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Abstract The primary objective of this research is to

obtain an accurate forecasting model for the US presiden-

tial election. To identify a reliable model, artificial neural

networks (ANN) and support vector regression (SVR)

models are compared based on some specified performance

measures. Moreover, six independent variables such as

GDP, unemployment rate, the president’s approval rate,

and others are considered in a stepwise regression to

identify significant variables. The president’s approval rate

is identified as the most significant variable, based on

which eight other variables are identified and considered in

the model development. Preprocessing methods are applied

to prepare the data for the learning algorithms. The pro-

posed procedure significantly increases the accuracy of the

model by 50%. The learning algorithms (ANN and SVR)

proved to be superior to linear regression based on each

method’s calculated performance measures. The SVR

model is identified as the most accurate model among the

other models as this model successfully predicted the

outcome of the election in the last three elections (2004,

2008, and 2012). The proposed approach significantly

increases the accuracy of the forecast.

Keywords Presidential election � Forecasting � Artificial
neural network � Support vector regression � Linear
regression

Introduction

The United States presidential election is among influ-

ential factors on not only the local market but also the

global economy. Researchers must pay more attention to

political events and how they influence the development

of competitive local markets alongside their influence on

the global economy. Given the significance of the US

Presidential Election and how it is capable of influencing

the global economy, a bulk of scholars and politicians in

the US have attempted to predict the outcome of the

elections to formulate policies based on the obtained

forecasts.

Modeling a complex phenomenon such as an election is

neither a simple nor easy task. In some elections, the

mechanism of the election is complicated, and in others,

the candidates present further complexities in modeling the

event. However, the US presidential election presents a

slightly less difficult challenge. The bipartisanship of the

political system in the United States presents a simple

situation in which the failure of the incumbent party can be

considered as the success of another party. Most forecasts

have chosen the incumbent votes as the dependent variable

in their models primarily due to this reason. This choice is

based on the theory that the US presidential election is a

referendum on the policies of the incumbent party. This

theory states that people who are satisfied with the

incumbent party are inclined to vote for their party’s can-

didate, and people who are not satisfied are enthusiastic to

vote for the opposing party’s candidate.
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The primary objective of this paper is to model and

forecast the United States presidential election via the

usage of learning algorithms. Political and economic

variables are utilized in the model, and significant variables

are identified through further analysis and statistical pro-

cedures. The dependent variable is defined as the electoral

votes of the incumbent party. The incumbent party is

considered as the dependent variable, because it presents

further related variables such the incumbent president’s

approval rate and gross domestic product (GDP).

Increasing the accuracy of the obtained forecasts is

another research objective. Moreover, analytical parsimo-

nious models are desired to provide forecasts and different

utilized learning algorithms are further compared based on

some specified performance measures. The differences

between artificial neural networks (ANN) and support

vector regression (SVR) are investigated further based on

two measures of error: mean absolute prediction error

(MAPE), and root-mean-squared error (RMSE). Investi-

gating the impacts of data mining techniques in increasing

forecasting accuracy is another objective of this research,

where four sets of data are examined using each technique.

The organization of this paper is as follows. The liter-

ature on US presidential election forecasts is thoroughly

investigated and examined in the next section. In the third

section, brief backgrounds on ANN and SVR are presented.

The fourth section demonstrates the modeling process and

the obtained forecasts using the above-mentioned algo-

rithms alongside some utilized data mining techniques. The

results of the best model of each method are compared, and

furthermore, inferences about the effects of utilizing data

mining techniques and learning algorithms are made in this

section. Finally, we conclude the paper in ‘‘Results’’ sec-

tion, where some recommendations and possibilities for

future studies are presented.

Literature review

Although forecasting has been used many times in

numerous fields, it has a brief history in political science.

Forecasting political events started in the late 1970s when

Fair (1978) investigated the effect of the economic condi-

tion in the election year as well the incumbent parties in a

forecasting model. Sigelman (1979) examined the relation

between the results of an election with the previous ones.

