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Abstract This paper questions some aspects of attribute

acceptance sampling in light of the original concepts of

hypothesis testing from Neyman and Pearson (NP). Attri-

bute acceptance sampling in industry, as developed by

Dodge and Romig (DR), generally follows the international

standards of ISO 2859, and similarly the Brazilian stan-

dards NBR 5425 to NBR 5427 and the United States

Standards ANSI/ASQC Z1.4. The paper evaluates and

extends the area of acceptance sampling in two directions.

First, by suggesting the use of the hypergeometric distri-

bution to calculate the parameters of sampling plans

avoiding the unnecessary use of approximations such as the

binomial or Poisson distributions. We show that, under

usual conditions, discrepancies can be large. The conclu-

sion is that the hypergeometric distribution, ubiquitously

available in commonly used software, is more appropriate

than other distributions for acceptance sampling. Second,

and more importantly, we elaborate the theory of accep-

tance sampling in terms of hypothesis testing rigorously

following the original concepts of NP. By offering a

common theoretical structure, hypothesis testing from NP

can produce a better understanding of applications even

beyond the usual areas of industry and commerce such as

public health and political polling. With the new proce-

dures, both sample size and sample error can be reduced.

What is unclear in traditional acceptance sampling is the

necessity of linking the acceptable quality limit (AQL)

exclusively to the producer and the lot quality percent

defective (LTPD) exclusively to the consumer. In reality,

the consumer should also be preoccupied with a value of

AQL, as should the producer with LTPD. Furthermore, we

can also question why type I error is always uniquely

associated with the producer as producer risk, and likewise,

the same question arises with consumer risk which is

necessarily associated with type II error. The resolution of

these questions is new to the literature. The article presents

R code throughout.

Keywords Acceptance sampling � Lot quality assurance

sampling (LQAS) � Hypergeometric � Operating
characteristic curve (OCC) � Receiver operating
characteristic (ROC) Curve � Hypothesis test � R CRAN

When acceptance sampling is presented as a collection of tables in

step-by-step recipes, practitioners can learn enough in a few hours to

set up sampling plans, and filter out some of the non-conforming

product in large lots. This, however, is not enough to negotiate

agreements over the long run especially among international

businesses. This review of acceptance sampling results from a

consultant’s need to go beyond the table-and-recipe stage of

introductory training, and advance to a level of understanding

compatible with the formation of international contracts. We dedicate

this work to all those practitioners (especially Elton Thiesen and

Carlos Reich) who successfully (and quickly) acquired sufficient

knowledge of sampling standards to apply sampling plans on the shop

floor but confronted a consultant/professor whose toolkit lacked an

intuitive approach compatible with the shop floor environment.
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Introduction

In commerce, any negotiation puts buyer and supplier in

direct conflict.1 Although the exchange of products and

services can take place either with legal contracts or as

informal agreements promoting the welfare of all partici-

pants, the main characteristic of negotiation is the attempt

of one adversary to gain more. Even in honest and open

negotiations with a relatively free flow of well-defined

objectives among all participants, there are still differences

between the antagonisms of buyers and sellers. Each

adversary is an independent decision maker at least in

theory, capable of assuming responsibility for her own

decisions. In the commerce of large lots of standardized

goods, statistical modeling and the concepts of probability

can distinguish between different points of view, recog-

nizing and revealing the conflicts inherent in negotiations.

Consequently, to ensure the quality of large lots, each party

may require different contractual sampling plans which

specify lot size (N), sample size (n) and the maximum

number of defective parts (c) in the sample that still allows

for lot acceptance, the formal symbols are PL(N, n, c).

The main objective of this paper is to discuss the rela-

tionship between acceptance sampling and formal

hypothesis tests as developed by NP. Considering that the

pioneering work of Dodge and Romig (DR) (1929) in

acceptance sampling, which has survived decades of aca-

demic debate and practice, arrived before the formalization

of hypothesis testing by NP, the question is why bring

hypothesis testing into the discussion at all. Throughout the

rest of this paper, we will attempt to show that, if used

appropriately, hypothesis testing offers a more logically

complete structure to decision-making and therefore to

better decisions.

It is common in the literature (for example, Shmueli

2011; Hund 2014), but not in the original pioneering work

of DR, to associate consumer and producer2 risk with the

concepts of the probability of type II and type I error,

respectively. In our approach, we shall go further and

develop the generalization that both consumer and pro-

ducer feel the cost of both errors. In other words, we shall

explicitly allow for two type I errors and two type II errors

depending on the perspective of the consumer or the

producer. We will show that the decision-making process

may be compromised by the commonly used simplification

that type I error is felt only by the producer and in like

manner type II error is inclusive only to the consumer.

Hypothesis testing from NP, by offering a common theo-

retical structure, can produce a better understanding of the

application of sampling procedures and their results.3 In a

series of examples, we show that measures of risk will be

more reliable and risk itself lowered.

Deming (1986) was opposed to acceptance sampling. He

argued that inspection by sampling leads to the erroneous

acceptance of bad product as a natural and inevitable result

of any commercial process, which in turn leads to the

abandonment of continuous process improvement at the

heart of the organization. Deming’s position that inspection

should be either abandoned altogether or applied with

100% intensity has been debated in the literature (see Chyu

and Yu 2006, for review and a Bayesian approach to the

question), and his position is supported by some. Even

though acceptance sampling is only a simple counting

exercise with no analysis for uncovering the causes of non-

conforming quality,4 our position is that acceptance sam-

pling should be an integral part of the commercial–indus-

trial process and, even when perfect confidence reigns

between buyer and seller, but sampling itself should never

be abandoned. Deming (1975), however, was very much in

accord with statistical studies by random sampling that are

restricted to inferring well-defined characteristics of large

populations, just not as a procedure for continuous quality

improvement.

In the next section, we discuss traditional acceptance

sampling emphasizing those concepts modified in the rest

of the text. Sections ‘‘Lot tolerance percent defective

(LTPD) in consumer risk’’ and ‘‘Acceptable quality limit

(AQL) in producer risk’’ will present the traditional rela-

tionships between AQL and producer risk, and LTPD and

consumer risk. Section ‘‘A unique sampling plan for both

parties—DR tradition’’ closes the discussion of traditional

acceptance sampling offering the possibilities of con-

structing sampling plans that are unique for both producer

and consumer. In section ‘‘Acceptance sampling via

hypothesis tests’’, we will lay out our interpretation of NP

hypothesis testing and its connection to acceptance sam-

pling. The next two sections will attempt a synthesis of

basic concepts in NP hypothesis testing and acceptance

sampling. We then propose new procedures for the solution

to unique sampling plans that simultaneously satisfy pro-

ducer and consumer. Finally, the last two sections present

1 The specific area of applied statistics elaborated here possesses at

least three different names. In industrial settings and in this article, the

name is Acceptance Sampling. When DR first introduced this

statistical application, the name was Inspection Sampling. In

medicine and public health, the name is Lot Quality Assurance

Sampling (LQAS). See, for example, Biedron et al. (2010). A very

popular textbook discussion is Shmueli (2011), Schilling and

Neubauer (2009) and NIST/SEMATECH (2012).
2 Consumer and producer are the names used in the original work of

DR. Sometimes we will use similar terms like buyer and seller

without causing confusion.

