
Vol.:(0123456789)1 3

Journal of Industrial Engineering International (2019) 15:627–635 
https://doi.org/10.1007/s40092-019-0314-x

ORIGINAL RESEARCH

Periodic flexible maintenance planning in a single‑machine 
production environment

Mehdi Iranpoor1 · S. M. T. Fatemi Ghomi2

Received: 28 May 2016 / Accepted: 12 April 2019 / Published online: 22 April 2019 
© The Author(s) 2019

Abstract
Preventive maintenance is the essential part of many maintenance plans. From the production point of view, the flexibility 
of the maintenance intervals enhances the manufacturing efficiency. On the contrary, the maintenance departments tend to 
know the timing of the long term maintenance plans as certain as possible. In a single-machine production environment, this 
paper proposes a simulation–optimization approach which establishes periodic flexible maintenance plans by determining the 
time between the maintenance intervals and the flexibility (i.e., length) of each interval. The objective is the minimization of 
the estimated total costs of the corrective and preventive maintenance, the undesirability of the flexibility (i.e., uncertainty) 
in maintenance timing, and the tardiness and long due date costs of jobs. Two mixed continuous-discrete variations of the 
ant colony optimization algorithm and the particle swarm optimization algorithm are developed as the solution approaches. 
Numerical studies are used to compare the performance of these algorithms. Further, the average reduction of the total costs 
gained from the flexibility of maintenance intervals on a wide range of parameters is reported.

Keywords Periodic flexible maintenance planning · Random breakdown · Single-machine setting · Simulation–
optimization · Mixed continuous-discrete metaheuristics

Introduction

Maintenance costs compose 15–70% of production costs 
(Alrabghi and Tiwari 2015). This includes capacity losses 
and repair costs. Researches mostly deal with scheduling 
problems either without preventive maintenance or with pre-
ventive maintenance (PM) when no breakdown can happen 
(Guo et al. 2007). However, in practical situations, preven-
tive maintenance does not put an end to breakdowns.

In cases where interruptions cause setups, the processes 
must restart after the interruptions, or the materials are 
spoiled when the process is not completed, the start time of 
the preventive maintenance actions must be flexible. A peri-
odic maintenance policy in which the maintenance intervals 
are flexible is called the periodic flexible maintenance pol-
icy. In this paper, the flexible maintenance interval and the 

periodic flexible maintenance policy are denoted by FI and 
PFM, respectively. A schematic PFM is illustrated in Fig. 1.

Chen addressed the single-machine scheduling problems 
with given FIs and the mean flow time (Chen 2006b) and 
makespan (Chen 2008) as criteria. In these two studies, it 
was shown that the problems of scheduling jobs and main-
tenance activities within FIs are strongly NP-hard and some 
efficient heuristics were developed. Chen also presented 
some mathematical programming formulations for single- 
and parallel-machine cases with a single flexible mainte-
nance on each machine and total tardiness as criterion (Chen 
2006a). Xu and Yin (2011) considered the online version 
of the single-machine scheduling problem with given FIs. 
They proved that with makespan criterion, the classical list 
scheduling algorithm is the best possible approximation 
algorithm. Jin et al. (2009) tackled a machine scheduling 
problem regarding random failures. Their problem includes 
positioning maintenance activities in predefined FIs. They 
proposed a mixed continuous-discrete genetic algorithm 
in order to minimize the total weighted expected comple-
tion times. Sbihi and Varnier (2008) addressed a machine 
scheduling problem in which the maximum allowed con-
tinuous working time between two maintenance activities 
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is predefined. They proposed a heuristic and a branch and 
bound algorithm to minimize the maximum tardiness. Cui 
and Lu addressed the joint single-machine and flexible main-
tenance scheduling problem with the makespan as criterion. 
They assumed that there is a maximum allowed interval 
between any pair of consecutive PMs (Cui and Lu 2017). 
Wang et al. addressed a machine scheduling problem that 
the processing time of jobs increases since machine speed 
degrades and the maintenance activities change the machine 
back to its normal rate. They assumed that the time between 
each pair of consecutive maintenance activities cannot be 
longer than a pre-specified threshold (Wang et al. 2018). 
Mosheiov et al. designed approximation algorithms for two-
machine flow shop and open shop scheduling problems in 
which a flexible maintenance activity must be performed 
on one of the machines. They assumed that the start time 
of the maintenance activity must be within a given interval 
(Mosheiov et al. 2018). Zhang et al. tackled the problem of 
scheduling maintenance activities and jobs in a nonidentical 
parallel-machine environment. They considered the makes-
pan criteria, the expected costs of performing preventive 
maintenance, and the expected costs of stochastic failures 
at the same time. They designed a metaheuristic approach 
in order to find the Pareto optimal solutions (Zhang et al. 
2019).

