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Abstract Control charts are extensively used in manu-

facturing contexts to monitor production processes. This

article illustrates economical design of a variable sample

size and control limit Hotelling’s T2 control chart based on

a novel cost model when occurrence times of the assign-

able causes are exponentially distributed. The proposed

nonlinear cost model is an extension of Duncan’s (J Am

Stat Assoc 51: 228–242, 1956) model which was employed

for univariate cases. Applying genetic algorithm to find

optimum parameter values and using an L33 orthogonal

array in sensitivity analysis on the model parameters is

investigated through a numerical example to illustrate the

effectiveness of the proposed approach.

Keywords Economic design � Genetic algorithms �
Multivariate control chart � Statistical quality control �
VSSCT2 control chart

List of symbols

T2
i

A random variable followed Hotelling’s T2

distribution

T1 The expected length of in-control period

T2 The expected length of searching period due to

false alarms

T3 The expected length of out-of-control state

T4ð¼ t1Þ The time to identify and correct the assignable

cause following an action signal

h Sampling interval

ARLout The average number of samples drawn from

process when it is out of control

t The time interval between mean shift and the

latest sample point before mean shift

n0 The average sample size when the process

operates in out-of-control state

G The average time from taking a sample to the

time of plotting T2
i statistic on the chart

E U1ð Þ The average number of sample points in the

safe region when the process is in out-of-

control state and current sample point belongs

to safe region

E U2ð Þ The average number of sample points in the

warning region when the process is in out-of-

control state and current sample point belongs

to warning region

E N1
i

� �
The average number of sample points in the

warning region when the process is in out-of-

control state and current sample point belongs

to safe region

E N2
i

� �
The average number of sample points in the safe

region when the process is in out-of-control state

and current sample point belongs to warning region

E N1ð Þ The average number of samples drawn from the

time of process mean shift to the time that mean

shift is detected given that first sample point

after mean shift falls into the safe region

E N2ð Þ The average number of samples drawn from the

time of the process mean shift to the time that

mean shift is detected given that first sample point

after mean shift falls into the warning region

Fp;mj;sj
A random variable followed non-central F

distribution with p and mj degrees of freedom

and non-centrality parameter sj
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t0 The average amount of time exhausted

searching for the assignable cause when the

process is in-control

E FAð Þ The expected number of false alarms per cycle

E Tð Þ The expected length of a production cycle

C0 The average search cost if the given signal is

false

C1 The average cost to discover the assignable

cause and adjust the process to in-control state

C2 The hourly cost when the process is operating

in control state

C3 The hourly cost when the process is operating

in out-of-control state

C4 The cost for each inspected item

E Cð Þ The expected cost during a production cycle

E Ninð Þ The average numbers of samples drawn from

the process given that the process is in-control

ECT The expected cost per time

Introduction

Statistical process control (SPC) is a tremendous quality

assurance tool to develop the quality of manufacture and

ultimately scores on end-customer satisfaction. SPC uses

control charts to monitor the most important key quality

characteristics (KQCs) in manufacturing (Sharma and Rao

2013).

In general, there is at least a small variation on quality

characteristics of the produced items. Hence, we should

control the processes to reduce the amount of noncon-

forming products. Control charts basically are used to

monitor processes to become aware on any alteration that

may affect the quality of product.

Generally, SPC control charts are used to detect changes

in a process by distinguishing between assignable causes and

common causes of the process variation. When a control

chart signals, process engineers initiate a search to identify

and eliminate the source of variation. Knowing the time at

which the process began to vary, the so-called change point

would help to conduct the search more efficiently in a tighter

time-frame (Assareh et al. 2013; Akhavan Niaki and Khed-

mati 2013). Control charts also are used to detect anomalies

in the processes. They are most often used to monitor pro-

duction-related processes. In many business-related pro-

cesses, the quality of a process or product can be

characterized by a relationship between a response variable

and one or more explanatory variables which is referred to as

profile (Narvand et al. 2013; Soleimani et al. 2013).

In many applications, quality of process is characterized

by a single random variable called quality characteristic but

some cases occur that process is characterized by more

than one quality characteristic. These random variables are

usually correlated and jointly distributed and cannot be

controlled independently using a univariate control chart.