3 The author has applied the basic ideas in this article to the polling

of public opinion and public health (Samohyl 2015, 2016).
4 See Samohyl (2013) for a causal analysis of quality via logistic

regression.
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conclusions and ideas for future work in the area. A series

of appendices offer review material for statistical concepts

frequently used in acceptance sampling, including R

snippets that give a brief description of the R code used in

figures and tables.

Traditional acceptance sampling

Considering that the pioneering work of DR comes earlier

than the formalization of hypothesis testing by NP, the

question is why acceptance sampling should integrate

hypothesis testing at all. We will show that hypothesis

testing can offer a common structure that generalizes and

clarifies some issues in the application of acceptance

sampling.

DR formally introduced inspection sampling in 1929

and in fact only from the viewpoint of the consumer. The

priority given to the consumer will be an important

ingredient for the discussion of hypothesis testing in this

paper. They mention producer risk only marginally. In

1944, they emphasize even more clearly their position that

consumer risk is their first priority (Dodge and Romig

1944).

The first requirement for the method will, therefore,

be in the form of a definite assurance against passing

any unsatisfactory lot that is submitted for inspection.

[…] For the first requirement, there must be specified

at the outset a value for the lot tolerance percent

defective (LTPD) as well as a limit to the probability

of accepting any submitted lot of unsatisfactory

quality. The latter has, for convenience, been termed

the Consumer’s Risk….

Both consumer and producer are concerned with the

quality of the lot measured by the percentage (p = X/N) of

defective items. Values of p close to zero indicate that the

lot is high quality. In traditional acceptance sampling, it is

natural to assume that the producer requires a relatively

low maximum value for p to guarantee that the lot is, in

fact, acceptable to the consumer. The producer calls this

limiting value for p the acceptable quality level (AQL).

Even though management and business strategy determine

the value of AQL, it should reflect the actual value of

quality reached by the producer. A value of AQL lower

than the dictates of the production line will lead to

sequential rejections. On the other hand, the consumer in

question will allow for a limiting value of p that is a

maximum value for defining the defective rate tolerable to

the consumer who calls this value the LTPD.5 Any value of

p greater than LTPD signifies that the consumer will reject

the lot as low quality. Both producer and consumer know

that AQL should be substantially lower than LTPD; this

signifies that lots have relatively high quality when they

leave the producer and avoid rejection by the buyer.

The classification rule in traditional acceptance sampling

is relatively simple: a lot is acceptable if in a sample of size

n the number of defective parts x is less than or equal to a

predetermined cutoff value c. The inequality x B c identi-

fying a high quality sample signifies that it is very likely that

the lot also possesses an acceptable level of quality. On the

other hand, if x is greater than c (x[ c), identifying a low-

quality sample, then it is likely that the lot is also of low

quality. The practice of acceptance sampling determines the

values of c and n that reduce to an acceptable level the

probability of error. In other words, the intention of accep-

tance sampling is to minimize the probability of wrongly

classifying the lot. Equation (1) represents the conditional

probability of the sample indicating unacceptable low

quality x[ c when, in fact, the lot is high quality p�AQL,

a false positive (FP).6 The cost of rejecting good lots falls

heavily on the producer, more than the consumer.

P x[ c=p�AQLð Þ ¼ P FPð Þ
¼ probability of a false positive FPð Þ

ð1Þ

The equation illustrates that the frequency of FPs de-

pends on the chosen values of c and AQL. For example, if

they were chosen to result in P(FP) = 5%, then, in the

universe of high-quality lots, 5% of all samples would

indicate in error that the lot was unacceptable. DR label

Eq. (1) as producer risk. The producer who rejects a good

product is creating a problem that in fact does not exist,

perhaps even stopping the assembly line to find solutions to

difficulties only imagined. Traditional acceptance sampling

refers to Eq. (1), the probability of type 1 error, as a. We

emphasize that DR never associated producer and con-

sumer risk to type I and type II error.

When the sample includes a small number of defective

items (x B c), this indicates to the buyer that the lot is high

quality. Equation (2) represents the conditional probability

of the sample indicating high quality when, in fact, the lot

is unacceptable (p[LTPD). This condition represents a

false negative (FN).

P x� c=p[LTPDð Þ ¼ P FNð Þ
¼ probability of a false negative FNð Þ

ð2Þ

5 Also called limiting quality and consumer’s risk quality in ISO

(1999, 1985).

6 The use of the concepts of positive and negative are common in the

medical and data science literature, for instance, Provost and Fawcett

(2013, chap. 7). Sensitivity of a test to recognize true positives (TP/

(all positives)). Specificity is the capacity to recognize true negatives

(TN/(all negatives)).
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DR labeled Eq. (2) as consumer risk since acquiring bad

product would harm assembly lines or retail with low-

quality inputs and merchandise. In traditional acceptance

sampling, the probability of type 2 error (Eq. (2)) takes the

name of b. In the application of acceptance sampling, the

producer and consumer predetermine the acceptable values

for P(FN) and P(FP) along with LTPD and AQL. The

solution for n and c called a sampling plan (or sample

design) PL(n, c) is mathematically determined from the

binomial or Poisson distribution. All of this information is

summarized Table 1.

The application of acceptance sampling procedures fall

into three simple steps:

1. Determine the values for the size of the sample n and

the cutoff limit c.

2. Draw the sample and count the number of defective

items c in it.

3. a. If x B c then accept the lot as likely high quality, but

this may be wrong for b percent of bad lots.

b. If x[ c then reject the lot as likely low unaccept-

able quality, but this may be wrong for a percent of good
lots.

Later on, our considerations on hypothesis testing will

require modifications in the above steps. Appendix

‘‘Operating characteristic curve (OCC)’’ presents the

operating characteristic curve (OCC). The curve is a

standard statistical tool for understanding and constructing

sampling plans and appears several times in this article.

Lot tolerance percent defective (LTPD)
in consumer risk

The consumer defines the LTPD as the maximum accept-

able rate of poor quality. The sampling plan, if well thought

out, possesses values for n and c that indicate little chance

of acceptance if p is greater than the LTPD tolerated by the

consumer. Specifically, this means that the probability of

error P(x B c/p C LTPD) = b is very small. In other

words, the consumer protects herself against poor quality

by choosing an adequate sampling plan that keeps her risk

at a low and tolerable level for undesirable levels of p.

In Fig. 1 the sampling plan is PL(3000, 200, 0),

remembering that it is generally beneficial to the buyer to

have a very small c. In this example, LTPD is 1%. With

p equal to 1% or greater (quality worse), there is a prob-

ability of still accepting the lot equal to 0.125 or less.

Depending upon the necessities and market power of the

buyer, consumer risk of less than 12.5% may be required. It

is important to emphasize that the sampling plans analyzed

in this section follow the cumulative hypergeometric dis-

tribution (Appendix ‘‘Hypergeometric distribution’’).

Along the OCC, the pair of values LTPD and P(LTPD)

signifies a single point. There are several configurations of

PL(N, n, c) compatible with a given pair of values for LTPD,

P(LTPD), eachconfigurationproducingdifferent shapes for the

OCC.The choice of configuration, in practice, is not as free as it

seems. Technology and the commercial terms of the negotia-

tion usually impose lot size N. The value of c usually does not

flee too far from zero. In the end, only sample size n remains

unknown. We discuss this question further in what follows.

Table 2 shows new calculations for consumer sampling

plans defined by P(LTPD) and LTPD. The columns labeled

letter, N, n, and c are common to most sampling standards.