The optimization of the maintenance plans by using 
simulation is gaining an increasing attention in recent 
years (Alrabghi and Tiwari 2015). More simplicity and 
higher flexibility have made simulation models superior 
to analytical and mathematical models in the maintenance 
optimization problems (Alrabghi and Tiwari 2015). The 
most reported approach to simulation in scheduling studies 
involving maintenance activities is discrete event simulation 
(Alrabghi and Tiwari 2015). To name a few, the readers are 
referred to the following studies: selection of operational 
variables and production schedule (Zhang et al. 2013b), 
maintenance scheduling at a multi-component production 
system (Arab et al. 2013), robust and stable production and 
preventive maintenance scheduling when machine is subject 
to failure (Cui and Lu 2013), and production and preventive 
maintenance scheduling when machines’ failure rates are not 
constant during time (Mokhtari and Dadgar 2015).

According to our extensive literature review, all of the rel-
evant previous studies assume that the timing of the flexible 
maintenance intervals is known and fixed in advance, while 
no published paper has studied the problem of establishing 

PFM which includes determination of time between FIs and 
length (i.e., flexibility) of each FI. This paper proposes a 
simulation–optimization approach to this novel problem.

The rest of the paper is structured as follows. Section 2 
explains the problem more formally and introduces the nota-
tions. Section 3 derives the estimated optimal due dates in 
any arbitrary sequence of jobs when the PFM is known. 
These values are used to evaluate the alternative mainte-
nance policies. Section 4 illuminates the proposed simula-
tion–optimization approach. For the optimization part, two 
mixed continuous-discrete metaheuristic approaches are sug-
gested. Section 5 compares the performance of these algo-
rithms and explains the potential advantage of flexibility in 
maintenance intervals. Finally, Sect. 6 concludes the paper.

Problem definition

This paper tackles the problem of the periodic flexible main-
tenance planning. Flexible maintenance refers to the case 
where maintenance intervals are longer than maintenance 
action times. A PFM includes two variables: FI length and 
time between two subsequent FIs. Maintenance policy 
affects production and delivery performance. Without pre-
cise consideration of production environment and its param-
eters, the maintenance plans neither can be established effi-
ciently nor even evaluated. In this paper, a single-machine 
production environment is considered. The assumptions are:

The machine is subject to random failures
The time between random failures follows Weibull 

distribution
Corrective maintenance (CM) is minimal and does not 

change the age of the machine
Preventive maintenance brings the state of the machine 

back to the as good as new state
All jobs are available to process at time zero
The minimal repair time follows exponential distribution
The jobs are nonresumable, and the process of the inter-

rupted jobs at failure times must be repeated
Preventive maintenance is not allowed to interrupt the 

processing of the jobs
The machine is shut down, while corrective or preventive 

maintenance is being performed
Each preventive maintenance is performed at the latest 

possible point in its interval

Fig. 1  A schematic PFM
PM 
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Setup times are included in the processing times and are 
sequence independent

Main decision variables are:
TFI: length of each FI
δFI: coefficient which determines TFI
TF2F: length of time between the end of one FI to the start 

of the subsequent FI
TFI is defined as follows:

where M is the required time to perform a preventive mainte-
nance action. Figure 2 shows these main decision variables.