Accordingly, multivariate statistical control methods have

been proposed to investigate this issue. Most of the works

on control charts in multivariate case are on problem of

monitoring mean vector of the process. A measure of dis-

tance that takes into account the covariance structure was

proposed by Harold Hotelling (1931). It is called Hotell-

ing’s T2 in honour of its developer. Geometrically we can

view T2 as proportional to the squared distance of a mul-

tivariate observation from the target where equidistant

points form ellipsoids surrounding the target. The higher

the T2 value, the more distance the observation from the

target is. In the Hotelling’s T2 control chart the mean vector

and covariance matrix are unknown and must be estimated

by means of the previous data where it may affect the

performance of control chart. Recently, some researchers

such as Tchao and Hawkins (2011), Capizzi and Masarotto

(2010) and Jensen et al. (2006) proposed solutions to

investigate this issue.

When a control chart is used to monitor a process, three

design parameters that should be selected are the sample

size, the sampling interval, and the action limit(s). Duncan

(1956) offered an economic model incorporated the most

important relevant cost items associated with sampling and

control charts. Through minimization of the proposed cost

model, the optimum economical design parameters of

control chart were presented.

In the literature, statistical control chart design may be

applied to increase the power of any control chart such as

T2. Aparisi (1996) followed this idea through adaptive

sample size and sampling interval in the multivariate case

and proposed three types of modified charts with variable

sample size (VSS), variable sampling interval (VSI), and

variable sample size and sampling interval (VSSI) features,

respectively (see Aparisi 1996; Aparisi and Haro 2001,

2003), given that the mean vector and variance–covariance

matrix were known. Chen and Hsieh (2007) indicated that

traditional T2 chart gives a better performance if both

sample size and control limits are variable (VSSC), and the

waiting time between successive samples are fixed.

In the case of economic design of control charts, Chen

(2009, 2007) used a Markov chain approach to design VSI

T2 and VSSI T2 control charts. He showed that both of

them can be more efficient than FSR (Fixed Sampling

Rate) control scheme in terms of the loss. Chou et al.

(2006) developed a cost function for variable sampling

intervals T2 control charts and obtained optimum design

parameters using genetic algorithms. Costa and Rahim

(2001) used the Markov chain approach to reach an
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economic design of �X charts with variable parameters. De

Magalhaes et al. (2001) developed a cost model for eco-

nomic design of �X chart with all design parameters varying

in an adaptive way. They check whether the economic

model for a Vp �X chart reduces the quality cost of a pro-

cess. Bai and Lee (1998) presented an economic design of

the VSI �X control charts and showed that the VSI scheme

can be more efficient than the FSI scheme in terms of the

expected cost per time. They applied a two-stage optimi-

zation approach to find the optimal sampling-and-charting

parameters of their cost model.

In this paper, we propose a novel economic design of T2

control chart based on the extension of Duncan’s (1956) cost

model. By using a genetic algorithm, the optimal design

parameters of the relevant cost model besides the sensitivity

analysis is proposed through an illustrative example.

The rest of the paper is organized as follows: in ‘‘Var-

iable sample size and control limits T2 control chart’’ we

briefly review the VSSC T2 control chart. We then present

a method and describe the proposed formulation for the of

cost model for multivariate situations in ‘‘Proposed cost

model’’. ‘‘Illustrated example’’ systematically guides

readers to implement the proposed procedure via a

numerical example. Finally, we close with a conclusion.

Variable sample size and control limits T2 control chart

Let �X1; �X2; �X3; . . . be p 9 1 random vectors, each repre-

senting sample mean vector of related quality characteris-

tics assumed jointly distributed as p-variate normal with

mean vector l0 and variance–covariance matrix
P

0 When

ith sample of size n is taken at every sampling point, we

calculate the following statistic:

v2
i ¼ n � �Xi � l0ð Þ0�R�1

0 � �Xi � l0ð Þ i ¼ 1; 2; 3. . . ð1Þ

and compare it with upper control limit (or action limit)

denotes by UCLv2 which can be specified by the ð1 � aÞ
percentile point of a v2 distribution with p degree of free-

dom v2
p;a

� �
. However, in most cases the values of l0 and

P
0 are unknown and are estimated by sample mean vector

(X), and sample variance–covariance matrix (S) of m initial

random samples prior to on-line process monitoring and T2

statistic is defined by

T2
i ¼ n � �Xi � X

� �0
�S�1 � �Xi � X

� �
; i ¼ 1; 2; . . .m ð2Þ

that is the approximate statistic for Hotelling’s multivariate

chart. In this case, action limit used to monitor future

random vectors is given by Alt (1984) as

k ¼ Cðm; n; pÞ � Fp;v;a: ð3Þ

where Fp;v;a is the ð1 � aÞ percentile point of F distribution

with p and v degrees of freedom. Cðm; n; pÞ and v are

calculated by

Cðm; n; pÞ ¼
p�ðmþ1Þ�ðn�1Þ

mn�m�pþ1
; n [ 1

p�ðmþ1Þ�ðm�1Þ
m2�mp

; n ¼ 1

8
<

:
;

