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An inventory model for deteriorating items with
time-dependent demand and time-varying
holding cost under partial backlogging
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Abstract

In this paper, we considered a deterministic inventory model with time-dependent demand and time-varying
holding cost where deterioration is time proportional. The model considered here allows for shortages, and the
demand is partially backlogged. The model is solved analytically by minimizing the total inventory cost. The result is
illustrated with numerical example for the model. The model can be applied to optimize the total inventory cost for
the business enterprises where both the holding cost and deterioration rate are time dependent.
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Background
In the traditional inventory models, one of the assumptions
was that the items preserved their physical characteristics
while they were kept stored in the inventory. This
assumption is evidently true for most items, but not
for all. However, the deteriorating items are subject to
a continuous loss in their masses or utility throughout
their lifetime due to decay, damage, spoilage, and penalty
of other reasons. Owing to this fact, controlling and
maintaining the inventory of deteriorating items becomes
a challenging problem for decision makers.
Harris (1915) developed the first inventory model,

Economic Order Quantity, which was generalized by
Wilson (1934) who gave a formula to obtain economic
order quantity. Whitin (1957) considered the deterioration
of the fashion goods at the end of the prescribed shortage
period. Ghare and Schrader (1963) developed a model for
an exponentially decaying inventory. Dave and Patel
(1981) were the first to study a deteriorating inventory
with linear increasing demand when shortages are not
allowed. Some of the recent work in this field has been
done by Chung and Ting (1993); Wee (1995) studied an
inventory model with deteriorating items. Chang and Dye
(1999) developed an inventory model with time-varying
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demand and partial backlogging. Goyal and Giri (2001)
gave recent trends of modeling in deteriorating item
inventory. They classified inventory models on the basis of
demand variations and various other conditions or con-
straints. Ouyang and Cheng (2005) developed an inventory
model for deteriorating items with exponential declining
demand and partial backlogging. Alamri and Balkhi (2007)
studied the effects of learning and forgetting on the optimal
production lot size for deteriorating items with time-
varying demand and deterioration rates. Dye et al. (2007)
find an optimal selling price and lot size with a varying rate
of deterioration and exponential partial backlogging. They
assume that a fraction of customers who backlog their
orders increases exponentially as the waiting time for the
next replenishment decreases.
In 2008, Roy developed a deterministic inventory

model when the deterioration rate is time proportional.
Demand rate is a function of selling price, and holding
cost is time dependent. Liao (2008) gave an economic
order quantity (EOQ) model with non instantaneous
receipt and exponential deteriorating item under two
level trade credits
Pareek et al. (2009) developed a deterministic inventory

model for deteriorating items with salvage value and
shortages. Skouri et al. (2009) developed an inventory
model with ramp-type demand rate, partial backlogging,
and Weibull's deterioration rate. Mishra and Singh (2010)
developed a deteriorating inventory model for waiting
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Figure 1 Graphical representation of the state of
inventory system.
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time partial backlogging when demand and deterioration
rate is constant. They made the work of Abad (1996, 2001)
more realistic and applicable in practice.
Mandal (2010) gave an EOQ inventory model for

Weibull-distributed deteriorating items under ramp-type
demand and shortages. Mishra and Singh (2011a, b) gave
an inventory model for ramp-type demand, time-dependent
deteriorating items with salvage value and shortages and
deteriorating inventory model for time-dependent demand
and holding cost with partial backlogging. Hung (2011)
gave an inventory model with generalized-type demand,
deterioration, and backorder rates.
In classical inventory models, the demand rate and

holding cost is assumed to be constant. In reality, the
demand and holding cost for physical goods may be time
dependent. Time also plays an important role in the
inventory system; therefore, in this inventory system, we
consider that demand and holding cost are time dependent.
In this paper, we made the work of Roy (2008)

more realistic by considering demand rate and hold-
ing cost as linear functions of time and developed an
inventory model for deteriorating items where deteri-
oration rate is expressed as a linearly increasing func-
tion of time. Shortages are allowed and partially
backlogged. The assumptions and notations of the model
are introduced in the next section. The mathematical
model and solution procedure are derived in the
‘Mathematical formulation and solution’ section, and the
numerical and graphical analysis is presented in the
‘Results and discussion’ section. The article ends with
some concluding remarks and scope of future
research.

