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Abstract This paper presents a mathematical model for

an inventory control system in which customers’ demands

and suppliers’ service time are considered as stochastic

parameters. The proposed problem is solved through

queuing theory for a single item. In this case, transitional

probabilities are calculated in steady state. Afterward, the

model is extended to the case of multi-item inventory

systems. Then, to deal with the complexity of this problem,

a new heuristic algorithm is developed. Finally, the pre-

sented bi-level inventory-queuing model is implemented as

a case study in Electroestil Company.

Keywords Production inventory � Queuing theory �
Multi-item inventory � Heuristic algorithm

Introduction

Nowadays, supply chains play an important role to meet

diverse needs of customers. A supply chain can be defined

as a network of organizations that collaborate to control

and manage materials and information flow from suppliers

to customers (Aitken 1998). One of the challenging issues

in supply chain management is to find optimal policies for

inventory systems. The main objective of inventory man-

agement is to balance conflicting goals such as stock costs

and shortage costs (Arda and Hennet 2006).

Day by day, the number of researchers, attracted to

production-inventory systems in supply chain, is increas-

ing. In inventory management point of view, a manufac-

turer with a limited production capacity needs to hold

finished goods inventory as safety stocks. For this inven-

tory system, if demand is less than service capacity, the

manufacturer needs to use different policies for different

inventory levels.

For instance, it should use two points of inventory level:

one for starting and the other for finishing the production

line. For better description of the model, Fig. 1 illustrates

the inventory level for the system when production rate l
and demand rate D are considered deterministic. Actually,

in a real-world system, different stochastic parameters may

affect the model and increase the complexity of the system.

In summary, it is clear that in spite of many contribu-

tions to the stock control, there is little consideration

regarding production-inventory models in stochastic envi-

ronments. For this reason, we represent a mathematical

model in which the main contributions of this paper can be

summarized as follows:

• A production inventory system is developed in an

uncertain environment.

• Queuing theory is used to provide a stochastic model.

• The proposed model is extended for multi-item inven-

tory systems.

• A new heuristic algorithm is proposed to solve the

model.

• All the steady-state equations are solved in one state.

This model can be probably applied to inventory systems

where demand and production time are uncertain. Company

has setup costs and it also holds finish goods inventory.

The remainder of this paper is organized as follows. In

Sect. 2, a brief literature review is presented. In Sect. 3, an
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inventory model is presented and then a branch and bound

algorithm is proposed. Afterward, the model is validated in

Sect. 4. Then, conclusions are made in Sect. 5.

Literature review

In the literature, there are some researchers who have dealt

with production-inventory systems. For example, Yu and

Dong (2014) considered a two-stage production lot sizing

problem which used an inventory system with random

demand arrivals. To solve the problem, they proposed a

numerical approach for the problem. Baek and Moon (2014)

considered a lost sales production-inventory system in an

uncertain environment. They also used queuing theory to

present a stochastic model for the system. Also, some pro-

duction-inventory papers in the literature assumed that the

lead time is negligible or it can be ignored in practice when

it is short in contrast to other time factors (Karimi-Nasab

and Seyedhoseini 2013). Most of such research papers did

not consider lost sales. Many of them, however, considered

back orders as a rational managerial policy.

Chang and Lu (2011) considered a serial production

system controlled by the base-stock policy. They presented

a phase-type approximation for a controlled base-stock

serial production system. They also proposed a cost model

to determine the optimal base-stock level.

Jewkes and Alfa (2009) considered a production system

in which a supplier produces semi-finished items on a

make-to-stock basis for a manufacturer that customizes the

items on a make-to-order basis. The manufacturer attempts

to determine the optimal point of differentiation and its

optimal semi-finished goods buffer size. They used matrix

geometric methods to evaluate performance through vari-

ous measures for this system.

Some researchers worked on multi-item inventory sys-

tems. For instance, Shavandi et al. (2012) proposed a new

constrained multi-item pricing and inventory model. They

covered three categories of perishable products in their

model. Taleizadeh et al. (2012) dealt with a multi-product

inventory control problem in which periods between two

replenishments were assumed to be independent random

variables.