v ¼
mn � m � p þ 1; n [ 1

m � p; n ¼ 1

� ð4Þ

Traditional Hotelling’s T2 chart operates with a fixed

sample of size n0 drawn every h0 hours from process, and

T2 statistic is plotted on a control chart with k0 ¼
Cðm; n0; pÞ � Fp;v;a as the action limit. The VSSC T2 chart

is a modification of traditional T2 chart. Let n1;w1; k1ð Þ be

minimum sample size, largest warning and action limits,

and n2;w2; k2ð Þ be maximum sample size, smallest

warning and action limits, respectively, such that

n1\n0\n2 while keeping sampling interval fixed at h.

The warning (wj) and action (kj ¼ Cðm; nj; pÞ � Fp;v;a)

limits divide T2 chart to three regions as shown in

Table 1:

The decision to switch between maximum and mini-

mum sample size depends on position of the prior sample

point on the control chart and summarizes as following

function:

nðiÞ;wðiÞ; kðiÞð Þ ¼ n1;w1; k1ð Þ
n2;w2; k2ð Þ

if

if

0� T2
i�1 �wi�1

wi�1\T2
i�1 � ki�1

�

ð5Þ

During the in-control period, it is assumed that the size

of samples is chosen at random between two values when

the process starts or after a false alarm. Small size is

selected with probability of p0, whereas large sample size

is selected with probability of 1 � p0, where p0 is the

conditional probability of a sample point falling in the safe

region, given that it did not fall in the action region and is

calculated as follows:

p0 ¼ Pr T2
i \w1jT2

i \k1

� �
¼ Pr T2

1 \w2jT2
i \k2

� �
ð6Þ

1 � p0 ¼ Pr w1\T2
i \k1jT2

i \k1

� �

¼ Pr w2\T2
i \k2jT2

i \k2

� �
ð7Þ

Table 1 Three regions in

VSSC T2 chart
Interval Region

Safe region ½0;wj�
Warning region wj; kj

� �

Action region kj;þ1
� �
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Proposed cost model

Cost model is an extension of Duncan (1956) model which

was employed in a univariate case. First, we make a

number of assumptions as follows:

• The mean vector and variance–covariance matrix of

process are unknown.

• At beginning, the process is in-control but after a

random time it will be disturbed by an assignable cause

that causes a fixed shift in the process mean vector.

• The process after the shift remains out of control until

the assignable cause is eliminated (if possible).

• When the T2
i value falls outside the action limit, the

process is stopped and then a search is started to find

the assignable cause and adjust the process.

• The interval between starting the process and occurring

of an assignable cause follows an exponential distribu-

tion with k as its parameter.

In the economic design of VSSC T2 control chart we

tend to find the optimal design parameters that minimize

the expected cost per time. Figure 1 depicts the pro-

duction cycle, which is divided into four time intervals

of in-control period, out-of-control period, searching

period due to false alarm, and the time period for

identifying and correcting the assignable cause. Indi-

viduals are now illustrated before they are grouped

together.

(T1) The expected length of in-control period is 1
k.