Lewis-Beck and Rice (1982) developed a model using the

president’s job approval and an economic factor as inde-

pendent variables. Abramowitz (1988) added a time-de-

pendent variable to improve the performance of the

forecasting model. The dependent variable of the model

was the percentage of the incumbent party votes, and the

independent variables were GDP growth, the incumbent

president’s job approval rating in June of the election year,

and the consecutive terms that the incumbent party governs

the country. He used the ordinary least-squares (OLS)

method to estimate the parameters of the linear regression

model. Later, Abramowitz (2016) utilized his model, which

is called ‘‘Time for change forecasting model’’, to forecast

2016 election.

Some years later, Lewis-Beck and Rice (1992) reformed

their model by adding two new variables: the result of the

previous congress election and the previous presidential

election. Holbrook and DeSart (1999) used the percentage

of voters and the last votes of parties, as variables in their

forecasting model. They employed the OLS method to

estimate the parameters of their regression model.

Wlezien and Erikson (2004) introduced a model using

economic indices and the percentage of the incumbent

party votes as variables. They used the R2 (coefficient of

multiple determination) and the adjusted R2 to evaluate the

accuracy of their forecasting model. Later, Erikson and

Wlezien (2016) employed their model to forecast 2016

presidential election by adding the polls to their model. An

important research on forecasting the United States presi-

dential election was conducted by Berg and Rietz (2014).

These individuals who were political science professors in

the University of Iowa proposed a method to predict the

presidential election which is known as the Iowa prediction

market. Lewis-Beck and Tien (2014) addressed the issue of

forecasting from statistical models, and the way they might

be improved. They used a real-world example on the US

presidential elections in their work. They provided a

summary of various leading US presidential election

models that use various independent variables such as

presidential popularity, GNP growth, primary support,

house party advantage, peace and prosperity, and

incumbency.

Fair (2011) allocated a chapter of his book to predicting

the result of the US presidential election. The variables in

his model were GNP, inflation rate, and the consecutive

terms that the incumbent party governs the country and the

percentage of the incumbent party votes. De Neve (2014)

used data from the 1920 presidential election to the 2008

presidential election to forecast the result of the US pres-

idential elections. The independent variables in his model

were personal income growth rate, taxes, GNP, inflation

rate, and unemployment rate. Interested readers are refer-

red to Lewis-Beck (2005) on the principles and the prac-

tices of election forecasting.

Serious efforts have been undertaken to develop elec-

tion forecasting in other countries. Ford et al. (2016)

developed a three-stage method to forecast parliamentary

election results from vote preferences in British opinion

polls. Rallings et al. (2016) introduced a model using local

government election results to estimate a national
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equivalent vote in the UK parliamentary election. An

important research on forecasting the 2013 German Bun-

destag Election was conducted by Munzert (2017). He used

a time-series method to forecast 2013 German election

based on many polls and historical election results. Charles

and Reid (2016) also used election results and macroeco-

nomic variables from 1962 to 2015 to develop a time-series

model to forecast the 2016 General Election in Jamaica.

Learning algorithms

This section provides brief backgrounds on two learning

algorithms, i.e., support vector regression and artificial

neural network, utilized in this paper to forecast US pres-

idential election.

Support vector regression

The support vector (SV) algorithm is a nonlinear general-

ization of the generalized portrait algorithm proposed for

the first time by Vapnik and Lerner (1963) and Vapnik and

Chervonenkis (1964) in the 1960s. It is based on the theory

of statistical learning that has been developed over the last

3 decades by Vapnik and Chervonenkis (1974) and Vapnik

(1982, 1995). The statistical learning theory, in essence,

characterizes properties of learning machines to make them

able of generalization to unseen data. The SV has many

applications including regression and time-series predic-

tions and its excellent performance has been shown in

M}uller et al. (1997), Drucker et al. (1997), Stitson et al.

(1999), and Mattera and Haykin (1999).

Suppose that the training data x1; y1ð Þ; . . .. . .. . .. . .. . .;
�

xl; yl
� �

g � X � R, in which X is the space of the input

parameters, are available. One possible realization of the

training data set is the exchange rates of a currency mea-

sured in subsequent days along with their corresponding

econometric indicators. The goal in e-SV regression is to

find a function f xð Þ with the most e-deviation from the

obtained targets yl for all the training data, and at the same

time as flat as possible (Vapnik 1995).

