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Abstract Various artificial neural networks types are

examined and compared for the prediction of surface

roughness in manufacturing technology. The aim of the

study is to evaluate different kinds of neural networks and

observe their performance and applicability on the same

problem. More specifically, feed-forward artificial neural

networks are trained with three different back propagation

algorithms, namely the adaptive back propagation algo-

rithm of the steepest descent with the use of momentum

term, the back propagation Levenberg–Marquardt algo-

rithm and the back propagation Bayesian algorithm.

Moreover, radial basis function neural networks are

examined. All the aforementioned algorithms are used for

the prediction of surface roughness in milling, trained with

the same input parameters and output data so that they can

be compared. The advantages and disadvantages, in terms

of the quality of the results, computational cost and time

are identified. An algorithm for the selection of the spread

constant is applied and tests are performed for the deter-

mination of the neural network with the best performance.

The finally selected neural networks can satisfactorily

predict the quality of the manufacturing process performed,

through simulation and input–output surfaces for combi-

nations of the input data, which correspond to milling

cutting conditions.

Keywords Artificial neural networks � Training

algorithms � Radial basis function � Surface roughness �
Milling

Introduction

Computational methods for modeling and simulation are

significant in contemporary manufacturing sector, where

quality plays a key role. The industrial and academic

interest in the role of computers in manufacturing tech-

nology is increasing since modeling and simulation are

able to lead to optimization of processes and at the same

time reduce expensive and time consuming experimental

work. This is especially applicable for material removal

processes that are involved in numerous final products that

demand high quality, which usually is quantified through

surface roughness of the final product; surface roughness

influences several attributes of a part such as fatigue

behaviour, wear, corrosion, lubrication and surface friction.

Modelling and simulation techniques that are more

popular for the analysis of manufacturing processes are the

Finite Element Method (FEM), soft computing techniques

including Artificial Neural Networks (ANNs) (Galanis and

Manolakos 2014; Szabó and Kundrák 2014; Niesłony et al.

2015; Markopoulos et al. 2006) and statistical methods

(Raissi et al. 2004; Farsani et al. 2007; Shokuhfar et al.

2008; Saeidi et al. 2013; Ghasemi et al. 2013). In the past

years ANNs have emerged as a highly flexible modeling

tool applicable in numerous areas of manufacturing disci-

pline (Ezugwu et al. 2005; Al-Hazza et al. 2013). An

artificial neural network is defined as ‘‘a data processing

system consisting a large number of simple, highly inter-

connected processing elements (artificial neurons) in an

architecture inspired by the structure of the cerebral cortex
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of the brain’’ (Tsoukalas and Uhrig 1997). Actually, ANNs

are models intended to imitate functions of the human brain

using its certain basic structures. ANNs have shown to be

effective as computational processors for various associa-

tive recall, classification, data compression, combinational

problem solving, adaptive control, modeling and forecast-

ing, multisensor data fusion and noise filtering. ANNs have

been used in connection to milling in various papers in an

effort to predict cutting forces, tool wear and cutting

temperatures (Zuperl et al. 2006; Ghosh et al. 2007; Adesta

et al. 2012). More specifically, many researchers have

made several efforts to predict the surface roughness in

milling. Statistical and empirical models have been pro-

posed (Zhang et al. 2007). Furthermore, soft computing

techniques are quite common, including ANNs (Kohli and

Dixit 2005; Özel and Karpat 2005), genetic algorithms

(Oktem et al. 2006) and fuzzy logic (Chen and Savage,

2001).

Back Propagation (BP) ANNs are more common than

any other kind of network (Al Hazza and Adesta 2013) to

be found in the relevant literature. Although this kind of

models may be approached in many ways pertaining to the

characteristics of the training procedure used, the problem

of selecting the most suitable scheme is not addressed

satisfactorily by the researchers. In this paper, an attempt is

made to test several training BP algorithms to test their

characteristics and suitability for the at hand problem.