As shown in this figure, when δFI= 1, maintenance inter-
vals are not flexible. It is clear that δFI≥ 1. Moreover, auxil-
iary decision variables are defined in Fig. 3.

The exponential distribution is widely used to model 
both the repair times and times between the breakdowns. 
For instance, the following studies have used the exponen-
tial distribution for these purposes: machine scheduling 
with deteriorating jobs (Cai et al. 2011), flexible flow shop 
scheduling problem with sequence dependent setup times 
(Gholami et al. 2009), and job shop rescheduling regard-
ing new job arrivals and machine breakdowns (Zhang et al. 
2013a). However in the exponential distribution, failure 
rate remains constant during time. In such a situation, per-
forming preventive maintenance seems not necessary (Lu 
2015). In practical settings however, the failure rate typically 
increases for instance because mechanical parts wear out. 
So, preventive maintenance is used to reduce the risk of the 
unexpected machine failures. Weibull distribution can model 
time between failures in increasing failure rate situations 
(Montgomery and Runger 2010). Therefore, in the current 

TFI = �FIM

paper, it is assumed that the time to perform the corrective 
maintenance follows an exponential distribution with mean 
μ R. However, similar to (Cui and Lu 2013) and (Jin et al. 
2009), the time between failures is modeled by a Weibull 
distribution.

Figure 4 shows the notations used for sets, indices, and 
parameters.

Total cost is the most popular and pragmatic objective for 
maintenance optimization (Alrabghi and Tiwari 2015). The 
costs are not limited to maintenance actions but also include 
capacity loss and missed due date penalties (Alrabghi and 
Tiwari 2015). Thus, the objective function in this paper is 
the minimization of the total due date and tardiness costs 
of jobs, the expected costs of the preventive and corrective 
maintenance, and the undesirability of the uncertainty of 
the preventive maintenance start times (see expression (1)).

where E[] is the mathematical expectation function.

Estimation of optimal due dates

In order to calculate job-related costs of any PFM, a reason-
able sequence of jobs with determined due dates should be 
available. In this paper, metaheuristic approaches are used to 
search for good quality sequences. In any arbitrary sequence 
of jobs with known PFM, the estimated optimal due dates of 
jobs are calculated as follows.
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Fig. 2  The description of the 
main decision variables
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Fig. 3  The nomenclature of the 
auxiliary decision variables

NPM: stochastic variable of the number of PMsdj: due date of job j
NCM: stochastic variable of the number of CMsCj,r: completion time of job j in simulation run r
Ns: the number of simulation runsTj: stochastic variable of tardiness of job j

Tj,r: tardiness of job j in simulation run r

Fig. 4  The nomenclature of 
sets, indices, and parameters

J: set of jobs WPM: cost of each preventive maintenance
j: index of each job WCM: cost of each corrective maintenance
n: number of jobs WFI: cost of increased length of FI
δFI

UB: upper bound for δFI M: time to perform preventive maintenance
pj: processing time of job j µR: mean of repair time when failure occurs
γj: cost of long declared due dates for job j KF: scale parameter of time between failures
βj: tardiness cost of job j λF: shape parameter of time between failures
r: index of simulation runs



630 Journal of Industrial Engineering International (2019) 15:627–635

1 3

Theorem 1 Consider an arbitrary sequence of jobs and 
a given PFM. Consider the estimation of expectations in 
expression (1) based on generated time to failures and repair 
times in simulation runs as follows.

where X̄ implies for the sample mean of stochastic variable 
X.

For job j, there are Ns completion times. Suppose that the 
completion times of job j are sorted in ascending order so 
that Cj,1 represents the smallest completion time and Cj,Ns 
represents the largest one. By setting dj equal to Ckj

 where kj 
is calculated through expression (3), the estimated objective 
function (2) is minimized.