(T3) The expected length of out-of-control state rep-

resents the average time needed for the control chart to

produce a signal after the process mean shift. T3 is given

by

T3 ¼ h � ARLout � t þ n0 � G ð8Þ

where G is the average time from taking a sample to the

time of plotting T2
i statistic on the chart, and n0 is the

average sample size when the process operates in out-of-

control state, and ARLout is the average number of samples

drawn from process when it is out of control. n0 and ARLout

are given by

n0 ¼ p0 �
n1 � EðU1Þ þ n2 � E N1

i

� �

EðN1Þ
þ 1 � p0ð Þ

�
n1 � E N2

i

� �
þ n2 � EðU2Þ

EðN2Þ
ð9Þ

ARLout ¼ p0 � EðN1Þ þ 1 � p0ð Þ � EðN2Þ ð10Þ

where as indicated by Chen (2007a, b), E U1ð Þ is the

average number of sample points in the safe region when

the process is in out-of-control state and current sample

point belongs to safe region. Then,

E U1ð Þ ¼ 1 � p22

1 þ p11 � p22 � p11 � p22 � p12 � p21

ð11Þ

E U2ð Þ is the average number of sample points in the

warning region when the process is in out-of-control state

and current sample point belongs to warning region. Then,

EðU2Þ ¼
1 � p11

1 þ p11 � p22 � p11 � p22 � p12 � p21

ð12Þ

E N1
i

� �
is the average number of sample points in the

warning region when the process is in out-of-control state

and current sample point belongs to safe region. Then,

E N1
i

� �
¼ 1 þ p12

1 � p22

ð13Þ

E(Ni
2) is the average number of sample points in the safe

region when the process is in out-of-control state and

current sample point belongs to warning region. Then,

E N2
i

� �
¼ 1 þ p21

1 � p11

ð14Þ

EðN1Þ is the average number of samples drawn from the

time of process mean shift to the time that mean shift is

detected given that first sample point after mean shift falls

into the safe region. Then,

EðN1Þ ¼
1 � p22 þ p12

1 þ p11 � p22 � p11 � p22 � p12 � p21

ð15Þ

EðN2Þ is the average number of samples drawn from the

time of the process mean shift to the time that mean shift is

detected given that first sample point after mean shift falls

into the warning region. Then,

Fig. 1 Production cycle

considered in the cost model
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EðN2Þ ¼
1 � p11 þ p21

1 þ p11 � p22 � p11 � p22 � p12 � p21

ð16Þ

where

p11 ¼ Pr T2
i \w1jT2

i �Cðm; n1; pÞ � Fp;v1;s1

� 	

p12 ¼ Pr w1\T2
i \k1jT2

i �Cðm; n1; pÞ � Fp;v1;s1

� 	

p21 ¼ Pr T2
i \w2jT2

i �Cðm; n2; pÞ � Fp;v2;s2

� 	

p22 ¼ Pr w2\T2
i \k2jT2

i �Cðm; n2; pÞ � Fp;v2;s2

� 	

where C m; nj; p
� �

and vj for j ¼ 1; 2 is calculated by

Eq. (4), and Fp;vj;sj
for j ¼ 1; 2 is a random variable fol-

lowed non-central F distribution with p and vj degrees of

freedom and non-centrality parameter sj defined by

sj ¼ nj � l1 � l0ð Þ0
P�1 l1 � l0ð Þ. If we define

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 � l0ð Þ0

P�1 l1 � l0ð Þ
q

, then sj ¼ nj � d2, where d

is the Mahalanobis distance that is a measure of change in

process mean vector.

(T2) Let t0 denote the average amount of time exhausted

searching for the assignable cause when the process is in-

control, and EðFAÞ denote the expected number of false

alarms per cycle, which is given by

EðFAÞ ¼
1

hk

� �

ARLin

¼
1
hk

� �

1
a

¼ a � 1

hk

� 

; ð17Þ

then, the expected length of searching period due to false

alarms can be expressed by T2 ¼ t0 � EðFAÞ.
(T4) The time to identify and correct the assignable

cause following an action signal is a constant t1.

Aggregating the foregoing four time intervals, the

expected length of a production cycle would be expressed

by

EðTÞ ¼ 1

k
þ t0 � a � 1

hk

� 

þ h � ARLout � t þ n0 � G þ t1

ð18Þ

If one defines C0, the average search cost if the given

signal is false; C1, the average cost to discover the

assignable cause and adjust the process to in-control state;

C2, the hourly cost when the process is operating in control

state; C3, the hourly cost when the process is operating

in out-of-control state; C4, the cost for each inspected

item; then the expected cost during a production cycle is

given by

EðCÞ ¼ C0 � EðFAÞ þ C1 þ C2 �
1

k
þ C3

� h � ARLout � t þ n0 � Gð Þ þ C4 � EðNÞ ð19Þ

where EðNÞ is the average number of inspected items and

is calculated by

EðNÞ ¼ n � EðNinÞ þ n0 � ARLout ð20Þ

where given that the process is in-control, EðNinÞ is the

average numbers of samples drawn from the process, and n

is the average sample size. They are given by

EðNinÞ ¼
1=k

h

� 

¼ 1

hk

� 

ð21Þ

n ¼ n1 � p0 þ n2 � 1 � p0ð Þ ð22Þ

Finally, the expected cost per time ECT is given by

ECT ¼ EðCÞ
EðTÞ ð23Þ

Illustrated example

The usefulness and effectiveness of the proposed procedure

beside the optimal approximation and sensitivity analysis

on main parameters is demonstrated using a numerical

example which acts as a modification of Lin et al. (2009).

Suppose that a production process is monitored by the

VSSC T2 control chart. The cost and process parameters

are as shown in Table 2,

The cost model given in Eq. (23) has some specification

abbreviated as follows:

• It is a nonlinear model and a function of mixed

continuous-discrete decision variable

• Mathematically, model space is a discrete and non-

convex.

Hence, using nonlinear programming techniques for

optimizing this model is time consuming and inefficient.