Feed-forward perceptrons are trained with three different

back propagation algorithms, namely the adaptive back

propagation algorithm of the steepest descent, the back

propagation Levenberg–Marquardt algorithm and the back

propagation Bayesian algorithm. This way, several models

with different characteristics are built and tested and the

optimum is selected. The analysis results indicate that the

proposed model can be used to predict surface roughness in

end milling with a less that 10 % error, even for tests with

cutting conditions that were not used in the training of the

system. Furthermore, Radial Basis Function (RBF) neural

networks are tested with the same problem and the results

are compared to the previous ones. A comparative study

indicates the advantages and disadvantages of each

approach. Furthermore, the models are used for the pre-

diction of surface roughness in milling. The best models in

terms of their performance are stored and can be used for

the prediction of surface roughness of random input data,

confined of course in the extremes of the input data used in

the training of the models, but also 3D surfaces are pro-

duced for the a priori determination and selection of opti-

mum cutting conditions, based on experimental results and

simulation output. It can be concluded that the proposed

novel models prove to be successful, resulting in reliable

predictions, therefore providing a possible way to avoid

time- and money-consuming experiments.

Artificial neural networks

Artificial neural networks are parallel systems which con-

sist of many special, non-linear processors, known as

neurons. Like human cerebrum, they are able to learn from

examples, they possess generalization capabilities and fault

tolerance and they can respond intelligently to new trig-

gers. Each neuron is a primary processing unit, which

receives one or more external inputs and uses them to

produce an output. It consists of three basic elements: a

number of synapses, an adding node and an activation or

transfer function. Each synapse is characterized by a

specific weight wi with which the respective input signal xi
is multiplied. The node adds the resulting numbers and

finally the activation function ‘‘squashes’’ the neuron out-

put in the normalized (0,1) or (-1,1) range. Neuron model

also includes a threshold h that practically demotes input to

the activation function. The activation function input can

be increased if a bias term b is used, which is equal to the

negative of the threshold value, i.e. b = -h.
The whole system is perceived as parallel because many

neurons can implement calculations simultaneously. The

most important feature of a neural network is the structure of

the connected neurons because it determines the way the

calculations are performed. Apart from the source layer which

receives the inputs and the output layer on which the input

layer is mapped, a neural network can have one or more

intermediate hidden layers. Furthermore, the types of inter-

neuron connections determine the characteristics of a network

and consequently the tasks for which it is designed to be used.

According to this, in feed forward networks, data run exclu-

sively from the input units to the output units while in recurrent

networks, feedback connections act beneficially for the

training process and the behaviour of the network. A typical

feed forward ANN with one hidden layer consisting of four

units, six source units and two output units is shown in Fig. 1.

Input layer Output layerHidden layer

Fig. 1 Single hidden layer feed forward ANN 6-4-2
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Finally, the algorithm used for the network training

affects its performance and effectiveness. The training of

neural networks refers to the procedure adopted to achieve

a desired behaviour by modifying the synaptic weights,

which allows them to learn from their environment and

improve their performance through time. The various

methods of adjusting the connections weights constitute

different training algorithms. Each algorithm comprises a

well-defined set of rules for solving the training problem

and has specific advantages and disadvantages. Depending

on the environment of the neural network, three different

training methods may be distinguished, namely supervised,

unsupervised and reinforcement learning. In supervised

learning the training is based on examples of desired

behaviour. The parameters are adjusted according to the

training vector and the error signal between the desired

yd(t) and the calculated values y(t) of the network outputs.

The adjustment is implemented with an error correction

algorithm like Least Mean Square (LMS). It must be

pointed out that typical supervised learning neural net-

works are the feed forward and the radial basis function

networks. On the other hand, in unsupervised learning the

weights are modified in response to network inputs only.

There are no target outputs available. Most of these algo-

rithms perform clustering operations. They categorize the

input patterns into a finite number of classes. This is

especially useful in applications such as vector quantiza-

tion. Finally, reinforcement learning trains the network

with the use of a feedback signal called reinforcement

signal, which ‘‘awards’’ the right behaviour or ‘‘punishes’’

the wrong behaviour of the network. It can be easily

understood that the network receives only a training data

set without the respective desired outputs and during the

training it tries to find a set of weights which tend to avoid

negative reinforcement signals.