Depending on the form of the function f xð Þ, support
vector regression (SVR) is classified into two classes of

linear and nonlinear SVR that are discussed as follows.

Linear SVR

In linear SVR, the function f xð Þ takes the form:

f xð Þ ¼ \w; x[ þ b; ð1Þ

where w 2 X is the slope, b 2 R is the y-intercept, and

\:; :[ denotes the dot product in X. Moreover, the

flatness, in this case, means that small w is desired. An

alternative to having small w is to minimize the norm

w2
�� �� ¼ \w;w[ : In other words, the following convex

optimization problem is involved:

Min
1

2
wk k2

s:t:
yl �\w; xl [ � b� e

�yl þ\w; xl [ þ b� e:

� ð2Þ

The implicit assumption in (2) is that there is a function

f xð Þ, such that the above convex optimization problem is

feasible. However, sometimes, this may not be the case, for

which one can introduce some slack variables n�i � 0 and

nþi � 0 to cope with infeasible constraints (Cortes and

Vapnik 1995). This leads to the formulation stated in

Vapnik (1995) as follows:

Min
1

2
wk k2 þC

Xl

i¼1

n�i þ nþi
� �

s:t:
yl �\w; xl [ � b� eþ n�i
�yl þ\w; xl [ þ b� eþ nþi ;

( ð3Þ

where the constant C[ 0 determines the trade-off between

the flatness of the regression function f xð Þ and the

threshold up to which, deviations larger than e are toler-

ated. In fact, 1
2

w2
�� �� demonstrates the complexity of the

model, and C
Pl

i¼1 n�i þ nþi
� �

is defined as the empirical

error of the model.

To solve the optimization problem stated in (3), a

Lagrangian function is constructed for the objective func-

tion (the primal objective function) and the corresponding

constraints as follows:

L ¼ 1

2
wk k2 þC

Xl

i¼1

n�i þ nþi
� �

�
Xl

i¼1

kþi n
þ
i þ k�i n

�
i

� �

�
Xl

i¼1

a�i eþ n�i � yi þ\w; xi [ þ b
� �

�
Xl

i¼1

aþi eþ nþi þ yi �\w; xi [ � b
� �

;

ð4Þ

where kþi , k�i , a�i , and aþi are Lagrangian multipliers.

Then, using the saddle point condition obtained by the

partial derivatives of the Lagrangian function with respect

to the primal variables w; b; n�i ; and n
þ
i and taking the

advantage of the dual equivalence of the optimization

problem at hand, the following optimization problem is

solved easier:

J Ind Eng Int (2018) 14:491–500 493

123



Max w a�i ; a
þ
i

� �
¼ 1

2
wk k2 þC

Xl

i¼1

n�i þ nþi
� �

� 1

2

Xl

i¼1

Xl

j¼1

a�i � aþi
� �

a�j �aþj

� �
\xi; xj [

þ
Xl

i¼1

a�i yi � e
� �

� aþi yi þ e
� �� �

¼

s:t:
1

2
wk k2 þC

Xl

i¼1

n�i þ nþi
� �

� 1

2

Xl

i¼1

Xl

j¼1

a�i � aþi
� �

a�j �aþj

� �
\xi; xj [

þ
Xl

i¼1

a�i yi � e
� �

� aþi yi þ e
� �� �

s:t: 0� a�i ; a
þ
i �C

Xl

i¼1

a�i � aþi
� �

¼ 0:

ð5Þ

Finally, by exploiting the Krauch–Kuhn–Tucker condi-

tion (Karush 1939; Kuhn and Tucker 1951), the solution of

the dual problem is obtained as follows:

b ¼ � 1

2
\w; ðxr þ xsÞ[ ð6Þ

w ¼
Xl

i¼1

a�i � aþi
� �

x: ð7Þ

Nonlinear SVR

As seen in ‘‘Linear SVR’’ section, the goal in e-SV
regression is to find a function with the most e-deviation
from the obtained targets for all the training data, and at the

same time as flat as possible. Sometimes, however, the

linear regression function used in the linear SVR is not

appropriate. For instance, when the inputs present nonlin-

ear characteristics, their linearization reduces the accuracy

of the model. A better choice is to use the Kernel function

in the case where nonlinear characteristics are detected in

the input values. Kernel functions preprocess the inputs,

thus taking the nonlinear patterns into consideration during

the preprocessing procedures.