Hence, we decided to use the Genetic Algorithms (GA)

Table 2 Cost and process

parameters for numerical

example

C0 C1 C2 C3 C4 m k d t0 t1 G

$10 $30 $100 $0.5 $0.1 50 0.01 2 0.1 h 0.3 h 0.1 h

Table 3 Level plan for the

three control parameters in the

GA

PS CP MR GN

Level 1 20 0.1 0.05 30

Level 2 25 0.3 0.07 40

Level 3 30 0.5 0.10 50
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introduced by Holland (1975) with a mathematical

software package (MATLAB 7.1) to obtain the optimal

values of n1; n2; h;w1;w2; k1; k2 that minimize the

expected cost per time. Some advantages of GA are as

follows:

• GA uses the fitness function and the stochastic concepts

(not deterministic rule) to search for optimal solution.

Therefore, the GA can be applied for many kinds of

optimization problems.

• Mutation and crossover techniques in the GA avoid

trapping in the local optimum.

• The GA is able to search for many possible solutions at

the same time.

• We applied the solution procedure used in Lin et al.

(2009) to our example as follows:

Step 1. Initialization Generating 30 initial solutions

randomly, which satisfy the following constraints:

n1\n2; w1\w2; kj ¼ Cðm; nj; pÞ � Fp;vj;a; 0\h\20

Step 2. Evaluation Calculating the value of the cost

function in Eq. (23) to evaluate each solution.

Step 3. Selection Replacing the solution with highest

cost by the solution with lowest cost.

Step 4. Crossover Selecting a pairs of solutions in step 3

randomly to use them as the parents for crossover opera-

tions. In this example, we apply the arithmetical crossover

method with crossover probability 0.3 as follows:

Offspring 1 = 0.3 Parents 1 ? 0.7 Parent 2; Offspring

2 = 0.7 Parents 1 ? 0.3 Parents 2

Where offsprings are new chromosomes. At the end of

GA steps, determination of crossover probability is

described in detailed.

Step 5. Mutation Here, we use non-uniform method to

carry out the mutation operation with the rate of 0.07.

Thus, we can randomly select 7 % of chromosomes to

mutate some parameters (or genes). At the end of GA steps,

determination of mutation rate is described in detailed.

Step 6. Repeat Step 2–5 until the stopping criteria is

found. In this example, we use ‘‘50 generations’’ as our

stopping criteria.

For implementing the GA, we need to determine its

parameters: the population size (PS), the crossover Proba-

bility (CP), the mutation rate (MR), and the number of

generations (GN). Here, we use the orthogonal array

experiment to determine the values of these parameters. As

shown in Table 3, three levels of each parameter are

planned in this orthogonal array experiment. An L9

Table 4 Experimental layout

of L9 array and the

experimental results

Trial PS CP MR GN y1 y2 y3 SN

1 1 1 1 1 136.9070 141.6008 136.9152 -42.8285

2 1 2 2 2 133.0914 135.1014 135.8494 -42.5864

3 1 3 3 3 135.6946 131.6555 135.4612 -42.5604

4 2 1 2 3 132.0809 135.3874 132.7288 -42.5036

5 2 2 3 1 137.1651 131.7730 134.5210 -42.5747

6 2 3 1 2 134.0452 135.6475 138.0805 -42.6666

7 3 1 3 2 136.0331 134.1237 135.2717 -42.6160

8 3 2 1 3 132.9111 133.6228 134.7701 -42.5272

9 3 3 2 1 134.2257 132.4884 133.5089 -42.5037

Table 5 Response table of S/N’s for the three control parameters in

the GA

Level PS CP MR GN

1 -127.9754 -127.9481 -128.0223 -127.9070

2 -127.7449 -127.6883 -127.5937 -127.8690

3 -127.6469 -127.7308 -127.7512 -127.5912

Table 6 Solutions of the cost

model for different process

mean shifts in VSSC scheme

d n1 n2 h w1 w2 k1 k2 ECT AATS E(FA) ARLout

0.25 1 38 0.1532 4.7620 4.4635 12.3465 10.8455 16.1316 10.1591 3.2611 66.8100

0.5 1 9 0.3237 4.1545 3.9175 12.3465 10.8574 6.9146 3.0725 1.5419 9.9902

0.75 1 16 0.6411 2.7997 2.6768 12.3465 10.8999 4.6862 2.5296 0.7775 4.4455

1 1 2 0.6592 2.1328 2.0534 12.3465 10.9334 3.9928 1.5015 0.7560 2.7772

1.25 2 11 0.7493 2.3173 2.2302 12.3125 10.9460 3.5507 1.1314 0.6648 2.0093

1.5 1 11 0.8853 1.9289 1.8611 12.3465 10.9460 3.2754 1.1873 0.5623 1.8404

1.75 1 11 0.8577 1.9289 1.8611 12.3465 10.9460 3.2310 1.0437 0.5805 1.7162

2 1 11 3.2385 1.9289 1.8611 12.3465 10.9460 0.9174 1.0393 0.5425 1.6321
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orthogonal array is employed and the GA parameters are

then assigned to it. In the L9 orthogonal array experiment,

there are nine different level combinations of the four

parameters. For each trial or combination, three cost val-

ues, denoted by y1, y2, and y3, are obtained from the GA

and the results are recorded in Table 4.