Proof Since the maintenance policy and the sequence of jobs 
are known, N̄PM , N̄CM , and δFI are fixed. So, the last three 
terms of expression (2) are constant and hence do not depend 
on djs. Further, the due date of each job affects its own costs 
and is irrelevant to the cost components of other jobs. So, 
any due date value of job j which minimizes expression (4) 
is optimal.

Let dj
* be such an optimal due date. First, it is proved that 

dj
* = Cj,m wherein m ∈{0,…,Ns} and Cj,0 = 0. Assume that 

Cj,m-1 ≤ dj
* ≤ Cj,m, m∈{1,…,Ns}. Let Δ = dj − Cj,m−1 . Hence, 

Tj,rs are calculated as follows:

So, expression (4) can be rewritten as

Expression (5) is a linear function of Δ. Hence, its mini-
mum occurs either at Δ = 0 or at Δ = Cm–Cm-1 which results 
in d∗

j
= Cj,m−1 and d∗

j
= Cj,m , respectively. In either case, dj

* 
coincides with one of the completion times of job j.

Now, it is shown that d∗
j
= Cj,kj

 where kj is computed 
through expression (3). This is proved using the small per-
turbation technique introduced by Panwalkar et al. (1982). 

(2)
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Suppose that the optimal due date of job j is located at Cj,m . 
By shifting the due date of job j at amount of Δ units of time 
to the left, the change in expression (4) will be

By shifting the due date of job j at amount of Δ units of 
time to the right, the change in expression (4) will be

Since dj is optimal, expressions (6) and (7) are both non-
negative which results that

� □

Description of proposed simulation–
optimization approach

In this paper, a simulation–optimization approach is used 
to establish PFMs. The optimization part tries to find bet-
ter solutions in each iteration. The simulation part is used 
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Generate new set of solutions 
encoded as Fig. 6

Generate a sample of size Ns of 
repairs and uptimes

Optimization 
part

Simulation 
part

Calculate the estimated objective 
function (2) of every solution over 

simulated sample

Fitness 
evaluation

Is stopping 
condition satisfied?

Report the best 
found solution

Yes

No

Fig. 5  Flowchart of the simulation–optimization approach to PFM
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to estimate the quality of the generated solutions. This 
approach is depicted in Fig. 5.

Every solution is encoded as a string with two parts. As 
shown in Fig. 6, the first part indicates the sequence of jobs, 
while the second part determines the maintenance policy. 
Note that without knowing the sequence of jobs, the calcula-
tion of expression (2) is impossible.

The first part of each solution array is combinatorial, 
while the second part is continuous. Hence, at the optimiza-
tion part, a mixed continuous-discrete algorithm is required. 
Such an encoding has been used in (Jin et al. 2009) for an 
integrated job sequencing and scheduling preventive main-
tenance within predefined flexible intervals. Sections 4.1 and 
4.2 describe two proposed continuous-discrete metaheuristic 
approaches.

Mixed continuous‑discrete ant colony optimization

Ant colony optimization (ACO) has been applied satis-
fyingly to various academic and practical combinatorial 
optimization problems (Dorigo and Stützle 2004). For an 
instance, which is close to the problem under study, Berrichi 
et al. (2010) applied ACO to a bi-objective production and 
maintenance scheduling problem. In original discrete ACO, 
the search is guided by laying more pheromone on compo-
nents of good quality solutions. However, Socha and Dorigo 
(2008) extended ACO for continuous domains. In this 

variation, search is directed by defining an archive solution 
set. This set is used to direct the generation of new continu-
ous solutions based on normal probability density functions 
(PDFs). Thus, in mixed ACO (denoted by  ACOco-cn), both 
approaches are joined. For the discrete part, MAX–MIN 
rank-based ant system is used. The pseudocode of  ACOco-cn 
is shown in Fig. 7.