Kernel functions are responsible for mapping inputs

onto a feature space. Consider a nonempty set X. Then, the

mapping

k : X � X ! K ð8Þ

is a Kernel on X, if space H exists, in which the K-Hilbert

and the map are as follows:

u : X ! H and

8x; x0 2 H;Kðx; x0Þ ¼ \uðx0Þ;uðxÞ[ ;
ð9Þ

where u is the feature map and H is the feature space of K.

Using the Kernel function to map the feature space, the

regression function is restated as follows:

yðxÞ ¼
Xl

i¼1

ða�i � aþi Þ:Kðxi; xÞþb: ð10Þ

While several Kernel functions are available, the fol-

lowing are the wide known (Murphy 2012).

– Linear Kernel Function:

Kðx; xiÞ ¼ \x; xi [ :

– Hyperbolic Tangent (Sigmoid) Kernel function:

Kðx; xiÞ ¼ tanhðbþ �\xi; x[ Þ:

– Radial Basis Kernel function:

Kðx; xiÞ ¼ expð�� x� xi
�� ��2Þ:

To utilize linear regressions for nonlinear models, non-

linear maps that transform data into a multi-dimensional

feature space are engaged. Thus, taking advantage of the

dual problem, the following optimization problem is solved

to find the optimal solution of the nonlinear SV problem:

Maxa�;aþw a�;aþð Þ ¼Maxa�;aþ
Xl

i¼1

aþi ðyi� eÞ� a�i ðyiþ eÞ

� 1

2

Xl

i¼1

Xl

j¼1

ðaþi � a�i Þðaþj �a�j ÞKðxi; xjÞ

s:t: 0�a�i ;a
þ
i �C

Xl

i¼1

a�i � aþi
� �

¼ 0:

ð11Þ

The regression function is further defined by solving the

prior problem using the Lagrangian method as follows:

f ðxÞ ¼
X

SVs

ða�i � aþi ÞKðxi; xÞ þ b; ð12Þ

where
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b ¼ � 1

2

Xl

i¼1

ða�i � aþi ÞðKðxi; xrÞ þ Kðxi; xsÞÞ ð13Þ

and

\w; x[ ¼
Xl

i¼1

ða�i � aþi ÞKðxi; x jÞ: ð14Þ

Interested readers are referred to Murphy (2012) for

more details.

Neural networks

Artificial neural network (ANN) is a relatively newly

developed tool that has been widely employed for fore-

casting in various fields. An artificial neural network

(ANN) is a system consisted of numerous simple parts

that are in relation with each other. Data are processed

using dynamic answers to the independent inputs in such

networks. Applications have been increased after neural

networks were able to solve indissoluble problems in

recent years. For instance, Yousefi et al. (2015) used ANN

to model the nonlinearity of wind speed to accurately

forecast wind speed in wind farms. Markopoulos et al.

(2016) compared the performances of various ANNs in

predicting surface roughness. Maleki et al. (2015)

employed an ANN to provide a step-change point esti-

mation of the multi-attribute process variability.

Shokrollahpour and Hosseinzadeh Lotfi (2016) integrated

an ANN with DEA to determine the relative efficiency of

one of the Iranian commercial bank branches. Bashiri

et al. (2013) proposed an ANN approach to optimize un-

correlated multi-response problems with ‘‘smaller the

better’’ type controllable factors. A comprehensive review

on using ANNs as a forecasting tool was provided by

Zhang et al. (1998).

There are four main points that justify the use of ANNs

to forecast presidential elections; (1) ANNs are nonlinear,

i.e., they can capture nonlinear relations between inde-

pendent (input or feature) and dependent (output or

response) variables, (2) ANNs are data driven, i.e., no

explicit assumption on the model between the inputs and

outputs is needed, (3) ANNs are able to generalize, i.e.,

they can produce good results even when they face to new

input patterns, and (4) unlike statistical techniques, ANNs

do not need assumptions on the distribution of input data

(Niaki and Hoseinzade 2013). However, before their use,

one must pay attention that sometimes, the robustness of

their outcomes is questionable (Saad et al. 1998). Besides,

they have three main disadvantages; (1) the determination

of the optimal combination of the network parameters such

as learning rate, momentum, number of hidden layers,

number of hidden nodes in each layer, etc., is difficult, (2)

selecting the relevant features of an ANN is not an easy

job, and (3) great volume of data is required to train the

network to achieve an accurate result (Zhu et al. 2008).