In this study, feed forward networks with one or two

hidden layers and RBF networks were employed. The

output layer had constantly a single neuron corresponding

to the predicted value of the surface roughness. The most

known neural networks with one or more hidden layers are

the multilayer perceptrons (MLP). These networks, unlike

simple perceptron, are capable of classifying linearly

inseparable patterns and can solve complicated problems.

They can handle satisfactorily problems like pattern clas-

sification, generalization and functions approximation.

They are trained with back propagation algorithms and the

transfer function employed is a differentiable sigmoid

function like hyperbolic tangent.

Back propagation algorithm

Back propagation algorithm is a supervised learning algo-

rithm which adapts the synaptic weights, aiming to

minimize the Mean Squared Error (MSE) between the

desired and the actual network outputs after each input

vector presentation. Standard back propagation is a gradi-

ent descent algorithm in which the network weights are

moved along the negative of the gradient of the perfor-

mance function. The main idea of the algorithm is that the

errors of the hidden layers are specified by the back

propagation of the output neurons errors. The algorithm

includes a forward and a backward phase. During the for-

ward phase the input signals ‘‘travel’’ through the network

from input to output, layer by layer, generating eventually a

certain response and during the backward phase the error

signals are back propagated, from the output layer to the

input layer resulting in the adjustment of the network

parameters by minimizing the MSE. Therefore, the

synaptic weights are adjusted to minimize the criterion:

Ep tð Þ ¼ 1

2

X

k

e2
k tð Þ; ek tð Þ ¼ ydk tð Þ � yk tð Þ ð1Þ

and the summation includes all k neurons of the output

layer after the presentation of each training pattern p at the

input, consequently the minimization of Ep(t) must be done

pattern to pattern.

According to the aforementioned, the steps of the back

propagation algorithm are the following:

1. Selection of the initial weights using small, positive

values.

2. Presentation of the training vector to the network and

forward calculation of the input weighted sums and all

the neurons output values, neuron by neuron, up to the

output layer where the output vector is produced.

3. Calculation of the difference between the actual output

vector and the desired output vector as well as of the

necessary weights modification.

4. Calculation of the hidden neurons error and the

respective change of weights.

5. Adjustment of all the weights, beginning from the

output neurons and continuing backwards to the input

layer, by adding the corresponding values calculated

before and using the equation wji t þ 1ð Þ ¼ wji tð Þþ
cdj tð Þyi tð Þ, where c is the learning rate parameter. In

previous equations, to achieve faster convergence, a

momentum term a wji tð Þ � wji t � 1ð Þ
� �

, 0\ a\ 1, is

added. The term momentum is used to determine the

effect of the previous weight modification to the next

one.

It worth noticing that there are two different ways in

which the gradient descent algorithm can be implemented:

incremental or pattern mode and batch mode. In the

incremental mode, the gradient is computed and the

weights are updated after each input is applied to the
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network. In the batch mode all inputs are applied to the

network before the weights are updated; in other words this

mode is based on the whole set of examples known as

epoch. In the incremental mode, BP algorithm does not

always converge to a local minimum because the gradient

used for the weights adjustment is computed for a single

training example. BP algorithm needs many repetitions to

converge; however there is always the possibility to get

stuck in a local minimum, often due to false weight

dimension choice. So, the weights selection is very

important for the successful training and usually randomly

small, negative values, uniformly distributed in a narrow

range are appointed.

Gradient descent and gradient descent with momentum

are two methods often too slow for practical problems. In

these cases high performance algorithms that can converge

from 10 to 100 times faster than the algorithms discussed

previously, like Levenberg–Marquardt algorithm, are used.

All these algorithms operate in batch mode.