Generally, in a stock control system, most of the

parameters are not deterministic. Thus, some researchers

used queuing theory to construct their models. In this area,

there are some researchers who provided a model for

stochastic demand. Some researchers presented a model for

stochastic lead time. Parlar (1997) presented an inventory

model which was combined with queuing theory to con-

sider demand and lead time as stochastic parameters. Ha

(1997) considered Poisson distribution for demands and

exponential for production times in a single item make-to-

stock production system. He proposed an M/M/1/S queuing

system for modeling the system. Arda and Hennet (2006)

addressed inventory control of a multi-supplier strategy in

a two-level supply chain. They considered random arrivals

for customers and random delivery time for suppliers and

represented the system as a queuing network.

Sapna Isotupa (2006) considered lost sales of (s, Q) in-

ventory system with two customer groups and illustrated

the Markov processes. Boute et al. (2007), in a two-echelon

supply chain, show that by including the impact of the

order decision on lead times, the order pattern can be

smoothed to a considerable extent without increasing stock

levels. Karimi-Nasab and Konstantaras (2013) considered

special sales offer for a single item from the supplier under

stochastic replenishment intervals.

Jain and Raghavan (2009) studied batch ordering in

multi-echelon supply chains and used queuing theory to

capture the behavior of the manufacturing supply chain

network. Babai et al. (2011) investigated stochastic demand

and lead time and analyzed a single item inventory system

through queuing theory. Bahri and Tarokh (2012) assumed

that the delivery lead time is stochastic and follows an

exponential distribution. Also, the shortage during the lead

time is permitted and completely back ordered for the buyer.

Seyedhoseini et al. (2014) considered Poisson demand

for customer in a cross docking problem. They employed

queuing theory to provide a stochastic model. Salameh et al.
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Fig. 1 Inventory level of the production model
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(2014) combined the separate works on substitution and

joint replenishment and introduced a solution procedure for

solving the joint replenishment model with substitution for

two products within the framework of the classical eco-

nomic order quantity model. Karimi-Nasab and Sabri-

Laghaie (2014) extended classical economic production

quantity model to the case of stochastically generated poor-

quality items, while an imperfect screening scheme was

devised to recognize such items from healthy ones.

Krommyda et al. (2015) studied an inventory control

problem in which demand was satisfied using two mutually

substitutable products. Their aim was to determine the order

quantity for each product that maximizes the joint profit

function.

Seyedhoseini et al. (2015) applied queuing theory to

propose a mathematical model for inventory systems with

substitute flexibility. (Rashid et al. 2015) also considered a

location-inventory model. To prepare a stochastic inven-

tory model, they used bi-level Markov process. Consider-

ing the effectiveness of queuing theory in inventory

problems, we have also used queuing theory to develop a

stochastic stock control model.

As demonstrated in Table 1, there are some researchers

who considered (R, Q) policy in stochastic programming.

However, some of them did not consider multi-item inven-

tory, and some of them did not consider production inven-

tory. Also, few researchers have analyzed their model with

queuing theory. Hence, we propose a mathematical model

for the production-inventory problem in the stochastic

environment.

Model development

In this section, first, the proposed model is developed.

Then, it is extended for the multi-item production-inven-

tory system. Afterward, a new algorithm is proposed to

solve the model. As for notifications, parameters are

described as follows:

r Reorder level (I,J) State for I inventory and

being at mood of J

R Optimal level pI,J Steady-state probability

of state (I, J)

D Demand S Amount of shortage

l Service rate M Number of product types

SE Setup cost Ci,I Holding costs

Ci,S Shortage costs ri Reorder level for product i

pr?1,D,i Steady-state probability

of being in state (r?1,

D) for product i

Ri Optimal level for product i

Model description

In this paper, a historical production-inventory model is

developed. Moreover, a new stochastic multi-item pro-

duction-inventory model in which shortages have been

considered lost sales is proposed. In this strategy, the

production cycle starts when the manufacturer’s inventory

falls to or below the reorder point r and stops when its on-

hand inventory reaches its optimal level R.

Inspired by Sapna Isotupa (2006) who developed a

stochastic inventory model for (R, Q) systems, we also

developed a new stochastic model for the historical

production-inventory model. Thus, the customers’ arri-

val is assumed to be Poisson distribution with rate of D,

and production time is negative exponentially distribu-

tion with rate of l. Also, it has been assumed that if

one type of products is not under production, its pro-

duction capacity would equally divide to the other

products. To achieve a comprehensive model, queuing

theory is employed to describe the inventory system.