The network topology, the number of layers, the number

of nodes in each layer, the activation function, and the

learning algorithms are to be determined to design an

appropriate ANN for a particular problem. Based on the

topology, ANNs are mainly classified into two groups of

feed-forward and recurrent networks. As the use of the

recurrent topology in more common in univariate fore-

casting analysis (Saad et al. 1998), it will be used in this

paper to forecast US presidential election.

Depending on the complexity of the problem, the

number of network layers varies. Besides, many recurrent

networks have one or more hidden layers in addition to the

input and the output layers that are essential for an ANN

design. As the available methods to determine the optimal

number of hidden layers and hidden nodes are very com-

plex and hard to apply (Zhang et al. 1998), in this paper,

the common practice of identifying the proper network

design, which is comparing the performances of ANNs

with different designs and selecting the network that results

in the best performance, is taken (Hosseini et al. 2006).

The input layer of an ANN consists of the input vari-

ables (features) that seem to be influential to the output

variable. In this paper, these influential features are deter-

mined using the regression analysis, where the features of

the proposed ANN are the potential independent variables.

The output layer of an ANN consists of nodes associated

with the dependent variables. As the objective of this

research is to forecast the outcome of US presidential

election, the output layers of the proposed ANN consist of

only one node.

The tangent hyperbolic sigmoid (Tansig) function as the

most common one in the relevant literature is used as the

activation function for the nodes of all layers. Furthermore,

the error back-propagation algorithm is employed to train

the designed ANN.

To design, train, and simulate the proposed ANN, the

neural network toolbox of the MATLAB 7 package soft-

ware is used in this research. Interested readers are referred

to Demuth and Beale (1998) for a detailed description of

this neural network toolbox.

Model development

To initialize the model development, preprocessing meth-

ods are performed. The utilized preprocessing methods in

this research are (1) data transformation, (2) data reduction,

and (3) clustering. Furthermore, SVR and ANN are the

employed learning algorithms for the obtained forecasting
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models. The acquired results of the prior mentioned algo-

rithms are further compared to linear regression results

based on the following measures of performance:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðYi � PiÞ2
s

ð15Þ

MAPE ¼ 100� 1

n

Xn

i¼1

Yi � Pij j
Yi

; ð16Þ

where Yi is the observed result and Pi is the predicted

result.

The dependent variable in this research is observed as

the electoral votes of the incumbent party in 16 data sets.

The forecasting model is developed based on the US

presidential election data from 1952 to 2012, where the last

three data sets out of the 16 have been set aside to validate

the model. Furthermore, the potential independent vari-

ables are considered as follows:

• The number of the consecutive terms the incumbent

party has been in office.

• Personal income.

• Electoral votes of the incumbent party in the previous

election.

• Votes of the incumbent party in the last senate election.

• Votes of the incumbent party in the last house of

representatives election.

• The president’s approval rate.

• Unemployment rate.

• The number of times that the 3-month GDP is above

3.2 within the last 4 years.

For the data reduction process, the stepwise regression is

performed, based on which the most significant variables are

identified and selected for the model. The SPSS software is

utilized to obtain the results in Table 1 using the stepwise

method. The results indicate that the president’s job approval

rate is the only significant variable among the above-men-

tioned variables. The calculated adjusted R-square of the

model is 0.714, which indicates that the model is only able to

account for 0.714 of the variation of the dependent variable.

Subsequently, the independent variables are altered, to

obtain a better performing model with higher adjusted R-

square values (Adj. R-square[ 0.8).

Since the president’s job approval has been identified as

the only significant variable, the model is further reformed

based on this finding. In the previous model, the president’s

job approval rate at the end of June of the election year was

considered. However, this rate at the end of each month

presents more data points for this significant variable. The

president’s job approval rate at the end of the first 8 months

of the election year is thus utilized. Using the stepwise

regression once again, the results are obtained in Table 2

by employing SPSS.