Back propagation Levenberg–Marquardt algorithm

Levenberg–Marquardt algorithm (LMA) provides arith-

metical solution to a sum of squares of linear functions

minimization problem. The functions depend on a common

set of parameters and the algorithm is an alternative solution

of the Gauss–Newton algorithm (GNA) and the gradient

descent method. LMA is more robust than GNA; it uses the

second derivatives of the cost function resulting in better

and faster convergence and in many cases it is able to give

solution even when it starts far away from the final mini-

mum. However, when the functions are ‘‘well behaved’’ and

the initial parameters vary between logical values Leven-

berg–Marquardt is generally slower than Gauss–Newton

algorithm. In gradient descent method only the first

derivatives are calculated and the information change

parameter includes only the direction in which the cost

function is minimized. Therefore many solutions leading to

convergence may arise, increasing the possibility the time

needed for a solution to be found to become prohibitive.

The algorithm can be described by the following

equations:

e ¼ d � F /:uð Þ ð2Þ

J ¼ 1

2
e2 ð3Þ

D/ ¼ � r2J /ð Þ
� ��1rJ /ð Þ ð4Þ

where e is the observed output error, d is the target output,

u is the system output, F is the fuzzy system function, / is

a general parameter of the fuzzy system, J is the cost

function, r2J(/) is the Hessian matrix and rJ(/) is the

gradient relative to the cost function (3).

The observed output error is used for the minimization

of the cost function by calculating the value of Eq. (4). The

target is the minimization of the instant cost of Eq. (3). If

the expansion of the Taylor series to the error e(/) is

applied around the function point then the first derivatives

produce the Jacobian matrix:

Js ¼

oe1

o/1

:::
oe1

o/B

:::
:::
:::

:::
:::
:::

:::
:::
:::

oeL

o/1

:::
oeL

o/B

2
666666664

3
777777775

ð5Þ

where B is the number of the adaptive parameters and L is

the outputs number. Finally, the parameters adjustment

algorithm is given by:

D/ ¼ N/ ¼ � JTs Js þ qI
� ��1

JTs e ð6Þ

when q is large, the adjustment method shown above

becomes the gradient descent method with step 1/q and

when q is small it actually becomes Newton’s method.

Thus, by importing a term of this kind a smooth transition

between the methods of gradient descent and Newton–

Gauss is achieved and the invertibility problem is

eliminated.

The parameters which can be modified, aiming to opti-

mize the training procedure with Levenberg–Marquardt

method of each network are the adaptive Marquardt value

mu, the mu decrease and mu increase factors, the final

target mean squared error, the minimum gradient value and

the maximum mu value. The parameter mu is the initial

value for q. This value is multiplied by mu decrease value

whenever the performance function is reduced by a step. It

is multiplied by mu increase whenever a step would

increase the performance function. If mu becomes larger

than maximum mu, the algorithm is stopped. Generally,

training stops when one of the following conditions is

fulfilled: the maximum epoch number is reached, the

maximum training time is reached, the desired mean

squared error is achieved, the gradient value becomes

smaller than its minimum value and as mentioned above

when the adaptive Marquardt overruns its maximum value.

LMA appears to be the fastest method for training

moderate-sized feed forward neural networks. It also has a

very efficient Matlab implementation, since the solution of

the matrix equation is a built-in function; thus its attributes

become even more pronounced in a Matlab setting.

Back propagation Bayesian algorithm

Back propagation Bayesian algorithm updates the weight

and bias values according to Levenberg–Marquardt
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optimization. Bayesian regularization minimizes initially a

linear combination of squared errors and weights and then

determines the correct combination so as to produce a

network that generalizes well. The parameters which can

be modified to optimize each network’s training procedure

with the Bayesian method are the adaptive Marquardt mu,

the mu decrease and mu increase factors, the final target

mean squared error, the minimum gradient value and the

maximum mu value. In Bayesian regularization back

propagation is used to calculate the Jacobian jX of the

network performance with respect to the weight and bias

values X. Each variable is adjusted according to LMA as

shown below:

jj ¼ jX � jX ð7Þ
je ¼ jX � E ð8Þ

dX ¼ � jjþ I � muð Þ
je

ð9Þ

where E is the errors sum and I is the identity matrix. The

adaptive value mu is increased by mu increase value until

the change of X results in a reduced performance value.