The transition diagram for this model is illustrated in

Fig. 2.

For this diagram, states of the system have been

decomposed into two sets: A and B. In set A, the system is

in production mode and in set B system in demand mode;

in demand mode, no production would occur. Also, states

of the system are represented by (I, J), where

I 2 {0, 1, …, R} demonstrates the level of inventory and

J 2 {P, D} demonstrates the mode of the system. Hence-

forth, let pi,j denote the steady-state probability of state (I,

J). For this queue, three lemmas are proposed to set steady-

state probabilities.

Lemma 1 Steady-state probabilities in terms of state

pR�1;P for the system can be calculated as follows:

pR�2;P ¼ lþ D

l

� �
� pR�1;P; ð1Þ

pR�l;P ¼
Xl�3

j¼0

D

l

� � j
 !

þ Dþ l
l

� �
� D

l

� �l�2

�pR�1;P

8l 2 ð3; . . .;R� rÞ; ð2Þ

pr�k;P ¼ D

l

� �k

�
XR�r�3

j¼0

D

l

� � j
 !

þ Dþ l
l

� �
� D

l

� �R�r�2
 !

� pR�1;P

8k 2 ð1; . . .; rÞ;

ð3Þ

pi;D ¼ l
D
� pR�1;P 8i 2 ðr þ 1; . . .;RÞ: ð4Þ
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Proof For a Markov process, Eq. 5 is true:

XN
j¼1

kjx � pj ¼
XN
j¼1

kxj � px; ð5Þ

where N is the number of all steady states, and kjx is the

probability rate from state j to state x.

Regarding Fig. 1 and Eq. 5, Eq. 1 is true. Using Eq. 1,

for L between 3 and R-r, Eq. 6 could emerge, which

proves Eq. 2,

l� pR�L;P ¼ D� pR�Lþ1;P þ l� pR�1;P: ð6Þ

When I is smaller than r, then Eq. 7 is true:

Table 1 Literature of the stochastic inventory and production inventory

References Shortage Lead time Demand Replenishment

policy

Multi-item

inventory

Production

inventory
Lost

sales

Back

order

Did not

consider

Sapna Isotupa (2006) H Stochastic Stochastic (R, Q) No No

Arda and Hennet (2006) H Stochastic Stochastic (S-1, S) No Yes

Boute et al. (2007) H Stochastic Stochastic (T, S) No No

Hill et al. (2007) H Deterministic Stochastic (S-1, S) No No

Hennet and Arda (2008) H Stochastic Stochastic (S-1, S) No No

Chang and Lu (2011) H H Stochastic Stochastic (S-1, S) No Yes

Babai et al. (2011) H Stochastic Stochastic (S-1, S) No No

Taleizadeh et al. (2012) H Stochastic Dynamic (T, s, S) Yes No

Tlili et al. (2012) H Deterministic Stochastic (T, s, S) No No

Bahri and Tarokh (2012) H Stochastic Deterministic (R, Q) No Yes

Shavandi et al. (2012) H Deterministic Deterministic (T, s, S) Yes Yes

Alimardani et al. (2013) H Stochastic Stochastic (S-1, S) Yes No

Guerrero et al. (2013) H Deterministic Stochastic (T, s, S) Yes No

Karimi-Nasab and Konstantaras (2013) H Stochastic Deterministic (R, Q) No No

Karimi-Nasab and Seyedhoseini (2013) H Deterministic Deterministic (T, S) Yes Yes

Karimi-Nasab and Sabri-Laghaie (2014) H Deterministic Deterministic (R, Q) No Yes

Salameh et al. (2014) H Deterministic Deterministic (R, Q) Yes No

Yu and Dong (2014) H Deterministic Stochastic (R, Q) No Yes

Rashid et al. (2015) H Stochastic Stochastic (R, Q) No No

Seyedhoseini et al. (2015) H Deterministic Stochastic (R, Q) No No

Krommyda et al. (2015) H Deterministic Deterministic (R, Q) Yes No

Our model H Stochastic Deterministic (R, Q) Yes Yes

0,P 1,P R-1,P......