Based on the information in Table 5, the optimal level

combination of the four control parameters in the GA is

that PS = 30, CP = 0.3, MR = 0.07, and GN = 50.

By running MATLAB for different values of process

mean shift, we achieved the optimal approximate solution

of the example as shown in Tables 6 and 7.

In order to investigate the effect of model’s parameters

on the final solution, sensitivity analysis is arranged using

orthogonal-array experimental design and multiple linear

regression analysis.

Based on the proposed model, n1; n2; h;w1;w2; k1; k2 are

determined as the responses. Eleven control factors

(C0,C1,C2,C3,C4,m,… t1) each with three levels, shown in

Table 8, are allocated sequentially to an L33 orthogonal

array, as shown in Table 9. The experiments are conducted

randomly. The experimental data were analysed by fol-

lowing the proposed procedure strictly. For each trial,

genetic algorithm was applied to produce the best

approximate solution of the economic design of VSSC T2

chart and the results are recorded in Table 10.

Consecutively to examine the effects of parameters on

the responses, regression analysis concerned by Minitab

statistical package. The outputs of Minitab include the

ANOVA and regression coefficients tables beside normal

probability plot of residuals evaluated for models ade-

quacy and validity which show the final set of regression

lines and summary of regression models (Table 11) as

follows:

Table 7 Solution of the cost model for different process mean shifts

in FSR scheme

d n h k ECT AATS E(FA) ARLout

0.25 40 0.6461 10.8436 18.3653 8.5210 0.7714 13.6875

0.50 21 0.8519 10.8770 9.0118 3.5064 0.5844 4.6151

0.75 13 0.9534 10.9229 6.0519 2.2647 0.5219 2.8745

1.00 9 0.9254 10.9808 4.6358 1.5696 0.5378 2.1953

1.25 7 1.0263 11.0392 3.8283 1.2858 0.4847 1.7521

1.50 5 0.9818 11.1573 3.3034 1.1945 0.5068 1.7157

1.75 4 1.0051 11.2774 2.9494 1.0911 0.4950 1.5847

2 4 1.1042 11.2774 2.6609 0.8421 0.4502 1.2617

Table 8 Different levels of model and cost parameters

Model and

cost parameters

Level -1 Level 0 Level 1

C0 25 50 75

C1 50 100 200

C2 10 20 30

C3 50 75 100

C4 5 10 15

p 2 4 5

m 10 50 100

k 0.01 0.03 0.05

d 0.5 1.0 1.5

t0 0.1 0.3 0.5

t1 0.5 1.0 1.5

Table 9 Experimental design based on the L33 orthogonal array