The change is then made to the network and mu is

decreased by mu decrease value. Training stops whenever

one of the conditions mentioned in Levenberg–Marquardt

method is fulfilled.

Radial basis function neural networks

Radial basis function neural networks are trained with

supervised learning algorithms and can be perceived as

improvements of the multilayer feed forward back

propagation networks. Many of their characteristic fea-

tures are similar to those of feed forward neural networks

because they perform linear representations and weights

summations. However, the transformations performed are

local, resulting in their much faster training. Radial basis

networks may require more neurons than standard feed

forward networks, but often they can be designed to take

a fraction of time it takes to train standard feed forward

networks. It is proven that RBFs with one hidden layer

can approximate any function; as a result they are called

universal approximators. Perceptrons also have the

capability of universal approximation but only RBFs

possess the ability of optimum approximation. Even if

structurally they are less complicated than feed forward

back propagation networks they can achieve better arbi-

trary functions approximations with only one hidden

layer. Also, it has been observed that they work best

when many training vectors are available. When for

every input which must be classified there is a basis

function U(kx - yk) the network will give a function,

adaptive to every pattern.

The basic structure of an RBF neural network includes

an n dimension input layer, a fairly larger dimension

m hidden layer (m[ n) and the output layer. Typical radial

basis functions are Gaussian and logistic function, which

are shown below:

Rt xð Þ ¼ U x� cik kð Þ ¼ exp
� x� cik k2

2r2
i

" #
ð10Þ

Rt xð Þ ¼ U x� cik kð Þ ¼ 1

1 þ exp
� x�cik k2

r2
i

h i ð11Þ

where ci is the i centre of Rt(x) function. The right place-

ment of the centres ci is very important for the achievement

of great learning rates. The ri parameter is called amplitude

and determines the value of the maximum distance

between two inputs that the node has a prominent impact.

The radial basis functions selection is not decisive for the

network efficiency.

The typical structure of an RBF network is shown in

Fig. 2. Input units distribute the values to the hidden layer

units uniformly, without multiplying them with weights.

Hidden units are known as RBF units because their transfer

function is a monotonous radial basis function. Hidden

layer outputs are led to the output units and summed with

appropriate weights.

For training, the number of RBF units is primarily

selected, which is very important for the success of the

procedure, usually by a ‘‘trial and error’’ method. After-

wards, four steps are followed:

1. Input training data are grouped and the centres ci,

i = 1, 2, …, M of these groups are defined as centres

of the M hidden units. Afterwards, k-centres algorithm

is implemented and as a result a certain number of

clustering centres is considered and a separation of the

whole set of patterns into subsets is performed.

2. The amplitudes ri are defined, usually with the

p-closest neighbour method which alters the values

Input
layer

Output
layer

y1

yp

x1

x2

xn

Φ1

Φ2

Φm

w11

wmp

Hidden RBF
layer

Fig. 2 Basic structure of an RBF neural network
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to achieve overlapping of the response of every hidden

and its neighbouring unit. The function used is:

ri ¼
1

p

Xp

j¼1

xi � xj
�� ��2

( )1=2

ð12Þ

where xj is the p-closest neighbour of xi.

3. Transfer functions using Eqs. (10) and (11) are com-

puted for the cases of Gaussian and Logistic function

respectively.

4. Weights vector w = [w1, w2,…, wm]T of the output

units is computed, utilizing the minimum squares

method:

J ¼ 1

2

Xp

k¼1

yk � aTkiw
�� ��2 ¼ 1

2
y� Awð ÞT y� Awð Þ

ð13Þ

where y = [y1, y2,…, yp]
T is the output training vector,

aji is the transfer function vector and A is the hidden

units’ activation matrix.