Shmueli (2011) uses ANSI/ASQC Z1.4 and ISO 2859

(1999, 1985) extensively. Note that in the table adequate

sampling plans for the consumer are not abundant. There

are few plans that produce a risk factor less than 10%. They

appear mostly in the last three lines of the table. Table 3

produces comparable results for producer risk. This exer-

cise in comparing consumer and producer risk serves to

demonstrate the difficulty for two bargaining parties to find

one unique plan that would satisfy the minimum risk

requirements of both simultaneously. We will return to this

topic after the discussion of producer risk.

Acceptable quality limit (AQL) in producer risk

Producer error comes from the idea that the producer suf-

fers more from the rejection of good lots than the accep-

tance of bad ones. To calculate producer risk, the producer

Table 1 Traditional lot

classification in acceptance

sampling with sample results

compared to the real state

Real states of population Sample results

x B c x[ c

p B AQL P(x B c/p B AQL)

P(TN)

P(x[ c/p B AQL) = a

P(FP) error (Eq. 1)

P
P = 1

p C LTPD P(x B c/p C LTPD) = b

P(FN) error (Eq. 2)

P(x[ c/p C LTPD) = 1 - b

P(TP)

P
P = 1

TN true negative, TP true positive, FP false positive, FN false negative
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Fig. 1 Hypergeometric

sampling plan as OCC for

PL(3000, 200, 0) and

LTPD = 0.01

Table 2 Traditional consumer sampling plans and consumer risk with the hypergeometric distribution

CONSUMER common standards, single sample normal, level II—hypergeometric distribution

Letter N LTPD = 0.65% Consumer risk LTPD = 1.0% Consumer risk LTPD = 1.5% Consumer risk

n c n c n c

J 1200 80 0 .575 80 0 .435 80 0 .286

K 1201 125 0 .414 125 0 .266 125 0 .136

K 3200 125 0 .432 125 0 .278 125 0 .146

L 3201 200 0 .257 200 0 .126 200 1 .188

L 10,000 200 0 .268 200 0 .131 200 1 .194

M 10,001 315 0 .124 315 1 .172 315 2 .144

M 35,000 315 0 126 315 1 .175 315 2 .147

N 35,001 500 1 161 500 2 .122 500 4 .128

N 150,000 500 1 .163 500 2 .123 500 4 .130

P 150,001 800 2 .107 800 4 .098 800 7 .087

P 500,000 800 2 .108 800 4 0.098 800 7 .088

Q 500,001? 1250 4 .092 1250 8 0.123 1250 13 .106

Table 3 Traditional producer sampling plans and producer risk with the hypergeometric distribution; Appendix ‘‘Producer sampling plans

recalculated with the hypergeometric distribution’’ has a complete table of producer risk

PRODUCER Common standards, single sample normal, level II hypergeometric distribution

Letter N AQL = 0.65% Producer risk AQL = 1.0% Producer risk AQL = 1.5% Producer risk PRODUCER risk

n c n c n c c

J 1200 80 0 .425 80 0 .565 80 0 .714 5 .001

K 1201 125 0 .586 125 0 .734 125 0 .864 5 .007

K 3200 125 0 .568 125 0 .722 125 0 .854 5 .010

L 3201 200 0 .743 200 0 .874 200 1 .812 6 .028

L 10,000 200 0 .732 200 0 .869 200 1 .806 6 .031

M 10,001 315 0 .876 315 1 .828 315 2 .856 7 .101

M 35,000 315 0 .874 315 1 .825 315 2 .853 7 .104

N 35,001 500 1 .839 500 2 .878 500 4 .872 9 .221

N 150,000 500 1 .837 500 2 .877 500 4 .870 9 .222

P 150,001 800 2 .893 800 4 .902 800 7 .913 12 .424

P 500,000 800 2 .892 800 4 .902 800 7 .912 12 .424

Q 500,001? 1250 4 .906 1250 8 .877 1250 13 .894 18 .508
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must decide upon the value of AQL. If p B AQL, then the

batch is defined as good, and likewise, if p[AQL lots are

considered non-compliant. Well-chosen AQL and corre-

sponding sampling plans reduce producer risk and there-

fore increase the probability of not rejecting good lots. The

producer should offer items that bring high levels of sat-

isfaction to the consumer and consequently renewed con-

tracts. This means that AQL should always be less than

LTPD.

In Fig. 2, the sampling plan is PL(3000, 10, 0), and AQL

is 0.5%. For p equal to 0.5%, the probability of accepting

the lot is equal to P(AQL) = 0.951. Since the sum of the

probabilities of accepting the good lot and rejecting the

good lot is equal to unity (see the definition of a in

Table 1), the probability of rejection of the good lot is

0.049 (= 1 - 0.951). If p is less than the AQL of 0.5%,

high quality is present; the producer is more likely to

accept the lot. Remember that the probability of rejecting

good lots is producer risk. In Fig. 2, the horizontal line

P(AQL) divides the vertical axis at 0.951, and the part

above that point up to the limit of one is the producer risk

0.049. In industry, a producer risk 1 - P(AQL) below 5%

is very attractive and usual for acceptance sampling.

The pair AQL and P(AQL) may correspond to several

sampling plans and, consequently, several OCCs. In the

next section, we will investigate the difficulties in finding a

single sampling plan that would allow for both producer

and consumer to possess their own distinct values of AQL

and LTPD, and the risk factors P(LTPD) and

{1 - P(AQL)} all for one unique sampling plan, PL(N, n,

c). If such a plan exists, one unique inspection somewhere

between producer and consumer would satisfy all parties

and inspection costs reduced.

Table 3 has the same sampling plans as Table 2 but

from the point of view of the producer. The table has an

additional set of sampling plans in the last columns where

c has comparatively larger values than c in the other col-

umns. Only in the last column of the table are there sam-

pling plans that would satisfy the requirements of the

producer. Plans where c = 5 or 6 have risk factors that are

less than 10%, even though in practice a risk limit of 5%

for the producer is much more common.

Recognizing that the points of view of the producer or

consumer come from different perspectives, the value

chosen for c is of pivotal importance. The producer will

want a c that is relatively large, admitting the possibility of

accepting bad lots so that there is no rejection of good lots.

The consumer, on the other hand, will desire a low value

for c, consequently rejecting some good lots but better

guaranteeing the acceptance of only good lots. Therefore, it

will be difficult if not impossible to find values for c that

will serve the desires of both adversaries.

A unique sampling plan for both parties—DR
tradition

A solution for a unique sampling plan for buyer and seller

might be determined based on five predetermined param-

eters and the search for appropriate values for n and c. The

five predetermined parameters are:

LTPD e P(LTPD), desired values for the consumer,

AQL e [1 - P(AQL)], desired values for the producer,

and

N lot size (same for both parties), necessary as a

parameter of the hypergeometric probability function

H{}.

Following Eq. 6 in the appendix,

Fig. 2 Hypergeometric

sampling plan with the OCC for

PL(3000, 10, 0) and

AQL = 0,005
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Consumer risk ¼ PðLTPDÞ ¼ H PL N; n; cð Þ;LTPDf g
ð3Þ

Producer risk ¼ 1� PðAQLÞ
¼ 1� H PLðN; n; cÞ; AQLf g ð4Þ

It is common practice in all standards for commerce and

industry to work with consumer and producer risks at

maximum values of either 5 or 10%. The common risk

percentages produce four cases illustrated in Table 4.

