.82)

104.14
(3.82)

31.26 31.7 0.054
(0.036)

0.171
(0.120)

0.290
(0.221)

0.413
(0.347)

0.534
(0.486)

(0,0.001,0,0,0) 146.88 114.19
(21.85)

124.01
(16.81)

678.51 859.2 0.019
(0.009)

0.049
(0.034)

0.100
(0.056)

0.145
(0.077)

0.185
(0.101)

(0,0.003,0,0,0) 123.95 107.48
(10.49)

111.79
(8.30)

165.91 207.7 0.034
(0.018)

0.096
(0.051)

0.172
(0.083)

0.234
(0.122)

0.295
(0.155)

(0,0.005,0,0,0) 116.54 105.02
(7.52)

108.11
(5.74)

81.71 98.6 0.041
(0.032)

0.130
(0.081)

0.221
(0.120)

0.296
(0.176)

0.363
(0.229)

(0,0.01,0,0,0) 109.87 102.51
(4.08)

103.54
(4.89)

22.90 36.5 0.068
(0.047)

0.211
(0.143)

0.352
(0.270)

0.485
(0.407)

0.621
(0.558)

(0,0,0.001,0,0) 141.68 112.81
(19.59)

121.18
(14.98)

547.65 672.7 0.018
(0.014)

0.062
(0.030)

0.099
(0.059)

0.146
(0.085)

0.205
(0.114)

(0,0,0.003,0,0) 120.06 106.96
(10.03)

110.08
(7.49)

149.05 157.8 0.041
(0.016)

0.112
(0.047)

0.160
(0.087)

0.225
(0.130)

0.286
(0.174)

(0,0,0.005,0,0) 113.69 104.31
(6.48)

106.10
(5.28)

60.59 65.1 0.041
(0.037)

0.133
(0.084)

0.227
(0.146)

0.308
(0.230)

0.396
(0.319)

(0,0,0.01,0,0) 108.42 101.56
(4.47)

102.38
(3.49)

22.39 17.9 0.101
(0.084)

0.282
(0.243)

0.457
(0.429)

0.642
(0.616)

0.777
(0.751)

(0,0,0,0.001,0) 152.12 113.54
(23.31)

125.78
(18.38)

726.13 1001.9 0.015
(0.014)

0.066
(0.042)

0.106
(0.058)

0.158
(0.080)

0.189
(0.092)

(0,0,0,0.003,0) 124.59 107.36
(11.27)

112.24
(8.61)

180.97 224.0 0.036
(0.017)

0.096
(0.052)

0.156
(0.086)

0.219
(0.124)

0.278
(0.158)

(0,0,0,0.005,0) 117.59 105.96
(7.76)

108.94
(6.30)

95.67 119.6 0.039
(0.0.24)

0.109
(0.071)

0.189
(0.111)

0.249
(0.153)

0.314
(0.200)

(0,0,0,0.01,0) 110.68 103.01
(4.87)

104.22
(4.09)

32.72 34.5 0.065
(0.040)

0.174
(0.119)

0.279
(0.200)

0.412
(0.317)

0.547
(0.476)

(0,0,0,0,0.001) 145.57 114.13
(21.90)

123.88
(15.84)

678.77 820.8 0.032
(0.009)

0.073
(0.030)

0.106
(0.056)

0.152
(0.072)

0.197
(0.099)

(0,0,0,0,0.003) 122.04 107.10
(10.58)

111.42
(7.48)

162.38 186.30 0.032
(0.013)

0.083
(0.034)

0.144
(0.075)

0.213
(0.112)

0.269
(0.150)

(0,0,0,0,0.005) 115.36 105.18
(6.63)

107.15
(5.37)

70.77 84.21 0.038
(0.021)

0.131
(0.079)

0.231
(0.137)

0.302
(0.192)

0.366
(0.241)

(0,0,0,0,0.01) 109.15 102.28
(3.95)

103.13
(3.12)

20.76 19.48 0.060
(0.059)

0.237
(0.200)

0.387
(0.340)

0.551
(0.501)

0.705
(0.637)

(0.001,0.001,
0.001,0.001,0.001)

136.81 110.99
(15.57)

118.66
(12.52)

395.10 504.68 0.020
(0.015)

0.082
(0.039)

0.130
(0.062)

0.173
(0.080)

0.212
(0.105)

(0.003,0.003,
0.003,0.003,0.003)

117.34 105.87
(7.63)

108.65
(5.88)

92.57 109.36 0.050
(0.015)

0.139
(0.058)

0.203
(0.098)

0.273
(0.148)

0.333
(0.198)

(0.005,0.005,
0.005,0.005,0.005)

111.91 103.97
(5.72)

105.09
(4.63)