R-1,D R,Dr+1,D

r+1,Pr,Pr-1,P

r+2,D ......

......

D D D D

D D D D

D D D

μ μ μ μ μ μ μ

Set A

Set B

D

Fig. 2 Transition diagram for a product in the proposed model
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pr�j;P ¼ pr;P �
D

l

� � j

: ð7Þ

Using Eqs. 2 and 7 could result in Eq. 3 . As for set B, it is

clear that the values of steady-state probabilities are equal

and also Eq. 8 is true:

pR;D ¼ l
D
� pR�1;P: ð8Þ

So, Eq. 4 is true.Considering Lemma 1, pR-1,P is equal to
1
F
, where F can be calculated through Eq. 9:

F ¼ R� rð Þ � l
D
þ 1 þ lþ D

D
1 þ

D
l � D

l

� �R�r�1

1 � D
l

0
B@

1
CA

0
B@

1
CA

þ 1

1 � D
l

R� r � 2ð Þ �
D
l � D

l

� �R�r�1

1 � D
l

0
B@

1
CA

þ
D
l � D

l

� �rþ1

1 � D
l

0
B@

1
CA 1 � D

l

� �R�r�2

1 � D
l

þ lþ D

D
� D

l

� �R�r�2

0
B@

1
CA:

ð9Þ

Lemma 2 The expected value for shortage can be com-

puted through the following equation:

S ¼ p0 �
D

l

� �
: ð10Þ

Proof The shortage occurs when the producer has no

inventory and also a demand is announced to the retailer. In

this section, g is used for representing a state of shortage.

For computing the expected value of shortage, we

decompose state (0, P) as in Fig. 3.

For this queue, if psg represents a steady-state probability

of g shortages, then it would be clear that:

Dþ lð Þpsgþ1 ¼ Dð Þpsg 8g� 0: ð11Þ

Considering Eq. 11, psg could be calculated as follows:

psg ¼
D

Dþ l

� �g

ps0: ð12Þ

By considering Eq. 12, Eq. 13 could be obtained as

X1
g¼0

D

Dþ l

� �g

ps0 ¼ p0: ð13Þ

Also, the average shortage is equal to:

S¼ ps0
D

Dþ l

� �
þ 2

D

Dþ l

� �2

þ� � � þ k
D

Dþ l

� �k

þ. . .

 !

¼ ps0z 1þ 2 zð Þ1þ� � � þ k zð Þk�1þ. . .
� �

; ð14Þ

where z is equal to D
Dþl. In addition, it is known that:

1 þ 2 zð Þ1þ � � � þ k zð Þk�1þ. . .
� �

¼ d

dz
zþ zð Þ2þ � � � þ zð Þkþ. . .
� �

¼ d

dz

z

1 � z

� �
¼ 1

1 � zð Þ2
: ð15Þ

Considering Eqs. 14 and 15 could result in Eq. 10.

Lemma 3 For this inventory system, the expected value

of the inventory level can be calculated by A.pR-1,P, where
A can be calculated by Eq. 16.

g+1 g ... 1 0

D D DD D D

...

μμμμ

Fig. 3 Transition diagram for

state (0, p)
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Proof For this inventory system, Eq. 17 is true:

�I ¼
XR�1

j¼1

pj;P � jþ
XR
k¼rþ1

pk;D � k ¼
XR�r

l¼3

lþ D

D

� �
� D

l

� �l�2

� ðR� lÞ þ
XR�r

l¼3

Xl�3

j¼0

D

l

� � j

�ðR� lÞ

þ
Xr
i�1

D

l

� �i

�
XR�r�3

j¼0

D

l

� � j

þ Dþ l
l

� �
� D

l

� �R�r�2
 !