It is evident that the president’s job approval at the end

of April (VAR4) and June (VAR6) has been selected by the

stepwise regression method. The calculated adjusted R-

square value is 0.774 in this case which suggests that fur-

ther improvements are necessary to obtain an

acceptable model.

The next applied preprocessing method is data trans-

formation. Data transformation is necessary for learning

algorithms, since it prevents the algorithm from accentu-

ating the variables with bigger data. In addition, it signif-

icantly reduces the error of the model. The most useful

method in data transformation is the Mini–Max method. In

this method, an interval for the data is taken into consid-

eration. Considering (0, 1) or (-1, 1) is common practice;

however, (0.3, 0.5) is specified as the interval for the Mini–

Max transformations in this research based on a pilot study.

Minifying intervals in data transformation leads to an

extreme reduction in the error of the model. The main

objective of learning algorithms is to find the optimal plane

in the feasible space of the problem. Furthermore, the error

is reduced due to the relative ease of searching a smaller

and more limited space compared to the initial space.

Another advantage of minifying intervals is related to the

sigmoid functions in ANNs. Using this function in neural

networks is also a common practice, and the derivative of a

sigmoid function is used in the learning process. Since the

derivative of this function near 0 and 1 is about 0, enlarging

intervals might lead to divergence in the neural network

algorithm. By utilizing the Mini–Max method, considering

(0.3, 0.5) as the interval prior to the stepwise regression for

the model, the obtained results in Table 3 suggest an

improvement in the adjusted R-square value of the model

to 0.782.

Clustering is another utilized data transformation

method. Clustering is useful in decreasing noise in data,

and it also increases the focus throughout the data within

different clusters. To apply this method, the K-means

algorithm is utilized. In this algorithm, K clusters are

specified where the goal is to minimize this number to

avoid possible resulting divergent systems. Table 4

demonstrates the results of this transformation method.

Table 1 Result of the first

stepwise regression
Model Variables entered R-square Adjusted R-square Std. error of the estimate

1 President job approval 2 0.733 0.714 80.37846
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As seen in the above table, the validation data (14th,

15th, and 16th data sets) are in the first and second clusters.

Thus, it is concluded that the data in the third cluster are

not useful, and thus, it is omitted. Using the prior prepro-

cessing methods, the following four types of data sets are

further used for the application of SVR and ANN learning

algorithms in the next two subsections:

1. Data set 1: The initially transformed data (16 data sets,

8 variables).

2. Data set 2: Reduction and transformation data (16 data

sets, 2 variables).

3. Data set 3: Clustering data set (14 data sets, 8

variables).

4. Data set 4: Reduction, transformation, and clustering

data sets (14 data sets, 2 variables).

Results

In this section, the applications of SVR, ANN, and

regression are first demonstrated. Then, comparisons are

made to assess the efficacy of the employed methods.

SVR application

In support vector regression, the training and the validation

data are specified first. The last three data sets (2004, 2008,

and 2012) are specified as the validation data and the rest

are designated for training purposes. To apply SVR, after

dividing the data, parameters are specified. The radial of

the acceptable cylinder for support vector regression is

among these parameters and is denoted by e. Unfortu-

nately, a specific method for choosing the exact value of e
does not exist. Thus, e, in this research, is specified by trial

and error. Subsequently, the best interval for e is specified
as (0.01, 0.1). In addition, C, or the parameter for the loss

function, is also specified through trial and error, and the

optimal interval for C is specified as (2-2, 24).

As mentioned earlier, Kernel functions are significantly

influential functions in forecasting models. The radial basis

Kernel function (RBF) is the utilized function in this

research. RBF is the most common Kernel function that has

been extremely beneficial in reducing error in models.

Another advantage of RBF is that extensive parameter

specification is un-obligatory for this function. The RBF

only requires a single parameter to be specified. This

parameter, � , is specified through trial and error in the

range (2, 11). SVR is applied using the R software, based

on which the following present the best models in the

above-mentioned four different data sets:

I. Data set 1: the best model presents the parameters

C = 0.25 and � = 2, independent of e.
II. Data set 2: the best model presents the parameters

C = 0.25, � = 5, and a = 0.07.