Table 2 Test set data

No of Test data Speed (min-1) Feed (mm/min) Depth of cut (mm) Vibrations (lV) Surface roughness (lm)

1 1500 609.6 1.27 0.17874 2.794

2 1250 457.2 0.254 0.14558 2.921

3 1250 381 0.254 0.13378 2.7178

4 1000 533.4 0.762 0.16794 3.683

5 1500 381 0.254 0.14637 2.794

6 1250 533.4 0.254 0.13001 3.2766

7 1000 228.6 0.254 0.091113 2.3368

8 1000 381 0.762 0.14862 2.7432

9 750 533.4 0.762 0.16241 4.1402

10 750 381 1.27 0.15298 2.6416

Table 1 Training set data

No of Training data Speed (min-1) Feed (mm/min) Depth of cut (mm) Vibrations (lV) Surface roughness (lm)

1 1500 152.4 1.27 0.10168 1.4224

2 1500 457.2 0.254 0.13581 3.048

3 1500 609.6 0.762 0.19091 2.6162

4 1500 304.8 0.254 0.11231 2.2352

5 1250 304.8 0.254 0.1448 2.54

6 1250 609.6 1.27 0.18291 3.0734

7 1250 152.4 1.27 0.096899 1.8034

8 1000 609.6 1.27 0.18417 3.6068

9 1000 152.4 0.762 0.10976 1.9812

10 1000 304.8 1.27 0.18001 2.3368

11 1000 457.2 0.762 0.16149 3.1496

12 750 457.2 0.762 0.14068 3.7338

13 750 304.8 0.762 0.12654 2.5908

14 750 152.4 1.27 0.089752 1.8288

15 750 609.6 0.762 0.17928 4.3434

16 1500 228.6 0.254 0.08833 1.3462

17 1250 228.6 0.762 0.13814 2.0828

18 1000 533.4 0.254 0.10338 3.7846

19 750 228.6 0.254 0.093096 2.7686

20 750 533.4 0.254 0.11352 4.5212

21 750 533.4 1.27 0.16586 3.81
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Networks’ modelling

The aim of the study is to test various training algorithms in

both BP and RBF networks for the purpose of predicting

the surface roughness in milling. Then the results are

compared and useful conclusions are drawn. In all the

proposed models the same set of input and output data is

used. For the application of the method, experimental

results from the relevant literature were exploited (Lou

1997). The experiments pertain to the CNC end milling

6061 aluminium blocks. The tool used was a four-flute 3/4

inch diameter milling cutter of HSS. During the machining

an accelerometer sensor was used to measure tool vibra-

tions. Spindle speed, feed rate, depth of cut and vibrations

were selected as independent variables in this study.

Vibrations depend partly on the other three independent

variables and thus they could be treated as a dependent

variable. However, due to the complex structural system

consisting of workpiece, fixture, cutting tool and machine

tool the vibrations and consequently the surface roughness

cannot be described quite accurately by the limited set of

independent variables. Therefore, vibrations are treated as

an independent variable, as well.

Two sets of experimental data were obtained: training

data set and testing data set. The training data set was

obtained on the basis of four levels of spindle speed (750,

1000, 1250, 1500 rpm), six levels of feed rate (152.4,

228.6, 304.8, 457.2, 533.4, 609.6 mm/min) and three levels

of depth of cut (0.254, 0.762, 1.27 mm). For each combi-

nation of spindle speed, feed rate and depth of cut, the

corresponding vibration data (in lV) were recorded. The

corresponding value of the roughness average Ra (in lm),

the dependent output, was collected for each measurement.

The training data used for the analysis are presented in

Table 1.
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In this work, training data comprised 21 measurements

selected randomly out of the 400 measurements originally

presented by Lou (1997). The test data set was obtained on

the basis of four levels of spindle speed (750, 1000, 1250,

1500 rpm), seven levels of feed rate (152.4, 228.6, 304.8,

381, 457.2, 533.4, 609.6 mm/min) and three levels of depth

of cut (0.254, 0.762, 1.27 mm). Also for the test data set

the data on vibrations and surface were recorded. The test

data set comprised 10 measurements that are shown in

Table 2. Note that in the test data set a value for the feed

rate, namely 381 mm/min that has not been used in the

training data set was also considered. This was chosen to

Fig. 7 Input-output surfaces of the optimum neural network
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check whether the constructed system could predict cor-

rectly the value of the surface roughness when it has as

input, values that it has not been trained for. The aim of this

work was to create a system that could predict the surface

roughness quite accurately; it is quantified as a small value

of Mean Squared Error of training and test data,

respectively.