Trial C0 C1 C2 C3 C4 m p d k t0 t1
A B C D E F G H J K L

1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 1 1 -1 1 -1 -1 -1 1 1 -1

3 1 -1 1 -1 1 -1 1 -1 -1 -1 1

4 -1 -1 1 1 1 1 -1 1 -1 -1 -1

5 1 1 -1 -1 -1 -1 1 -1 1 1 1

6 -1 -1 1 -1 -1 1 1 1 1 -1 -1

7 0 0 0 0 0 0 0 0 0 0 0

8 1 -1 -1 -1 -1 1 -1 -1 1 1 -1

9 -1 1 -1 1 -1 1 -1 1 1 1 -1

10 1 1 1 1 -1 1 1 -1 1 -1 -1

11 1 -1 1 -1 -1 -1 1 1 -1 1 -1

12 1 -1 1 1 -1 -1 -1 -1 1 -1 1

13 -1 1 -1 -1 1 1 1 1 -1 1 -1

14 1 1 1 -1 -1 1 -1 1 -1 1 1

15 1 -1 -1 -1 1 1 -1 1 1 -1 1

16 1 -1 -1 1 1 1 1 -1 -1 1 -1

17 -1 -1 -1 1 1 -1 1 -1 1 -1 -1

18 -1 1 1 -1 -1 -1 -1 1 1 -1 1

19 -1 -1 1 -1 1 1 1 -1 1 1 1

20 -1 1 1 1 1 -1 1 1 -1 -1 1

21 1 1 -1 1 1 -1 -1 -1 -1 1 1

22 1 1 1 -1 1 1 -1 1 -1 -1 -1

23 1 -1 -1 1 -1 1 1 1 -1 -1 1

24 -1 1 1 1 -1 -1 1 -1 -1 1 -1

25 1 1 1 1 1 1 1 1 1 1 1

26 -1 -1 -1 -1 1 -1 -1 1 -1 1 1

27 -1 -1 -1 1 -1 -1 1 1 1 1 1

28 -1 -1 1 1 -1 1 -1 -1 -1 1 1

29 1 -1 1 1 1 -1 -1 1 1 1 -1

30 1 1 -1 1 -1 -1 -1 1 -1 -1 -1

31 -1 1 -1 1 1 1 -1 -1 1 -1 1

32 1 1 -1 -1 1 -1 1 1 1 -1 -1

33 -1 1 -1 -1 -1 1 1 -1 -1 -1 1
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n1 ¼ �0:885401 þ 0:06375 C3 þ 0:0277627 m þ 2:6875d

n2 ¼ 41:6714 þ 0:0975 C3 � 0:7625 C4 � 18:75 d
� 10:3125 t0

h ¼ 10:7 þ 0:183 C2 � 0:0713 C3 þ 4:23 d � 81:5 k

w1 ¼ 1:69 þ 0:755 C4 � 0:0771 m þ 3:42 p � 8:23 d

w2 ¼ 0:231 þ 0:640 p

k1 ¼ 11 þ 1:60 C4 � 0:22 m þ 7:92 p � 17:4 d

k2 ¼ 7:54 þ 0:0272 m þ 2:36 p þ 0:785 d

ECT ¼ 9:23 þ 0:506 C2 þ 0:355 C3 þ 0:894 C4 � 20:5 d
þ 448 k

AATS ¼ 268 þ 9:70 C2 � 4:21 C3 þ 20:6 C4 � 223 d

EðFAÞ ¼ 0:0059 þ 0:000844 C3 þ 0:000486 m � 1:65 k

ARLout ¼ 16:1 þ 1:24 C4 � 18:3 d

The first estimated regression line indicates the hourly

cost when the process operates in out-of-control state (C3),

the number of rational subgroups (m) and the magnitude of

mean shift (d) affect the small sample size (n1). The second

estimated line shows the Minitab output for the large

sample size. Seeing the regression line, the hourly cost

when the process operates in out-of-control state (C3), the

cost of inspecting each item (C4), the magnitude of mean

shift (d) and the average time wasted due to searching for

Table 10 The optimal approximate solution of the proposed cost model of the VSSCT2 control chart