� r � ið Þ:
ð17Þ

Also, for this queue the next three equations are true:

XR�r

l¼3

lþD

D

� �
� D

l

� �l�2

�ðR� lÞ¼R� lþD

D

� �

�
D
l� D

l

� �R�r�1

1�D
l

0
B@

1
CA� l

D

� �
� lþD

D

� �

�
1� R� rþ1ð Þ� D

l

� �R�r
� �

1�D
l

� �
þD

l� D
l

� �R�rþ1

1�D
l

� �2

2
664

� 1þ2
D

l

� ��
; ð18Þ

R� 1ð Þ þ R� 2ð Þ � l
lþ D

þ R� rð Þ � l
D
� Rþ r þ 1

2

� �
þ R� lþ D

D

� �
�

D
l � D

l

� �R�r�1

1 � D
l

0
B@

1
CA

� l
D

� �
� lþ D

D

� � 1 � R� r þ 1ð Þ � D
l

� �R�r
� �

1 � D
l

� �
þ D

l � D
l

� �R�rþ1

1 � D
l

� �2
� 1 þ 2

D

l

� �2
664

3
775

þ R� 1

1 � D
l

 !
� R� r � 2 �

D
l � D

l

� �R�r�1

1 � D
l

0
B@

1
CA

2
64

3
75� 1

1 � D
l

 !
� R� r þ 3ð Þ R� r � 2ð Þ

2

� �

þ 1

1 � D
l

 !
� l

D

� �
�

1 � R� r þ 1ð Þ � D
l

� �R�r
� �

1 � D
l

� �
þ D

l � D
l

� �R�rþ1

1 � D
l

� �2
� 1 þ 2

D

l

� �2
664

3
775

þ
1 � D

l

� �R�r�2

1 � D
l

þ lþ D

D
� D

l

� �R�r�2

0
B@

1
CA

r �
D
l � D

l

� �rþ1

1 � D
l

0
B@

1
CA� D

l

1 � r þ 1ð Þ � D
l

� �r� �
1 � D

l

� �
þ D

l � D
l

� �rþ1

1 � D
l

� �2

0
B@

1
CA

2
64

3
75

ð16Þ
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Using Eqs. 17, 18, 19, and 20, Eq. 16 can emerge.

Multi-product inventory model

In this section, we considered multi-item inventory to

determine near optimal Ri, ri and li for each product. This

objective is denoted through minimizing Eq. 21:

min z ¼
XM
i¼1

�Ii � Ci;I þ �Si � Ci;S þ prþ1;D;i � SEi

� 	
: ð21Þ

For the inventory system, M types of products are

considered. To present our heuristic algorithm, it is

assumed that on demand mood the product has a capacity

(production rate) that can be equally divided into the other

products. So, Eq. 20 could be used to approximate the

service rate for the type k product:

lk ¼
l
M

1 þ
P

l 6¼k 1 � plð ÞP
l 6¼k plð Þ

 !
; ð22Þ

where n represents the number of products and pl is

equal to
PR�1

i¼0 pi;P;l, which represents the probability of

being in production mood for product l. It can be cal-

culated from Eq. 23. In Eq. 22,
P

l6¼k 1 � plð Þ approxi-

mates the number of products in the demand mood andP
l6¼k plð Þ approximates the number of products in the

production mood.

1þ ll
llþD

� �
þ
XR�r

l¼3

Xl�3

j¼0

D

ll

� �j

þ Dþli
ll

� �
� D

ll

� �l�2
"

þ
Xr
i¼1

D

ll

� �i

�
XR�r�3

j¼0

D

ll

� �j

þ Dþll
ll

� �
� D

ll

� �l�2
#
�pR�1;P:

ð23Þ

Figure 4 illustrates the inventory level, rate of production

and rate of demand for the two products.

In this study, li is considered to be bigger than Di. For

fixed values of different variables, it is clear that increase in

Ri causes an increase in �Ii. Furthermore, it causes prþ1;D;i

and �Si to be decreased. So, for fixed values of different

variables, the long-run expected cost is pseudo-convex in R.

On the other hand, for fixed values of different variables,

increase in ri would increase the probabilities of states

which have more than ri inventory level, and it causes

prþ1;D;i and �Ii to be increased. Moreover, it causes a

decrease in �Si. Consequently, for a fixed R, the long-run

expected cost is pseudo-convex in ri.

Heuristic algorithm

Regarding the complexity of our model, simple models

would take big computational times. For this reason, we

proposed a two-phased algorithm.