48.50 47.36 0.041
(0.031)

0.132
(0.100)

0.236
(0.192)

0.345
(0.269)

0.441
(0.378)

(0.01,0.01, 0.01,0.01,0.01) 107.45 101.19
(2.81)

101.85
(2.51)

9.27 9.68 0.106
(0.101)

0.346
(0.318)

0.570
(0.558)

0.765
(0.750)

0.905
(0.877)

Experiment has a linear-trend disturbance; standard deviations are shown in parentheses.
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There are three unknown parameters (τsc, μ1,Y, and
Cov1,Y) in Equation 10 that should be estimated. In
order to find τ̂SC, one must first estimate μ1,Y and Cov1,Y
for all possible values of the change point. To do this, the
MLE of the out-of-control mean vector and covariance
matrix, denoted by μ̂1;Y and Côv1;Y , respectively, are first
derived as

μ^1;Y ¼

XS
i¼τSCþ1

—
Yi

S � τSC
; ð11Þ

Co^v1;Y ¼ n
S � τSC

XS
i¼τSCþ1

—
Yi�μ^1;Y

� �0
—
Yi�μ^1;Y

� �
: ð12Þ

Then, the estimated unknown parameters in Equations 11
and 12 for all the potential values of τsc are obtained and
are substituted in Equation 13 to find the MLE of the
change point:

τ̂SC ¼ arg Min
0≤t<S

t
2
Ln Cov0;Y

�� ��þ n
2

Xt

i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

—
Yi�μ0;Y

� �

þ S � t
2

Ln Co^v1;Y
�� ��þ n

2

XS
i¼tþ1

—
Yi�μ^1;Y

� �0

Co^v�1
1;Y

—
Yi�μ^1;Y

� �
8>>><
>>>:

9>>>=
>>>;

ð13Þ

Appendix 2
Denoting the MLE of the change-point estimator
designed for linear-trend disturbances by τ̂LT , the likeli-
hood function of the transformed vector Yij is

L
�
τLT;μ1;Y;Cov1;Y Yj Þ

¼
YτLT
i¼1

1

2πð Þq=2 Cov0;Y
�� ��1=2 e�n=2

—
Yi�μ0;Yð Þ0Cov�1

0;Y
—
Yi�μ0;Yð Þ

�
YS

i¼τLTþ1

1

2πð Þq=2 Cov1;Y
�� ��1=2 e�n=2

—
Yi�μ0;Y�β i�τLTð Þð Þ0Cov�1

1;Y
—
Yi�μ0;Y�β i�τLTð Þð Þ;

ð14Þ
where μ0,Y and Cov0,Y are the in-control mean vector
and covariance matrix, and μ1,Y and Cov1,Y are the
out-of-control mean-vector and covariance matrix of vector
Y, respectively. As a result, the logarithm of the likelihood
function in which the constant term is denoted by K is

Ln
�
L τLT;μ1;Y;Cov1;Y Y

��� �� �
¼ K � τLT

2
Ln Cov0;Y

�� ��
� n

2

XτLT
i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

—
Yi�μ0;Y

� �	 

� S � τLTð Þ

2
Ln Cov1;Y

�� ��
� n

2

XS
i¼τLTþ1

	
—
Yi�μ0;Y � β i� τLTð Þ

� �0

Cov�1
1;Y

—
Yi�μ0;Y � β i� τLTð Þ

� �

:

ð15Þ

There are three unknown parameters τLT, β, and Cov1,Y
in Equation 15. Again, we first calculate the MLEs of the
unknown parameters in Equations 16 and 17 for all of the
possible values of the change point:

β
^ ¼

XS
i¼τLTþ1

i� τLTð Þ —
Yi�μ0;Y

� �
XS

i¼τLTþ1

i� τLTð Þ2
; ð16Þ

Co^v1;Y ¼ n
S � τLT

XS
i¼τLTþ1

—
Yi�μ0;Y � β

^
i� τLTð Þ

� �0

� —
Yi�μ0;Y � β

^
i� τLTð Þ

� �
:

ð17Þ

Then, the estimated parameters β
^

and Côv1;Y are
substituted in Equation 18 in order to find the MLE of
the change point:

τ̂LT ¼ argMin
0≤t≤S

t
2
Ln Cov0;Y

�� ��þ n
2

Xt

i¼1

—
Yi�μ0;Y

� �0

Cov�1
0;Y

—
Yi�μ0;Y

� �
þ S � t

2
Ln Co^v1;Y

�� ��
þ n
2

XS
i¼tþ1

—
Yi�μ0;Y � β

^
i� tð Þ

� �0

Co^v�1
1;Y

� —
Yi�μ0;Y � β

^
i� tð Þ

� �

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
:

ð18Þ
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