Mixed continuous‑discrete particle swarm 
optimization

Particle swarm optimization (PSO) directs search of each par-
ticle (i.e., a solution) by changing its position toward its best 
experience as well as the best position of overall swarm (Poli 
et al. 2007). PSO was initially proposed to address continuous 
domain problems (Kennedy and Eberhart 1995). However, 
many successful applications of PSO for discrete domains 
have been reported. For instance, Kashan and Karimi proposed 
a discrete PSO to minimize makespan in a parallel-machine 
scheduling problem (Kashan and Karimi 2009). Following Liu 
et al. (2010) and Tasgetiren et al. (2004), in the current paper, a 
ranked-order-value rule is used to transform the array of con-
tinuous position values to a feasible sequence of jobs. In this 
approach, the jobs are sequenced according to their position 
values so that the job with minimum position is sequenced as 
the first job. Thus, in mixed PSO (denoted by  PSOco-cn), both 
approaches are combined. As shown in Fig. 8, the  PSOco-cn 

Fig. 6  Encoding of solutions as 
a two-section array

index of 1st

job
index of 2nd

job … index of nth

job TF2F δFI

Initialize pheromone values
Initialize archive set with K pairs of feasible random values for TF2F and FI

Loop until the stopping condition is met
Generate a sample of size Ns of repair times and uptimes
Create a new generation: while creating each solution, do the following steps 

Select a solution from archive set based on its quality
Generate new feasible values for TF2F and FI according to its PDFs
Generate a sequence of jobs based on pheromone values
Calculate the due date of each job using expression (3) over the current sample
Calculate the estimated objective function of each solution using expression (2)

Update pheromone using MAX-MIN rank based ant system
Update archive set by replacing low quality solutions with newly found good ones

End loop
Report the best found solution

Fig. 7  Pseudocode of  ACOco-cn
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algorithm is the same as the original PSO except that the dis-
crete part is interpreted using the ranked-order-value rule.

Numerical analysis

In this section, first the performance of  ACOco-cn and  PSOco-cn 
is compared and the selected one is suggested for application. 
An important question is that whether flexibility in mainte-
nance intervals can reduce total costs significantly. Obviously, 
the answer depends on problem parameters. However, in this 
section, the average effect of flexibility on total costs over a 
wide range of parameters is presented. In the numerical analy-
sis, the parameters of the problem are randomly selected from 
the following ranges.

Further, simulation sample size is Ns= 1000. Moreover, the 
stopping criterion for every simulation–optimization process 
is set at 10 s.

Selection of optimization algorithm

To compare the performance of the proposed metaheuristic 
approaches, 50 instances of five problem sizes were generated 
randomly using the abovementioned parameter ranges. The 
following expression is used to compare the total costs:

n ∈ [20, 100], pj ∈ [20, 100], �UB
FI

∈ [1, 4], �j ∈ [1, 5],

�j ∈ [1, 5],W
PM

∈ [1, 5],W
CM

∈ [3, 10],W
FI
∈ [1, 3],

M ∈ [10, 50],�R ∈ [10, 100],KF ∈ [200, 1000], �F ∈ [2, 6]

(8)difference =
TCPSO − TCACO

((

TCPSO + TCACO

)/

2
)

where TC is the estimated total cost calculated through 
expression (2).

Figure 9 shows the results of the paired-t hypothesis test 
of comparing total costs by Minitab software for all problem 
sizes.

The minimum values of all confidence intervals are posi-
tive, so  ACOco-cn outperforms  PSOco-cn. Figure 10 shows 
the confidence intervals for percentage of difference in total 
costs.

Evaluation of the effect of flexibility on total costs

The question that this subsection tries to answer is to what 
extent the total costs are changed if the flexibility is not 
allowed in the start times of PM actions. Although the 
answer depends on the problem parameters, the wide range 
of parameters can represent an average view.

Due to the superiority of  ACOco-cn over  PSOco-cn, the for-
mer is selected for proceeding this numerical study. Inflex-
ible maintenance policy occurs when the length of the pre-
ventive maintenance intervals equals the time required to 
perform a PM. According to the notations, this requires that 
δFI= 1 which is achieved by setting �U

FI
= 1.