In case 5–5, both producer risk [1 - P(AQL)] and con-

sumer riskP(LTPD) are 5%. In Fig. 3 AQL and LTPD are set

at 0.005 and 0.01, respectively. We have drawn the corre-

sponding ROC curve (see Appendix ‘‘The receiver operating

characteristics (ROC) curve’’) using the hypergeometric

function for c = 10, 11, 12, 13. The plan PL(3000, 1600, 11)

satisfies the risk conditions specified by buyer and seller, that

both risks be less than 5%. Because of the discreteness of the

probability function, consumer risk is 4.9% and producer risk

is 3.2% at c = 11. Along the ROC curve, the value of

c changes and accordingly the values of a and b. For example,

the plan PL(3000, 1600, 12) is supported by a = 0.7% and

b = 9.9%. This last plan is much better for the producer and

much worse for the consumer. The higher ROC curve origi-

nates from the binomial distribution with the same sampling

plan; nevertheless, due to the mathematics of the binomial,

consumer and supplier risks result in much larger values,

greater than 10%. The binomial deceives the decision makers

into seeing almost double the risk where it does not exist.

Case 5–10, illustrated in Fig. 4, is the most encountered

in practice: consumer risk at 10% and producer risk 5%.

Buyers (who are disinterested or ignorant to the disad-

vantages) apply sampling plans that follow these risk levels

even though they are prejudicial to the buyer himself. For

AQL and LTPD at 0.005 and 0.01, respectively, the plan

PL(3000, 1400, 10) satisfies the risk conditions specified.

Buyer risk is 0.098 and producer risk is 0.034. This plan is

slightly easier to apply than case 5–5, given the smaller

sample n and acceptance number c.

Case 10–5 in Fig. 5, represents a sampling plan that

pleases the buyer and demonstrates his market power by

putting the seller at a disadvantage. This case is actually

quite frequent when the seller is a small or medium sized

establishment and the buyer is a large retailing or manu-

facturing firm; producer risk [1 - P(AQLp)] has been

placed at 10% while consumer risk P(LTPDc) remains at

5%. AQL continues to be 0.005. The resulting unique

sampling plan is PL(3000, 1400, 9). The buyer should be

very pleased with this plan represented by a risk factor of

4.7%, while on the other side, the supplier finds his position

weakened, as he is obligated to produce at a relatively

high-quality rate AQL of 0.005 and must confront a risk

factor of 9.7%. Once again, the difference is large between

the outcomes of the hypergeometric and the binomial

probability functions.

The last case in Table 4, where both consumer and

producer risks are 10%, is not analyzed due to its very rare

occurrence.

What is unclear in traditional acceptance sampling is the

necessity of linking AQL exclusively to the producer and

LTPD exclusively to the consumer. In reality, the con-

sumer should also be preoccupied with a value of AQL, as

should the producer with LTPD. We also question why

type I error is always associated with the producer as

producer risk, and likewise, the same question arises with

consumer risk which is necessarily associated with type II

error. The resolution of these questions is new to the lit-

erature and the remainder of this article will elaborate a

response. In the next sections, we show that hypothesis test

concepts from NP are relevant to practical applications of

acceptance sampling, but only if the specific nature of the

decision maker is taken into account.

Acceptance sampling via hypothesis tests

Historically, the work of Dodge and Romig (1929)

appeared before the concepts of hypothesis testing received

wide acceptance in practice. Their work depends exclu-

sively on probability functions, and the probabilistic

interpretation of the concepts of producer and consumer

risk some years before Neyman and Pearson (1933) offered

their seminal interpretation of type I and type II error.

DR worked in industry and commerce and, subse-

quently, the design of acceptance sampling they developed,

because of the innate conflict between buyers and sellers,

was strictly applicable to this environment. Our review of

hypothesis testing is at most a simple skeleton of the rel-

evant area of scientific methodology, better elaborated in

works like Rice (1995, chapter 9) and the original work of

Neyman and Pearson (1933). Nevertheless, our interpre-

tation of acceptance sampling in light of hypothesis testing

is new to the literature. First, we will concentrate on the

nature and definition of the null hypothesis.

Simply stated, a hypothesis is a clear statement of a

characteristic of a population and usually its numerical

Table 4 Common risk settings for maximum permissible values for

consumer and producer risk

Risk settings Consumer risk P(LTPD)

5% 10%

Producer risk 1 - P(AQL)

5% 5–5 5–10

10% 10–5 10–10
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Fig. 3 ROC curve

hypergeometric and binomial

sampling plan PL(3000, 1600,

c) for Case 5-5 from Table 4.

AQL = 0.5% and

LTPD = 1.0%

Fig. 4 ROC curve

hypergeometric and binomial

sampling plans PL(3000, 1400,

c): case 5-10 from Table 4

AQL = 0.5% and

LTPD = 1.0%

Fig. 5 ROC curve

hypergeometric and binomial

sampling plans PL(3000, 1400,

c): advantageous to the

consumer Case 10-5

AQL = 0.5% and

LTPD = 1.0%
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value, or of a relationship among characteristics (some-

thing happens associated with something else), that may or

may not be true. It carries with itself a doubt that calls for

evaluation. Hypotheses are not unique but come in pairs (or

multiples not reviewed here) of exclusive statements in the

sense that if one statement is true then the other statement

is false. When the decision maker judges one of the

hypotheses as true, he necessarily judges the other as false.

The lot is conforming or non-conforming. Vaccination

drives reached the target population or not. Your candidate

is winning the election campaign or is not winning. The

accused is either innocent or guilty.

From the viewpoint of the decision maker, the conse-

quences of incorrectly rejecting one of the hypotheses are

usually more severe than those of incorrectly rejecting the

other. As we have seen above, lots are either conforming or

non-conforming, and for the consumer for instance,

incorrectly accepting the non-conforming lot committing

the false negative can be disastrous. In such a case, the null

hypothesis is the statement that costs the most when

wrongly judged (Rice 1995). This nomenclature serves to

organize relevant social or industrial questions or labora-

tory experiments. The null carries the symbol Ho, the

alternative hypothesis Ha. From the consumer’s point of

view, therefore, the null hypothesis is that the lot is non-

conforming. Rejecting this null when it is true incurs

extremely high costs for the consumer. In similar fashion

but from the producer point of view, the null hypothesis is

that the lot is conforming, because as mentioned already,

rejecting this null has extremely high costs for the pro-

ducer. We illustrate these differences in Table 5.

The hypothesis test attempts to classify the lot by

accepting or rejecting the null usually by examining a

small random sample. In Table 5, the decision maker

indicates states of the null by examining a small sample of

the population and consequently accepting or rejecting the

null hypothesis. For the purpose of this article, we follow

statistical methodology; a random sample from the relevant

population indicates the state of the null. However, other

methods are available outside the realm of Statistics, like

flipping a coin or throwing seashells in a basket. In the

population itself, the null is, in reality, either true or false,

even though this condition in the population is unknown to

the decision maker, and continues to be unknown even

after the sampling procedure. As shown in Table 6, the

result of the acceptance sampling procedure can have one

of four possible results.