III. Data set 3: the best model presents the parameters

C = 0.25 and � = 2.

IV. Data set 4: the best model presents the parameters

C = 0.25, � = 5, and a = 0.01.

As the values in Table 5 demonstrate, the errors in the

optimal models II and IV are less than the one in the model

I. This clearly indicates how beneficial the preprocessing

methods are in reducing the error of models. Moreover, the

best model is identified as the model IV, which validates

the benefit of using the clustering approach.

Table 2 Result of the second

stepwise regression
Model Variables entered R-square Adjusted R-square Std. error of the estimate

2 VAR4, VAR6 0.804 0.774 71.39166

Table 3 Model summary after applying data transformation

Model R-square Adjusted R-square Std. error of the estimate

3 0.811 0.782 0.02945

Table 4 Clustering results

Case number Cluster Distance

1 1 0.074

2 2 0.073

3 3 0.021

4 3 0.021

5 2 0.067

6 1 0.098

7 1 0.097

8 1 0.118

9 1 0.064

10 1 0.038

11 2 0.050

12 1 0.075

13 1 0.030

14 1 0.045

15 2 0.048

16 1 0.021
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ANN application

The artificial neural network is utilized and its results are

further compared with the results obtained from SVR. To

make an unbiased comparison, the data sets are the same as

the previously four specified data sets. Furthermore, the

last three sets are the designated as validation data, and the

training data consist of the first 11 data sets from the

clustered data.

To apply ANN, a multi-layer perceptron is chosen for

the network as it has been highly successful in forecasting

models. The architecture of the neural network involves

the number of input and output neurons, the number of

layers, the number of neurons in each layer, the connec-

tivity of layers, and the transfer function in each layer.

Furthermore, the number of input layers in each network

is equal to the number of input variables, and the number

of output layers is equal to the number of independent

variables. There is no specific method to specify the

number of neurons in hidden layers, and thus, trial and

error are performed to specify this number. In general, the

goal is to minimize the number of neurons within the

hidden layers. This number is specified as 1 or 2 based on

performed trials. Similar to the prior process, trial and

error are utilized to specify the number of hidden layers.

However, it should be considered that increasing the

number of hidden layers will ultimately lead to an over-

training situation. This, in turn, substantially increases the

calculation time of the model. One or two hidden layers

are utilized in the proposed model. Note that the number

of estimated parameters must be less than the number of

data sets.

Moreover, complete connectivity between the layers of

the multi-layer perceptron network is considered, where

each neuron in each layer is connected to all neurons in

next layers. To reduce model complexity, a linear transfer

function is specified in the output layer. The hyperbolic

tangent and log-sigmoid function are utilized in other

layers. Since the weight matrix is specified randomly at the

beginning of the algorithm, the ANN procedure is applied

more than once to obtain more accurate values for the

weight matrix. Besides, a divergent network might be

resulted due to inaccurate initial weights.

The architectures of the optimal ANN for the above-

mentioned four data sets are as follows:

I. Data set 1: Number of hidden layers = 1, Number of

neurons in each hidden layer = 1, Transfer function

in each hidden layer is log-sigmoid.

II. Data set 2: Number of hidden layers = 1, Number of

neurons in each hidden layer = 2, Transfer function

in each hidden layer is log-sigmoid.

III. Data set 3: Number of hidden layers = 1, Number of

neurons in each hidden layer = 1, Transfer function

in each hidden layer is log-sigmoid.

IV. Data set 4: Number of hidden layers = 2, Number of

neurons in each hidden layer = 1, Transfer function

in each hidden layer is log-sigmoid.

Table 6 contains the performance measures of the above

four ANNs. If RMSE is considered as the main perfor-

mance measure, then models III and IV are identified as the

best models. However, if MAPE is specified as the per-

formance measure, then model IV is the best performing

model. Ultimately, model IV is identified as the best ANN

model.