Several problem instances are randomly generated with 
the parameters ranges introduced at the beginning of this 
section. Each problem is solved by  ACOco-cn two times: first 
with allowed flexibility (in which �U

FI
= 4 ) and then with 

forbidden flexibility (i.e., �U
FI
= 1 ). Figure 11 depicts the per-

centage of reduction in total costs and best found flexibility 
coefficient (δFI) for 100 randomly generated instances.

As shown in Fig. 12, on this wide range of parameters, 
flexibility can cut down 2% of total costs on average.

Loop until the stopping condition is met
Generate a sample of size Ns of repair times and uptimes
Create a new generation: while creating each solution, do the following steps 

Update the position of each solution considering
{its previous velocity, its best experience, swarm's best experience}

Scale TF2F and FI to place in the range of feasible values
Determine the sequence of jobs based on ranked-order-value rule
Calculate the due date of each job using expression (3) over the current sample
Calculate the estimated objective function of each solution using expression (2)
Update the best experience of each particle

Update the best experience of swarm
End loop
Report the best found solution

Fig. 8  Pseudocode of  PSOco-cn
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Concluding remarks

Machine parts usually wear out while working. Hence, pre-
ventive maintenance is required in order to reduce the risk 
of unexpected failures. When the jobs are nonresumable, 
maintenance intervals should be flexible in order to pre-
vent undesirable machine idle times. All the previous stud-
ies considering flexible maintenance intervals assume that 
the flexible maintenance intervals are given. For the first 
time, this paper presents a holistic approach to determine 
the time between flexible maintenance intervals and the 
length of each maintenance interval in order to minimize the 
maintenance and production costs. Two mixed continuous-
discrete metaheuristic approaches equipped with discrete 
event simulation were proposed. Numerical studies were 

Paired T for PSO 20 – ACO 20
N     Mean  StDev  SE Mean

PSO 20      50  25770.2  417.6     59.1
ACO 20      50  24397.6  247.8     35.0
Difference  50   1372.6  481.7     68.1
95% CI for mean difference: (1235.7, 1509.5)
T-Test of mean difference = 0 (vs. not = 0): T-Value = 20.15  P-Value = 0.000

Paired T for PSO 30 – ACO 30
N   Mean  StDev  SE Mean

PSO 30      50  52420    770      109
ACO 30      50  51112    741      105
Difference  50   1308   1046      148
95% CI for mean difference: (1011, 1605)
T-Test of mean difference = 0 (vs. not = 0): T-Value = 8.84  P-Value = 0.000

Paired T for PSO 50 – ACO 50

N    Mean  StDev  SE Mean
PSO 50      50  131493   1739      246
ACO 50      50  124524   1689      239
Difference  50    6969   2319      328
95% CI for mean difference: (6310, 7628)
T-Test of mean difference = 0 (vs. not = 0): T-Value = 21.25  P-Value = 0.000

Paired T for PSO 70 – ACO 70
N    Mean  StDev  SE Mean

PSO 70      50  287615   4344      614
ACO 70      50  268821   3594      508
Difference  50   18794   5982      846
95% CI for mean difference: (17094, 20494)
T-Test of mean difference = 0 (vs. not = 0): T-Value = 22.21  P-Value = 0.000

Paired T for PSO 100 – ACO 100
N    Mean  StDev  SE Mean

PSO 100     50  532266   7027      994
ACO 100     50  494919   4479      633
Difference  50   37347   8791     1243
95% CI for mean difference: (34848, 39845)
T-Test of mean difference = 0 (vs. not = 0): T-Value = 30.04  P-Value = 0.000

Fig. 9  Paired-t hypothesis test for differences between total costs

n=100n=70n=50n=30n=20

0.08

0.07

0.06

0.05

0.04

0.03

0.02

95% CI for the Mean (PSO total cost - ACO total
              cost)/average(Total costs)

Fig. 10  Confidence intervals for differences in total costs
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used to compare the quality of solutions found by proposed 
approaches. Finally, the average possible improvement of 
total costs as a result of flexibility of maintenance intervals 
on a wide range of parameters was reported.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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