Two quadrants are labeled as correct, and the other two

as errors. In general, we would like to maximize the

probability of falling into the correct boxes and minimize

the probability of error. Following NP, accepting as true

the false null is a type II error, whereas rejecting a true null

is type I error. The exact definition of the null hypothesis is

crucial, and as stated above should be defined as the con-

dition that incurs the highest cost if chosen in error. The

choice of which of the two hypotheses is to be the null

depends, therefore, on the decision maker, and how he

perceives the distinctive costs of the two errors.

In acceptance sampling, the statistical test of the validity

of the null hypothesis is based on the relationship between

x and c, given the value of n. When the null hypothesis

suffers rejection, the researcher makes an inference as

inference as to the population value of the characteristic in

the hypothesis test. However, the value of the characteristic

is not a point estimate but rather only a probabilistic gen-

eralization of a region of values inferred from x and c. In

other words, the rejection of the null does not imply any-

thing about the point value of p itself other than its role in

determining the conformance of the lot. Even the con-

struction of confidence intervals do not supply isolated

point estimates of the population parameters but rather an

interval of probable variation around the point estimate.

We have assumed in the discussion above that the null

for the producer is that the lot is conforming, or analo-

gously the production line is stable producing a good

product. The engineer who tries to correct problems that do

not exist (he rejects the null when it is true) is wasting

precious time in worthless activities. This is a type I error,

the basis of the p value7 to the statistician and equivalent to

producer risk for the industrial engineer. Increasing the

value of the cutoff c will decrease the probability of type I

error by making rejection of the lot more difficult. How-

ever, increasing the value of c makes acceptance easier and

therefore will increase the probability of type II error, bp.
Considering that type II error is relatively less important

for the producer, the tradeoff tends to be attractive for the

producer. From the consumer’s side of the story and con-

trary to the producer, the null should be that the lot is non-

conforming, in other words, that the consumer should

naturally distrust the quality of the lot or process.

In traditional acceptance sampling, consumer risk has

been exclusively the subject of the consumer, and producer

risk the subject of the producer. Nonetheless, there is no

Table 5 Hypotheses and the decision maker

Consumer Producer

Ho: null hypothesis Low-quality

unacceptable lot

High-quality

acceptable lot

Ha: alternative

hypothesis

High-quality

acceptable lot

Low-quality

unacceptable lot

7 Recently much controversy has surrounded the concept of the

p value, specifically its incorrect use in published works. See Gelman

(2013) for clarification of the problem.
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conceptual reason to restrict each risk factor to only one

adversary in the negotiation process. Logically, there is no

reason why the producer should not recognize and react to

the probability of accepting the bad lot what has been

called up to now consumer risk. Accepting the bad lot is

certainly a problem for the producer, however, as described

earlier a problem of secondary intensity. Likewise, reject-

ing the good lot and committing a false positive is also a

problem for the consumer but of only moderate intensity.

From the viewpoint of the consumer we have, LTPDc and

P(LTPDc) and furthermore AQLc and P(AQLc).
8 Here the

consumer feels both risks, primarily the probability of

accepting bad lots P(LTPDc), and less intensely the prob-

ability of rejecting good lots [1 - P(AQLc)]. The con-

sumer can and should construct his sampling plan using

both risks recognizing that less consumer risk should be his

objective since its repercussions are more costly, while he

tolerates more secondary risk. Specifically, the consumer,

for example, could use a P(LTPDc) of 3% and a

[1 - P(AQLc)] of 10%.

The producer could follow analogous procedures. The

producer will apply not only the risk pair AQLp and

[1 - P(AQLp)] as would be traditional, but also the risk

pair LTPDp and P(LTPDp) recognizing that the producer

suffers from his own secondary risk even though by a lesser

degree. For example, the producer could set

[1 - P(AQLp)] to 1% and P(LTPDp) 10%.

The correct routine for hypothesis testing is that first, we

elaborate the hypothesis by conceptualizing an important

characteristic of the population, and only then, in a second

step, are the relevant probabilities of the resulting sampled

data calculated. More importantly, the state of the

hypothesis in the population is usually unknown, and will

remain that way forever. Of course, one day in the future,

end users will know the quality of the lot with certainty,

depending upon the availability of all appropriate data.

Nevertheless, even after ample time has passed, lot quality

will remain elusive.

This section has been a first attempt at generalizing risk

factors to both players. We have allowed consumers to

recognize producer risk and producers may now

acknowledge consumer risk. However, we have kept the

two decision makers each as a self-determining unit. In

later sections, we attempt to generalize acceptance sam-

pling to the case of both risks applying to both producer

and consumer simultaneously.

Acceptance sampling from the viewpoint
of the decision maker

As seen above, the definition of the null depends on point

of view. The producer must decide on a limiting value for

AQLp above which the lot is unacceptable. In other words,

if the fraction defective p is less than AQLp (p B AQLp),

then the lot is defined by the producer as conforming. On

the other hand, for the consumer, (p B LTPDc) defines the

conforming lot. Under no circumstances should we assume

that the values of AQLp and LTPDc are equal, nor should

they be, given that they come from distinct decision makers

on opposite sides of the negotiation.

Each decision maker should weigh the importance of

two risks when constructing his own sampling plan: a

primary risk based on his own null hypothesis and a sec-

ondary risk based on his own alternative hypothesis. For

the consumer, the relation p�AQLC defines secondary

risk. Likewise, p[LTPDp defines the secondary risk for

the producer. Consequently, Eq. (1) and (2) can be

rewritten as the following, featuring either the viewpoint of

the producer emphasizing AQLp and LTPDp, or the con-

sumer emphasizing LTPDc and AQLc, respectively.
9

P x[ c=p�AQLPð Þ ¼ P FPð Þ ¼ aP ð1aÞ
P x� c=p[LTPDPð Þ ¼ P FNð Þ ¼ bP ð2aÞ
P x� c=p[LTPDCð Þ ¼ P FNð Þ ¼ aC ð1bÞ
P x[ c=p�AQLCð Þ ¼ P FPð Þ ¼ bC ð2bÞ

The probability of type I errors (aP and aC) called pri-

mary risks is given in Eqs. (1a) and (1b). Both equations

represent the rejection of the respective null when it is true.

Similarly, the probability of type II errors (bP and bC) here
called secondary risks is given in Eqs. (2a) and (2b). These

four equations can be collapsed back to the original

Eqs. (1) and (2) by assuming unique values of c and n and

assuming AQLp = AQLc and LTPDc = LTPDp. Conse-

quently, aP = bC and aC = bP. Considering that the pro-

ducer and the consumer are independent decision makers,

there is no reason to expect these equalities in the real

world. It is essential for the logic of this paper to under-

stand the relative importance of FP and FN for the decision

makers. For producers, FPs are more important, and for

Table 6 Occurrences for hypothesis tests of the consumer, and

Table 8 that of the producer

Real states of the null

hypothesis Ho in

the population

Decision maker chooses between

states of the null hypothesis Ho

Accept Ho Reject Ho

True Ho Correct Type I error

False Ho Type II error Correct

8 Subscripts P for producer and C for consumer.

9 We have not used subscripts for all the parameters, hopefully

without loss of clarity.
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consumers, FNs are more important as illustrated in the

next tables. One further equation completes the concepts

for hypothesis testing: a\ b, reflecting the higher costs of

type I error. Table 7 elaborates the point of view of the

consumer, and Table 8 that of the producer. At the buyer’s

warehouse, the inspection will indicate the high or low

quality of the lot. In some very rare cases, the buyer accepts

the lot without inspection implying total confidence

between buyer and seller, but considering the rarity of

mutual confidence in the marketplace, the buyer usually

undertakes some kind of inspection. The desire of the buyer

at the moment of inspection is to maximize the probability

of accepting good lots, a true negative (TN), or rejecting

bad ones, a true positive (TP). There is a tradeoff between

the probability of erroneously accepting the bad lot, a false

negative (FN), and the probability of erroneously rejecting

the good lot, a false positive (FP). An appropriate proba-

bility function can measure these probabilities and form the

basis for the construction of sampling plans.