XR�r

l¼3

Xl�3

j¼0

D

l

� � j

�ðR� lÞ ¼
XR�r

l¼3

1 � D
l

� �l�2

1 � D
l

0
B@

1
CA� R� lð Þ;

¼ R� 1

1 � D
l

 !
� R� r � 2 �

D
l � D

l

� �R�r�1

1 � D
l

0
B@

1
CA

2
64

3
75� 1

1 � D
l

 !
� R� r þ 3ð Þ R� r � 2ð Þ

2

� �

þ 1

1 � D
l

 !
� l

D

� �
�

1 � R� r þ 1ð Þ � D
l

� �R�r
� �

1 � D
l

� �
þ D

l � D
l

� �R�rþ1

1 � D
l

� �2
� 1 þ 2

D

l

� �2
664

3
775; ð19Þ

Xr
i�1

D

l

� �i

�
XR�r�3

j¼0

D

l

� � j

þ Dþl
l

� �
� D

l

� �R�r�2
 !

� r� ið Þ

¼
1� D

l

� �R�r�2

1� D
l

þlþD

D
� D

l

� �R�r�2

0
B@

1
CA r�

D
l � D

l

� �rþ1

1� D
l

0
B@

1
CA�D

l

1� rþ 1ð Þ� D
l

� �r� �
1� D

l

� �
þ D

l � D
l

� �rþ1

1� D
l

� �2

0
B@

1
CA

2
64

3
75:

ð20Þ
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Phase one

In continuous space, z is convex due to ri and Ri. We

suppose ri and Ri to be continuous and optimal and these

were calculated by the steepest ascent method. For better

description, it is assumed that there is only one product and

if rli and Rli denote the solution of the steepest ascent

method, then Fig. 5 demonstrates the optimal solution in

discrete space for just one product.

Considering Fig. 5, for the discrete problem, the nearest

points in any direction to the optimal solution could be

found in a space in which ri is |rli| or |rli| ? 1, and Ri is |Rli|

or |Rli| ? 1. Consequently, a search among these nodes can

provide a perfect local solution. Assuming a number of

product equal to M, there would be 22M nodes in the space

that needs to be searched. So, for big M, phase two is

proposed.

Phase two

Considering the optimal solution resulting from the steep-

est deepest algorithm, we proceed with the following steps:

Step 1 Calculate li for each of the products for the

continuous solution.

Step 2 For each product, search the nodes where | rli| or

|rli| ? 1, and Ri is |Rli| or |Rli| ? 1, and then calculate

Eq. 24, independently,

zi ¼ �Ii � Ci;I þ �Si � Ci;S þ prþ1;D;i � SEi

� 	
: ð24Þ

Step 3 Choose the nodes which have the minimum zi for

each product.

Computational results

In this research, the proposed algorithm is coded in

C?? software. For evaluation of the algorithm, we pro-

duced five examples for M equal to 10, where all param-

eters are selected randomly while creating the data set. The

parameters are set as follows: Ci;I 2 1; 10½ �, Ci,S 2 [1, 10],

Di 2 [1, 10], l = 10 M and SEi 2 [30, 60]. In this case,

instead of letting R go to infinity, the maximum value of

R was set to be 10,000. Therefore, the maximum value of

s was 9999. We also limited the computational time to 5 h

and mean solving time for our algorithm was 223.097 s,

while none of the examples could be solved through

searching all feasible solutions.

In this model, an example is generated to analyze the

parameters of the model in which CI,CS, D, SE and l are

equal to 5, 20, 3, 200 and 4, respectively. Also, the

behavior of inventory costs has been studied for different

values of R and r in Fig. 6.

It is proposed to use this model for companies using

workshop system and reorder point for replenishing their

finished goods inventory. To provide a better description of

the model, an example is presented in Table 2.

A near optimal solution for this example is 164 where

(r1; r2; r3;R1;R2;R3) is equal to (1, 1, 1, 4, 3, 3), respec-

tively. If each product is to be planned separately, the

optimal cost would be equal to 211, 28 % more than our

model’s costs. We considered Product 3 and analyzed costs

related to D in Fig. 7. To analyze the performance of our

heuristic, R and Q are limited to be less than 100, and the

optimal solution for different Ds are prepared.

As in Fig. 7, the same pattern has been demonstrated for

shortage and holding costs. On the other hand, the pattern

of setup cost is totally different. Furthermore, there is not a

great difference among heuristic and optimal costs.