Trial n1 n2 h w1 w2 k1 k2 ARLout AATS E(FA) ECT

1 6 36 8.6307 4.3721 2.1336 13.2782 11.869 4.6072 34.7011 0.055 28.3332

2 1 8 19.4509 7.807 1.4075 27.33 12.7816 51.6911 1004.889 0.005 50.6387

3 1 33 19.8268 56.4761 5.47 147.9021 19.0688 31.1459 616.6575 0.025 48.9769

4 10 14 16.8168 4.2554 2.1541 10.7779 10.7546 1.0493 1.7172 0.25 44.1161

5 3 24 6.8896 15.7204 4.1693 35.8304 19.331 16.2543 105.7648 0.01 48.4318

6 1 14 12.0857 0.7276 0.2112 18.9592 17.0596 1.0447 4.7116 0.005 41.4693

7 14 20 16.8939 2.4731 0.3704 15.38 15.3091 1.2945 5.4297 0.005 46.3325

8 1 35 2.8264 4.6535 3.3237 11.418 10.7225 9.9457 27.8953 0.035 44.1854

9 1 12 5.2623 0.3726 0.3475 11.418 10.7642 1.188 2.0385 0.015 40.3002

10 1 38 1.7955 9.4517 5.5023 18.9592 16.9669 10.5816 18.7498 0.055 86.2823

11 4 10 16.9209 3.8303 3.3686 27.8239 20.8952 1.4676 9.4376 0.025 34.9397

12 11 38 10.8506 0.1221 0.014 12.4273 11.8573 2.1015 13.6531 0.005 78.1498

13 2 8 16.8382 1.0869 0.8627 18.9368 17.1833 1.4079 7.8975 0.025 22.1606

14 5 9 14.5433 1.2604 0.4427 10.8732 10.7874 1.2599 5.5829 0.03 33.45

15 5 10 10.7392 1.3942 0.2272 10.8732 10.7779 1.2645 4.3189 0.005 33.4729

16 1 28 1.1855 12.9405 1.9591 18.9592 16.9855 25.6543 29.9952 0.42 58.026

17 1 33 1.7218 55.1002 2.795 147.9021 19.0688 25.5857 42.9933 0.055 96.5649

18 7 9 10.2913 3.2215 0.5105 12.9851 12.6321 1.242 3.0731 0.005 44.3691

19 1 9 17.2101 10.8951 6.3101 18.9592 17.1497 93.8402 1612.209 0.005 50.6235

20 8 9 14.3343 12.8888 4.5003 21.7024 21.2422 1.4717 7.1016 0.03 46.2782

21 3 28 6.7594 3.5652 1.0936 16.427 11.9331 5.3641 30.8897 0.07 55.9246

22 1 17 12.9653 4.2219 0.4535 11.418 10.7449 12.3608 151.0186 0.035 47.2727

23 10 12 16.8003 10.2577 6.4063 17.1236 17.0857 1.1439 3.2194 0.025 18.2835

24 15 39 8.3496 8.6465 2.7015 19.9533 18.9646 4.3019 27.7647 0.055 60.7434

25 9 10 10.1197 10.6164 2.4248 17.1497 17.1236 1.2262 2.528 0.005 65.1906

26 6 7 14.4806 1.2635 1.0096 13.2782 12.9851 1.3907 7.0222 0.03 20.8448

27 9 11 10.045 4.9621 4.9375 21.2422 20.6242 1.2213 2.3128 0.005 32.2659

28 4 34 7.2101 2.6445 0.9745 10.9309 10.7231 3.9808 22.4338 0.065 53.2787

29 6 7 6.7828 11.5497 7.0929 13.2782 12.9851 1.5254 3.9124 0.01 61.5481

30 10 14 16.8147 4.9424 2.5018 12.5177 12.2426 1.0639 1.9627 0.025 19.2499

31 3 24 6.8896 4.8472 1.2856 11.0479 10.732 9.4055 58.579 0.01 92.2198

32 5 6 11.1845 5.4761 1.3211 24.8404 23.2901 2.5056 19.208 0.005 43.9865

33 2 38 3.8552 8.3731 3.5426 18.9368 16.9669 7.1008 23.7565 0.125 31.0165
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assignable cause when the process is in control (t0), sig-

nificantly influence the value of large sample size (n2). The

sign of coefficient of C3 is positive indicating a larger

magnitude of C3 results in a larger amount of n2. Also,

Because of the coefficients of C4, d and t0 are negative, by

increasing each of them the value of large sample size

decreases. The estimated small action limit regression line

(k2) noted that a higher number of rational subgroups (m)

will reduce the amount of k2. On the other hand, if the

number of quality characteristics (p) and the magnitude of

mean shift (d) increases, the amount of k2 increases.

Regression line of optimal value of cost function (ECT) is

affected significantly by three cost parameters and two

process parameters (i.e., C2;C3;C4; k; d). A larger shift

magnitude of process mean (d) leads a lower value of ECT.

Meanwhile, increase in values of C2, C3, C4 and k results in

increase in the value of ECT. Also similar analysis may be

conducted for the sampling interval (h), the large warning

limit (w1), the small warning limit (w2), the large action

limit (k1), adjusted average time to signal (AATS), the

average number of false alarms (E(FA)), and the number of

samples drawn when the process operates in out-of-control

state (ARLout), respectively.

Concluding remarks

Delivering economical design of the VSSC T2 control

chart on the presence of fixed sampling intervals and

exponentially distributed assignable causes is the main

contribution of the present study which provides more

sensitivity in the traditional Hotelling’s T2 control chart in

rapid detecting of small drifts in the process mean vector.

The real assumption on the occurrence times of the

assignable cause is allowed us in applying the Markov

chain approach on constructing the proposed expected

hourly cost model as a novel extension of the priors. The

main accomplished results on the proposed model are

• Larger changes in the process mean vector cause to

increase value of small action limit. Additionally, it

tends to generate a lower expected cost per time and

large sample size.

• The large sample size tends to be raised when the hourly

cost of operating process in out-of-control state increases.

Also, it decreases when cost of inspecting each item or

wasted time due to each false alarm increases.

• By growth in value of the hourly cost of operating the

process in control, the hourly cost of operating the

process out of control or the cost for each inspected

item, the expected cost per time increases.

• The small action limit will be large by adding to the

number of quality characteristics or deduction in the

number of rational subgroups.

• If the duration of in control period increases, the

expected cost per time will decrease.
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