For the consumer, FN is an error of disastrous pro-

portions, and as stated above, DR calls the probability of

this occurrence consumer risk. Accepting the defective

lot means placing inadequate material on the assembly

line or on the store shelves. On the other hand, the

consumer who rejects good lots commits FP, a lesser

error, even though the result may be costly in terms of

unnecessary replacement costs and delays. DR and all

posterior literature in acceptance sampling assume that

the risk of rejecting acceptable lots has no relevance to

the consumer. Even though this assumption may have

been necessary to simplify the probability calculations in

the early 1900s, today’s calculators have made this

assumption reasonably gratuitous. Logically, the sam-

pling plan that satisfies the consumer will have as a

sample cutoff a very small number of defective items

c and a relatively large sample size n, facilitating

rejection. This means that some good lots will be judged

guilty as non-conforming and rejected, but this conse-

quence is less troublesome to the consumer. For

instance, when a multinational makes purchases from a

small supplier, the multinational sets c at zero, com-

pelling the small supplier to rectify some lots unjustly

rejected (Squeglia 1994). Logically, since its repercus-

sions are more severe, the decision maker should hold

primary risk to lower levels when compared to sec-

ondary risk.

Table 8 describes the point of view of the producer. The

null for the producer is that the lot is conforming. In this

case, type I error means that the lot is actually conforming

but has been rejected by the producer. As always and by

definition, type I error is more costly than type II error.

Immediately after the fabrication of the lot, but before

expediting the lot to the consumer, an inspection should

occur to verify its quality level p. The interest of the pro-

ducer is to expedite lots with acceptable quality to assure

customer satisfaction and future transactions. When an

inspection by the producer results in rejected lots, the

common practice is to apply universal 100% inspection to

the rejected lot still in the factory replacing all bad parts.

From the producer point of view, the major worry is the

probability of the rejection of good lots P(x[ c/

p B AQLp), which are false positives FP known as pro-

ducer risk, a false alarm calling the producer to action

where action is not necessary. The producer priority is to

avoid the rejection of good lots, and, consequently, the

sampling plan includes relatively large c. Clearly, with

c large, the producer judges some bad lots as conforming,

but as emphasized above this error is less troublesome for

the producer.

Calculating the unique plan that satisfies
both parties, all risks

This section illustrates what happens when taking into

account both consumer and producer simultaneously, and

assumes that each adversary worries about both kinds of

risk, the probability of accepting the bad lot and the

probability of rejecting the good lot. Moreover, each

adversary will prioritize one of the two risks and down-

grade the importance of the other. In other words, we

should select only those sampling plans where a\b. This
generalization of acceptance sampling is not present in the

literature.

Table 7 Alternative occurrences for consumer

Reality of null Ho in the population:

lot is non-conforming

Consumer chooses between states of the null hypothesis Ho: lot is non-conforming

Accept Ho x[ c Reject Ho x B c

True Ho

p[LTPDc

P(TP)

P(x[ c/p[LTPDc)

aC = P(FN) type I error

P(x B c/p[LTPDc)

P
P = 1

True Ha

p B AQLc

bC = P(FP) type II error

P(x[ c/p B AQLc)

P(TN) = 1 - bC
P(x B c/p B AQLc)

P
P = 1

FN false negative, FP false positive, TP true positive, TN true negative
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As stated earlier the possibility of letting bad product pass

through undetected is only a minor nuisance for the producer

and so he tolerates this error at higher levels of risk. In

Table 9, we allow the values of a and b to vary and revised

plans are reported. Sample size shows itself to be very

sensitive to b risk. When allowing for higher values of

secondary b risk, these new configurations can greatly

reduce the cost of sampling. A small secondary risk of 5%

requires a sample size of 1600, whereas allowing for more

secondary risk brings sample size down to 1000. The

hypergeometric distribution is the basis of all of the calcu-

lations in Table 9, with two exceptions commented on later.

Producer and consumer fix primary risks at less than 5% and

secondary risks vary. Lot size is 3000 units. LTPD is 1% and

AQL is 0.5%.10 The sampling plan PL(N, n, c) should satisfy

these five parameters. The resulting sample sizes are much

smaller than lot size 3000. We have devoted two lines in

Table 9 to the binomial distribution to illustrate its inaccu-

racy. In the first line, the sample size is equal to the size of

the lot, an illogical result since sampling by definition

requires samples smaller than the population. 100%

inspection is not sampling and therefore there is no need to

specify a value for c. This illogical result is due to the large

variance formed by the binomial distribution explained in

Appendix ‘‘Hypergeometric distribution’’. Generally, the

binomial yields pessimistic results; measures of risk and

dispersion are overestimated. Surely, such pessimism could

lead to discouragement for sampling procedures and even

the abandonment of sampling programs.

Figure 6 shows the appropriate ROC curves for the

consumer sampling plan PL(3000, 1400, c) and PL(3000,

1400, c) for the producer. The dialog between the two

parties, in this case, is not so difficult since the two plans

are very similar. The two parties could use the same sample

of 1400 and proceed with the counting of defective items.

The sampling procedure would be inconclusive in only one

case when x = 10. The cutoff value for the producer is the

value of 10 (x B 10) meaning that the producer will see the

lot as good quality, whereas the consumer will see this

value of x as demonstrating the low quality of the lot

(x[ 9). The appearance of exactly 10 defective items in

the sample will occur in only 5% of the lots and therefore

should not cause extreme conflict between parties.

The examples above have all used N = 3000 for illus-

trative purposes for didactic reasons only. In Table 10, we

have collected results that permit population size to vary.

Noteworthy in the table is the similarity for plans among

the last three population sizes of 20,000, 30,000, and

40,000. Sample size and cutoff values are all the same

PL(n, 3000, c = 20, 21) but risk factors are not, as popu-

lation size increases risk factors also increase, once again

showing the necessity of using the hypergeometric distri-

bution for obtaining more accurate results even with rela-

tively large populations.

Conclusions

The paper has shown that sampling plans should be true to

the data and the situation they represent. When lot sizes are

finite, statistical approximations may lead to serious esti-

mation errors. Since the process of sampling is inherently

error prone, the sampling process should employ only the

most accurate data available, including lot size. The pri-

ority for researchers in any area should be the utilization of

the most appropriate formulations, like the hypergeometric

distribution in sampling plans, so that unnecessary addi-

tions to inherent errors do not occur.

There are several directions for advancing this research,

for example, the important area of Bayesian statistics not

mentioned in the paper. This was not because we wanted to

devalue its appropriateness for sampling plans, but rather

because its contribution would be doubtful to the questions

of this paper, based entirely on traditional frequentist

statistics. Bayesian approaches will be an important part of

future research. The work of Suresh and Sangeetha (2011)

is especially interesting in this regard. Finally, we suggest

that the application of the R package Shiny (shiny.rstu-

dio.com, RSTUDIO 2013) could facilitate the day-to-day

operation of the approach proposed here. Contributions to

the literature have already gone in this direction (Hund

2014).