Results and discussion

BP networks

For BP networks three different network training methods

are employed, namely the adaptive back propagation algo-

rithm of the steepest descent with the use of momentum

term, the back propagation Levenberg–Marquardt algorithm

and the back propagation Bayesian algorithm. In the pro-

posed models, regardless of the training algorithm used,

some modelling parameters remain the same. More specif-

ically, it is set that the final training error to be smaller than

1 9 10-10 and the maximum number of epochs during

which the network could be trained to be equal to 15000.

However, the training process stops whenever the desired

MSE is achieved or the designated epoch number is reached

or finally when one of the parameters of each training

algorithm reaches the maximum or minimum value.

It must be noticed that at the input layer all the values

need to be of the same size so as to achieve faster and

better convergence. Thus, modified values of the experi-

mental data were used; depth of cut and vibration data are

multiplied by 5 and 10, respectively and the spindle speed

and feed rate data are divided by 500 and 100, respectively.

All neural networks used have a four neurons input layer,

because there are four types of input data, i.e. spindle

speed, feed rate, depth of cut and vibrations, one or two

hidden layers with variable number of neurons and a single

neuron output layer for the surface roughness which is the

system output. The hidden layers use the hyperbolic tan-

gent sigmoid transfer function, which is expressed as:

f uð Þ ¼ tanh
u

2

� �
¼ 1 � e�u

1 þ e�u
ð14Þ

After training, the best neural network that managed to be

fully trained and produced the smallest test mean squared

error was the 4-6-1-1 network, meaning with 2 hidden

layers with 6 and 1 neurons in the first and second hidden

layer, respectively, trained with the back propagation

Bayesian algorithm. For this specific network, it took 262

epochs to terminate the training procedure, achieving MSE

of training data equal to 4.59 9 10-12, while the respective

MSE of test data was 0.01599 and all test data produced

error smaller than 10 %. Obviously, the values of both the

mean squared errors of training and test data are signifi-

cantly small. Also, this network produced the smaller value

of mean squared error of all the networks that were trained.

In Fig. 3 the alteration of the value of mean squared error

of training data versus the epochs is depicted and in Fig. 4

the alteration of the value of adaptive training factor mu

versus the epochs is plotted. In Fig. 5 the experimental val-

ues of surface roughness and the corresponding calculated

values of surface roughness by the neural network for the test

data are shown. Finally, Fig. 6 shows the difference of the

computed to the experimental surface roughness values for

the test data, indicating in most cases a very good prediction.

In Fig. 7a, b, c, d, f, the total surfaces which describe the

input–output space, produced when only two of the input

variables are altered each time, are shown. The input vector

used was (speed = 1125 rpm, feed = 381 mm/min, depth

of cut = 0.762 mm and vibrations = 0.1392 lV), there-

fore, in each figure the variables that are not mentioned

take their pre-assigned values from the vector above. The

two input variables that are altered each time take all the

possible values between their widths of rate.
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Fig. 8 Surface roughness for test data

Fig. 9 The discrepancy of the predicted value from the experimental

in percentage, for test data
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It is worth noticing that generally neural networks are

not stable; each time a network is trained, the initial

weights as well as the initial bias values are chosen ran-

domly from the programme. This random selection

strongly affects the training procedure and the final error of

the network. The same network can achieve complete

training for a specific set of initial weights and biases and

afterwards can fail to be trained for another set of weight

and bias values. For this reason, for each network exam-

ined, the network ran 15 times and then the most possible

value one could take with only one ‘‘running’’ of the net-

work was chosen.