Table 5 SVR result for each data set

The optimal model of each data set RMSE MAPE Improvement in RMSE (%) Improvement in MAPE (%)

I 0.019546 3.544145 – –

II 0.014997 2.43672 23.27 31.24

III 0.021612 4.432259 -10.56 -25.05

IV 0.010263 1.864497 47.49 47.39

Table 6 Result of ANN for

each data set
Model RMSE MAPE

I 0.015641 2.938875

II 0.030036 4.641433

III 0.01343 3.055326

IV 0.013959 2.586155

Table 7 Result of linear

regression for each data set
Model RMSE MAPE

I 0.129775 32.86371

II 0.084571 21.52493

III 0.141628 35.90823

IV 0.104456 26.22334
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Linear regression

Linear regression is another utilized method that serves as a

benchmark for the other algorithms. Table 7 demonstrates

the results obtained using linear regression, based on which

Model II is identified as the best performing model based

on the calculated performance measures. Moreover, the

values indicate that clustering is not beneficial in this case.

Comparison

To identify the final best forecasting model, the best per-

forming model of each utilized method is selected and

further compared based on the prior specified performance

measures. Table 8 demonstrates the calculated RMSE and

MAPE values associated with each method’s best per-

forming model.

The learning algorithms, SVR and ANN demonstrate

lower values for RMSE and MAPE compared to Linear

Regression. This indicates that the two learning algorithms

outperform linear regression. In addition, the final best

model is identified to be the SVR model, as its calculated

RMSE and MAPE values are the lowest.

The SVR model is further applied to the data that have

gone through preprocessing measures (clustering, data

reduction, and transformation). The Kernel function of

this model is RBF, and the parameter of this Kernel

function is � = 5. The other parameters are C = 0.25

and a = 0.1. Table 9 demonstrates the predicted result of

this approach:

The results in Table 9 indicate that the utilized SVR

forecasting method is successful in forecasting the presi-

dential election results in the last three elections. The

number of necessary electoral votes to secure the presi-

dency is set at 270. In both 2004 and 2012, where the

incumbent party succeeds in the election, the predicted and

the real electoral votes are higher than 270. However, in

2008 where the incumbent party is defeated, the predicted

and the real electoral votes are significantly less than 270.

Conclusion and recommendation for future
research

The objective of this research was to find an accurate

forecasting model for the US presidential elections.

Learning algorithms and data mining methods were uti-

lized towards this objective. Moreover, independent vari-

ables such as GDP, unemployment rate, personal income,

changes in the votes of the incumbent party in the last

congress election, and the president’s job approval were

considered. The significance of each variable was deter-

mined by applying stepwise regression. Consequently, all

variables except the president’s job approval rate were

omitted. The main theory that the presidential election is a

referendum on the incumbent president’s policies is proved

to be true based on the findings. After the stepwise

regression is performed, eight variables related to the

president’s job approval were considered to develop the

forecasting model. By applying two preprocessing meth-

ods, data transformation and clustering, the data were

prepared for the learning algorithms. Utilizing clustering

and data transformation and reduction led to the accuracy

of the model to improve by 50%. Furthermore, a compar-

ison between the learning algorithms (SVR and ANN) and

linear regression was carried out to identify the best model.

The comparison demonstrated that the learning algorithms

are by far better at reducing error compared to linear

regression. Moreover, the SVR model was identified as the

best performing forecasting model and proved successful in

accurately forecasting the last three US presidential elec-

tions (2004, 2008, 2012).

In this paper, the variables were selected based on

national statistics, but political and economic variables in

each state are also significantly influential on people’s

decision in elections. Researchers could also take another

approach and model the presidential elections in each state,

and forecast based on the winner of each state. Besides, it is

recommended to combine ANN and SVR with fuzzy sys-

tems, to improve forecasting accuracy. The major problem

in applying SVR and ANN is a lack of a specific method to

specify some parameters such as e and � in SVR and the

number of hidden layers in ANN. Researchers can further

develop algorithms and heuristic methods that are capable of

accurately specifying each method’s necessary parameters.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

Table 8 Comparing the best model of each algorithm

Optimal model RMSE MAPE

SVR 0.010623 1.864497

ANN 0.013959 2.586155

Linear Regression 0.104456 26.22334

Table 9 Predicted and actual votes of the incumbent party

Election Real electoral votes Predicted electoral votes

2004 286 326.29

2008 173 173.54

2012 332 319.12
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