Table 8 Alternative occurrences for producer

Reality of null Ho: lot is conforming Producer chooses between states of the null hypothesis Ho: lot is conforming

Accept Ho x B c Reject Ho x[ c

True Ho p B AQLp P(TN) P(x B c/p B AQLp) P(FP) type I error: ap = P(x[ c/

p B AQLp)

P
P = 1

True Ha p[LTPDp P(FN) type II error: bp = P(x B c/

p[LTPDp)

P(TP) P(x[ c/p[LTPDp)
P

P = 1

FN false negative, FP false positive, TP true positive, TN true negative

10 Factories and consumers will have independent values for LTPD

and AQL. The values in this example are arbitrary but originate from

the experience of the author.
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We intend to expand this research into the areas of

public health and political polling. Public health has seen

extensive applications of traditional acceptance sampling

in lot quality assurance sampling (LQAS), but in our view,

this area would benefit greatly from the reformulation

following a careful reassessment of NP. The public health

literature for LQAS is ambiguous on the issue of defining

the null hypothesis, depending on the author and the area

under scrutiny (Biedron, et al. 2010; Rhoda et al. 2010;

Pagano and Valadez 2010). We suggest that the sampling

Fig. 6 ROC curve sampling

plans for producer PL(3000,

1400, 10) and consumer

PL(3000, 1400, 9)

Table 9 Hypergeometric sampling plans PL(3000, n, c) for several values of a and b, N = 3000, LTPDp is 1%; AQLp is 0.5%

Consumer Secondary Producer Secondary Sampling plan

aC = P(LTPDc) bc = 1 - P(AQLc) ap = 1 - P(AQLp) bp = P(LTPDp) n c c/n

Binomial approximation .032 .08 3000 22 .007

… … .032 .049 1600 11 .007

.049 .059 … … 1500 10 .007

… … .017 .099 1500 11 .007

.047 .097 … … 1400 9 .006

… … .034 .098 1400 10 .007

.043 .213 … … 1200 7 .007

… … .033 .175 1200 9 .008

.039 .29 … … 1100 6 .005

… … .018 .288 1100 9 .008

.035 .381 … … 1000 5 .005

… … .03 .285 1000 8 .008

Binomial approximation .031 .457 1000 9 .009

Table 10 Hypergeometric

sampling plans PL(N, n, c) for

several lot sizes given LTPDp is

1%; AQLp is 0.5%

Consumer Secondary Producer Secondary Sampling plan

aC = P(LTPDc) bc = 1 - P(AQLc) ap = 1 - P(AQLp) bp = P(LTPDp) N n c

.049 .059 … … 3000 1500 10

… … .017 .099 3000 1500 11

.015 .054 … … 5000 2300 15

… … .022 .031 5000 2300 16

.035 .071 … … 10,000 2400 16

… … .038 .059 10,000 2400 17

.025 .066 … … 20,000 3000 20

… … .039 .041 20,000 3000 21

.028 .072 … … 30,000 3000 20

… … .044 .045 30,000 3000 21

.03 .074 … … 40,000 3000 20

… … .046 .047 40,000 3000 21
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plans should recognize and emphasize the viewpoint of the

target population as Rhoda et al. (2010) argues. For

example in the case of a vaccination campaign where

coverage is of major interest, the population (analogous to

the consumer) should suggest a null that would define the

cutoff where coverage is inadequate. A sample that indi-

cates the target population is receiving adequate levels of

coverage, when in fact coverage is inadequate, is a very

serious error indeed.

For political polling, the decision makers perspective

can come from the candidate (consumer of consulting

services) or from the pollster (supplier, producer). The null

for the candidate is that his adversary is winning the

political campaign, analogous to the null of the buyer that

lots are of bad quality. If in fact, the adversary is winning

but the candidate believes that his own campaign is win-

ning, the result for the candidate could be very costly.

Falsely believing his campaign is ahead; he may diminish

his efforts and consequently fall behind even more. This is

type I error for the candidate. Public health and polling

have already seen some progress in applying the new

methods proposed here (Samohyl 2015, 2016).
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Appendix

Hypergeometric distribution

The most relevant characteristic of the hypergeometric dis-

tribution is that population size N enters directly into its for-

mulation contrary to other distributions like the binomial and

Poisson. The hypergeometric mass function produces an

estimate of the probability of x defectives appearing in the

sample, depending on lot quality p = X/N and the sample size

n.Note that the number of good parts in the lot is (N - X), and

the number of good parts in the sample is (n - x). See Gonin

(1936) for the development of the equation.

Ph ¼
X!

x! X�xð Þ! þ
N�Xð Þ!

n�xð Þ! N�Xð Þ� n�xð Þð Þ!
N!

n! N�nð Þ!
¼

X

x

� �

þ
N � X

n� x

� �

N

n

� �

¼
pNð Þ!

x! pN�Xð Þ! þ
1�pð ÞNð Þ!

n�xð Þ! 1�pð ÞNð Þ� n�Xð Þð Þ!
N!

n! N�nð Þ!

ð5Þ

To simplify, we rewrite the hypergeometric mass func-

tion h to emphasize dependence on the defective rate p.

Ph pð Þ ¼ h N; n; x; pf g

Supplying numbers to N, n, x, we draw Fig. 7 to

demonstrate this dependence graphically. As p gets closer

to zero, the probability of finding samples with x = 0

becomes more likely, Ph(p) approaches one. The step for-

mat for N = 500 is due to the discrete nature of this non-

continuous distribution. Allowing N to approach infinity in

the hypergeometric distribution will result in the binomial

distribution. Guttman et al. (1982, p. 30) demonstrates this

theorem.

For acceptance sampling, the probability of accepting

the lot is a cumulative sum containing x = 0, 1, 2, …, c, in

the framework of the cumulative probability distribution.

Specifically, in a sample of size n, from a population of size

N, a lot is acceptable even though the sample may contain

up to c defective items. Consequently, with H representing

the cumulative hypergeometric distribution:

PH cð Þ ¼ H PL N; n; cð Þ; pf g ð6Þ

The hypergeometric is more comprehensive and precise

than the binomial and the Poisson. Even though the means

are identical for all three distributions (np), the binomial

variance varb(x) and the hypergeometric variance varh(x)

have distinct values, but varb(x) is always greater than

varh(x)

varb xð Þ ¼ np 1� pð Þ;
varh xð Þ ¼ varb xð Þ � N � nð Þ= N � 1ð Þ

The Poisson variance varp(x) is simply np, equal to its

mean and, consequently, when p is very small approaching

zero, then varb(x) & varp(x).The advantage of the hyper-

geometric is that its variance is smaller, and furthermore,

much smaller when N and n are proximate values. The

vertical axis in the next figure is the ratio

varh(x)/varb(x) which varies from 0.0 to 1.0. The x- and y-

axes at the base are sample size n and population size

N. The figure shows that when N is large and n small, there

is practically no difference between the two variances.

However, when N and n have similar values, the result is a

value of varh(x)/varb(x) that approximates zero, the

hypergeometric variance being much smaller than the

binomial as seen in Fig. 8. Even when population size N is

40,000, and when sample size n is relatively large, the

difference between the two variances can be relevant.