Fig. 10 Input-output surfaces of the optimum RBF network
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RBF networks

In the second part of this work radial basis function net-

works are examined, which could be trained and then

predict surface roughness. For RBFs, the target training

mean squared error was chosen equal to 10-30. Once again,

all values at the input layer need to be of the same size,

trying to achieve faster and better convergence. Thus, the

modified values of the experimental data, as used in BP

networks, were employed. Furthermore, in the proposed

RBFs, the value of spread constant needs to be determined;

an inappropriate spread constant could cause RBF over-

fitting or underfitting. For this purpose an algorithm is

developed that can test all the resultant networks for spread

values from 0.1 to 100, with changing step equal to 0.1. All

RBF networks produced had only one hidden layer. The

number of hidden layer neurons was modified from the

program with respect to the spread value, so as the target

mean squared error to be achieved. Similarly to BP net-

works, the networks presented in this paragraph have four

input neurons, one for each input variable and one output

neuron, corresponding to surface roughness. Hidden layer

neurons used the radial basis activation function and the

output neuron used the linear transfer function.

For every network, the results obtained were the training

MSE, the test MSE and the training time. By comparing all

the results it was concluded that the optimum network was

the one with spread value equal to 15. This network pro-

duces the smallest test data MSE and only two of its test

data produce difference between experimental and pre-

dicted data greater than 10 %; the one was hardly greater

than the target value, thus substantially only for one data

point there was high percentage error.

Figure 8 depicts the experimental values of surface

roughness and the corresponding calculated values of sur-

face roughness by the RBF network for the test data used.

Figure 9 shows the discrepancies of the predicted values

from the experimental ones in percentage, for the test data.

In Fig. 10a, b, c, d, f, the total input–output surfaces

which are produced when only two of the input variables

are altered each time, are shown. The input vector used was

(speed = 1125 rpm, feed = 381 mm/min, depth =

0.762 mm, vibrations = 0.139 lV) therefore, in each fig-

ure the variables that are not mentioned take their pre-

assigned values from the vector above.

From all the results taken it is concluded that training

times for all networks were very small. Furthermore, as

spread value was rising, test MSE was decreasing up to the

moment spread value became equal to 15. For farther

increase of spread value the error was increasing, too.

Finally, RBF networks are absolutely stable; when the

values of their parameters are kept constant they give the

same results, no matter how many times they are trained.

In general, test data which produced most frequently

error greater than 10 % were these placed in rows 2, 7 and

10 in test data table. Test data 10 contains a feed rate value

(381 mm/min) for which it had not been trained. For test

data 7, the corresponding feed rate (2228.6 mm/min) was

used during training but not combined with the spindle

speed value of 1000 rpm. Test data 2 consists of a com-

bination of spindle speed (1250 rpm) and feed rate

(457.2 mm/min) for which the network had not been

trained. Table 3 tabulates some parameters connected to

the performance of the finally selected BP and RBF net-

works, for comparison.

Conclusions

In this work, various training algorithms for BP networks

and RBF networks were put to test for the prediction of

surface roughness in end-milling. Four independent vari-

ables were used as inputs, namely spindle speed, feed rate,

depth of cut and vibrations and the output of the networks

was surface roughness. The first system was a feed forward

network, which was examined for various numbers of

neurons, with one or two hidden layers and for the training

process three different methods, steepest descent, Leven-

berg–Marquardt and Bayesian, were used, with the latter

giving the best results. The second system under exami-

nation was a radial basis network. Both systems can exhibit

advantages and disadvantages when compared to one

another and in both cases the results were quite satisfying.

Certain remarks concerning these two approaches are

the following:

• RBFs can be trained much faster than perceptrons.

• Test data MSEs of perceptrons trained with the

Bayesian method were generally smaller than the errors

resulting from RBFs.

• The smallest training error was achieved with radial

basis networks.

• Radial basis networks were very stable. Also, the

networks trained with the Bayesian algorithm were

generally stable contrary to the networks trained with

Table 3 Comparison of

optimum BP and RBF networks
Network type Structure MSE training MSE Test Time (s) Test data[ 10 %

Feed forward 4-6-1-1 4.59 9 10-12 0.01599 8.041 0

Radial 4-21-1 8.85 9 10-20 0.034973 0.31 2
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the Levenberg–Marquardt and steepest descent

algorithms.

It can be finally concluded that artificial neural networks

can satisfactorily predict surface roughness in milling.
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