R1R1

r1r1

R2R2

r2r2

μ-
D1μ-
D1

μ///222--DD1
μ/2-D1

μ/2
-D

2
μ/2

-D
2

μ-
D2μ-
D2D1D1

D2D2

Fig. 4 Illustration of the

inventory level for two products

|Rl| |Rl|+1

|rl|

|rl|+1

Fig. 5 Solution of the discrete problem
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This model could be implemented properly for work-

shop systems. The Electroestil Company was established in

1980 and now it is one of the most popular brands of

refrigerator production in Iran. Electroestil produces dif-

ferent kinds of refrigerators for houses and shops. It has 20

types of refrigerators for houses and 15 types for shops.

In this company, there are four workshops and 1500

employees. This company has a production capacity of 800

products per day for house refrigerators and 120 products

per day for shop refrigerators. Experts in Electroestil

approximate that demands of house refrigerators for dif-

ferent product types are equal and they are equal to 30 per

day, and demands of shop refrigerators for different pro-

duct types are equal and they are equal to 7 per day. They

have defined CI to be equal to 100,000 tomans for each

product, CS to 2 million tomans—Iran’s currency—for

each product, and SE to 300,000 tomans for each product.

For this company, Table 3 illustrates the performance of

the proposed model. Significant changes in inventory costs

have been determined if the proposed model is used.

As shown in this table, there is a big difference between

the optimal solution and the current situation of the com-

pany. In the current situation, shortage costs and setup

costs are small, but holding costs are big. For this company,

the rate of production is much more than the rate of

demand. This could be a reason for the low quantity of r.

In this model, the demand rate has significant effects on

r and R. Therefore, we only considered ESR320 which is a

shop refrigerator. For this product, R and r were analyzed

according to the demand rate in Fig. 7. The same pattern

was displayed for them. Also, it has been discovered that as

the demand rate becomes bigger, when it is bigger than the

service rate, the optimal costs decrease. For example, the

costs for D = 64 is equal to 30 which is significantly less

than for D = 7. However, for small demand rates, its

increase makes optimal costs bigger. For example, in

D = 13, the optimal cost is equal to 302.

Conclusion and future directions

In this paper, a new production-inventory model is devel-

oped (Fig. 8). To prepare a cohesive model, demand and

production time are considered as stochastic parameters

and queuing theory is used to calculate long-run inventory

costs. The proposed model also has been extended for

multi-item inventory systems. The inventory model has

Fig. 6 Behavior of the model regarding r and R r\Rð Þ

Table 2 An example for describing the proposed model

l = 15 CI Cs D SE

Product 1 10 100 4.5 50

Product 2 20 250 4 70

Product 3 30 300 4 100

0

100

200

300

400

2 4 6 8 10 12 14 16

co
st

D

setup costs(near
op�mal)

holding costs(near
op�mal)

shortage costs(near
op�mal)

setup cost (op�mal)

Fig. 7 Sensitivity of different costs due to the demand rate

Table 3 Comparison between our model and the current planning for each product (91000 tomans)

House refrigerator Shop refrigerator

r R Inventory holding costs Shortage costs Setup costs r R Inventory costs Shortage costs Setup costs

Multi-item model 1 4 175 82 41 1 3 144 49 73

Current planning 8 20 1229.1 0.001 8.638 5 12 610.63 44.010 9.907

0
5

10
15
20
25

4 13 32 64 128 258 512 D

R

r

Fig. 8 Relation between R, r and D for ESR320
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been analyzed concerning r and R. These parameter

behaviors are investigated. We also proposed a heuristic

algorithm to solve the problem. The results demonstrate the

efficiency of the proposed algorithm. To prepare a better

description of the model, a real-world example is studied

and analyzed. Respecting the collected data, it has been

observed that there is a significant relation between the

demand rate and production rate. If demand is smaller than

service rate, increase of demand causes an increase in

optimal costs. On the other hand, when it is bigger than the

service rate, a small increase may reduce the optimal costs.

Lost sales shortage may be considered as one of the

weaknesses in our model. So, in future, the model can be

extended through considering back-order shortage. This

may increase the complexity of the problem while the

model would become more realistic. Another extension of

this research is possible by covering corruption rates for

perishable inventories.
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