Considering the fact that the hypergeometric distribution is

more general and more accurate than both the binomial and

the Poisson, the question arises why do many applied areas

of research continue to ignore the hypergeometric

distribution?
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Producer sampling plans recalculated

with the hypergeometric distribution

For the industrial practitioner who needs to use a sampling

plan from the producer point of view right now urgently, go

directly to Table 11 for producer sampling plans using the

hypergeometric distribution. This table incorporates the

most popular plans found in current standards for the

producer, but risk factors come from the hypergeometric

distribution. It is common in practice to use sampling plan

tables without a careful understanding of the concepts that

generate the numerical entries and may result in poor

decision-making. Moreover, this may be the reason for

disregarding the hypergeometric distribution as the proper

base of the calculations.

Single sampling plans are ubiquitous in practically all

industries and are the focus of this article. Double and

multiple stage sampling plans may be less risky in a the-

oretical sense showing a lower probability of sampling

error, however, applications on the shop floor require

intensive training and the learning curve is uncomfortably

steep. Single sampling plans, on the other hand, will reduce

costs significantly and even bring a new dynamic to the

factory. The elimination of costly 100% total inspection

will enhance the adoption of modern management tech-

niques in general, and help to make negotiations between

buyers and sellers more transparent and organized. Our

intention is to show how to improve standard sampling

plans like the ISO standards (1999, 1985) by recalculating

tables with the hypergeometric distribution, and more

importantly taking into account the correct usage of

hypothesis testing. All major and most emerging econo-

mies have similar standards. Table 11 for producer sam-

pling plans, the most utilized on a worldwide scale (but not

always coherently), previews some important results from

this paper. This table combines several tables of popular

national and international sampling plans.

How to use Table 11 step-by-step

1. Choose the size of the lot N from the second column.

2. The third column gives the sample size n.

3. Choose the worst level of quality permitted by the

producer—acceptance quality level AQL. The

table contains only four levels: 0.04, 0.065, 0.65, 1%,

reflecting the very strict industry standards of modern

manufacturing.

4. Column c presents the cutoff number of failed parts

in the sample that still allow for the acceptance of

the lot as conforming. Consequently, if c ? 1 bad

parts are found in the sample, this means the lot is

rejected as non-conforming. To economize on

resources and make the process even faster, sam-

pling could be sequential and decisions taken even

before all n items pass through inspection. c ? 1 bad

parts may be found before the total sample n is taken

and rejection may already occur. Alternatively,

n - c parts could be sequentially sampled with no

bad parts found, meaning that the lot should be

accepted immediately.

Fig. 7 Mass hypergeometric

distribution Ph(p) = h{N, 300,

0, p}

Fig. 8 Comparing hypergeometric and binomial variances

J Ind Eng Int (2018) 14:395–414 409

123



Table 11 Producer sampling plans

Source: ISO 2859-1 (1999) (Table 2, level II) risk revised using the hypergeometric distribution
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5. Finally, in the appropriate column check for producer

risk.

Comments on Table 11

Following, are some comments about the revised numbers

in the table.

• The column n/N emphasizes the varying nature of the

relative size of the sample compared to lot size. Large

lots usually require proportionately smaller samples.

• Up to the letter F, N = 91 and n = 20, all plans use

c = 0 and therefore are extremely easy to apply on the

shop floor. The advantage of these plans is that once a

defective item appears sampling can stop given that the

minimum condition for accepting the lot has been

violated (Squeglia 1994).

• Popular thought has it that producer risk is constant

throughout the standard tables, however when risk is

recalculated using the hypergeometric distribution a

notable dispersion of values is apparent. For example,

for the 1% column (the last column of the table)

producer risk varies from 0.0 to 13.3%. Furthermore,

note that there are many plans with zero risk for the

producer.

Operating characteristic curve (OCC)

In this article, we suggest the use of the hypergeometric

distribution as the basis for constructing sampling plans

and not the approximations following the binomial and

Poisson distributions. In all standard sampling plans

including ISO (1999, 1985) and the Brazilian standards

ABNT-NBR (1989a, b), graphical analysis of the rela-

tionship of P() to several of its numerical characteristics is

always included in the documentation, such as the form

and functional relationship of P() with lot quality p. The

graphical representation of P() and p is known as the

operating characteristic curve (OCC).11 Along the curve,

the parameters of the sampling plan PL(N, n, c) are con-

stant (Eq. 6). As the quality of the lot deteriorates with

p increasing, the probability of getting a high-quality

sample P(x B c) diminishes, or inversely, the probability

of getting a low-quality sample 1 - P(x B c) increases. In

Fig. 9, we illustrate three different plans for lot size

N = 10,000. All plans are almost identical for high-quality

lots up to p = 0.007. After this point, the three plans begin

to diverge. The plan with the largest sample size n = 300

dominates the others from the consumer point of view

since the probability of accepting lots decreases faster as

the lot deteriorates in terms of p. The shape of the OCC has

been extensively analyzed for acceptance sampling in for

example Mittag and Rinne (1993, pp. 139–142). Sampling

plans that are more favorable either to the consumer or to

the producer are constructed altering the values of n and c,

and if possible the size of the lot N. Later in the article, we

lay out a procedure for optimizing sampling plans.

Table 12 PL(10,000, 100, c); AQL = 0.005 and LTPD = 0.010

c a producer risk b consumer risk

9 .305 .003

10 .148 .008

11 .055 .021

12 .015 .048

13 .002 .098

14 .000 .177

15 .000 .288

Fig. 9 OCC for

P(p) PL(10,000, n, d)

11 See Shmueli (2011, chap. 2) for a revision of the OCC in

acceptance sampling.
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The receiver operating characteristics (ROC) curve

Another useful way of viewing the intricate relationships

within the hypergeometric distribution in the context of

acceptance sampling is in light of the receiver operating

characteristics (ROC) curve, a standard tool in the area of

data mining and other computationally intense procedures

(Provost and Fawcett 2013, chap. 8). The construction of

sampling plans with the help of ROC curves will be very

useful for the new procedures suggested later on.

Considering all other variables constant, the ROC

curve represents the relationship between a and b as the

cutoff c assumes different values.12 The central question

is at what rate risk measures change as c changes in a

given sampling plan. As cutoff c increases, it becomes

more and more difficult to reject lots and therefore

producer risk will decrease, but consumer risk increases

as more and more lots are accepted. The ROC curve is a

quick way of ascertaining this trade off. Table 12 and

Fig. 10 show calculations based on the hypergeometric

distribution for the sampling plan PL(3000, 1700, c) for sev-

eral values of cutoff c. As the cutoff increases in value so does

consumer risk and producer risk moves in the opposite

direction. For c = 12, 13, 14 the producer is in a relatively

strong position since his risk is less than the consumer’s risk.

In Fig. 10, the line coming from the origin shows where a is

equal to b. The risk factor a is less than b above this line,

indicating plans that favor the producer. At c = 12, and

a = 1.5% and b = 4.8%, one might argue that this plan is

optimal for its relatively small cutoff of c = 12. The ROC

curve is an essential ingredient for the arguments that follow.

R Snippets (R Core Team 2014)

Fig. 10 ROC curve for traditional PL(3000, 1700, c) with

AQL = 0.005 and LTPD = 0.010

12 In most cases, the curve is drawn with (1 - b), the probability of

recognizing a positive occurrence within the universe of all positives.

We use b, which fits better in our arguments below. Conceptually

nothing has changed.
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