Methods
Assumption and notations
This inventory model is developed on the basis of the
following assumption and notations:

i. Deterioration rate is time proportional.
ii. θ(t) = θt, where θ is the rate of deterioration; 0 < θ < 1.
iii. Demand rate is time dependent and linear, i.e., D(t) =

a + bt; a, b > 0 and are constant.
iv. Shortage is allowed and partially backlogged.
v. C2 is the shortage cost per unit per unit time.
vi. β is the backlogging rate; 0 ≤ β ≤ 1.
vii. During time t1, the inventory is depleted due to

the deterioration and demand of item. At time t1,
the inventory becomes zero and shortage starts
occurring.

viii. There is no repair or replenishment of deteriorating
item during the period under consideration.

ix. Replenishment is instantaneous; lead time is zero.
x. T is the length of the cycle.
xi. The order quantity of 1 cycle is q.
xii. Holding cost h(t) per unit time is time dependent
and is assumed h(t) = h + αt, where α > 0; h > 0.

xiii. C is the unit cost of an item.
xiv. IB is the maximum inventory level during the

shortage period.
xv. I0 is the maximum inventory level during (0, T).
xvi. S is the lost sale cost per unit.

Mathematical formulation and solution
The rate of change of the inventory during the positive
stock period (0, t1) and shortage period (t1, T) is governed
by the following differential equations:

dI1 tð Þ
dt

¼ �D tð Þ � θ tð ÞI1 tð Þ; 0≤t≤t1; ð1Þ

dI2 tð Þ
dt

¼ �βD tð Þ; t1≤t≤T : ð2Þ

The initial inventory level is I0 unit at time t = 0; from
t = 0 to t = t1, the inventory level reduces, owing to both
demand and deterioration, until it reaches zero level at
time t = t1. At this time, shortage is accumulated which
is partially backlogged at the rate β. At the end of the
cycle, the inventory reaches a maximum shortage level
so as to clear the backlogged and again raises the inventory
level to I0 (Figure 1).
Thus, boundary conditions are as follows:

I1 0ð Þ ¼ I0; I1 t1ð Þ ¼ 0; I2 t1ð Þ ¼ 0:

The solutions of Equations 1 and 2 with boundary
conditions are as follows:

I1 tð Þ¼�e
�
θt2

2
Z t1

t
e

θt2

2
�
aþ bt

�
dt

0≤ t ≤ t1;

ð3Þ
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I2 tð Þ ¼ �β a T � tð Þ þ b
2

T 2 � t21
� �� �

t1 ≤ t ≤T :
ð4Þ

Using Equation 3, we get the following:

I0 ¼
Z t1

0

�
aþ bt

�
e
θt2
2 dt: ð5Þ

Inventory is available in the system during the time
interval (0, t1). Hence, the cost for holding inventory in
stock is computed for time period (0, t1) only.
Holding cost is as follows:

HC ¼
Z t1

0
h tð ÞI1 tð Þ

HC ¼
Z t1

0
hþ αtð ÞI1 tð Þ

¼
Z t1

0
hþ αtð Þe�

θt2

2
Z t 1

t
aþ buð Þe

θu2

2 dudt

¼

ah
1
2
t21 þ

1
12

θt41 þ
1
90

θt61

� �

þ bh
1
3
t31 þ

1
15

θt51 þ
1

105
θt71

� �

þ aα
1
6
t31 þ

1
40

θt51 þ
1
136

θt71

� �

þ bα
1
8
t41 þ

1
48

θt61 þ
1

384
θt81

� �

2
66666666664

3
77777777775
:

ð6Þ

Shortage due to stock out is accumulated in the system
during the interval (t1,T).
The optimum level of shortage is present at t = T;

therefore, the total shortage cost during this time period
is as follows:

SC ¼ C2

Z T

t1

� I2 tð Þdt

¼ βaC2 T � t1ð Þ2 þ 1
2
βbC2 T � t1ð Þ2 T þ t1ð Þ:

ð7Þ

Due to stock out during (t1, T), shortage is accumulated,
but not all customers are willing to wait for the next lot
size to arrive. Hence, this results in some loss of sale which
accounts to loss in profit.
Lost sale cost is calculated as follows:

LSC ¼ S
Z T

t1

1� βð ÞD tð Þdt

LSC ¼ S 1� βð Þ a T � t1ð Þ þ 1
2
b T 2 � t21
� �� �

:

ð8Þ
Purchase cost is as follows:

PC ¼ C
�
I0 þ

Z T

t1

βD tð Þdt
�

PC ¼ CI0 þ Cβa
�
T � t1

�þ 1
2
Cβa

�
T 2 � t 21

�
:

ð9Þ

Total cost is as follows:

TC ¼ OCþ PCþHCþ SCþ LSC

TC ¼

Aþ CI0 þ βCþ a T � t1ð Þ þ b
2

T 2 � t21
� �� �

þ ah
1
2
t21 þ

1
12

θt41 þ
1
90

θt 61

� �

þ bh
1
3
t31 þ

1
15

θt51 þ
1

105
θt71

� �

þ αa
1
6
t31 þ

1
40

θt51 þ
1

136
θt71

� �

þ αb
1
8
t41 þ

1
48

θt61 þ
1

136
θt81

� �

þ βaC2 T � t1ð Þ2 þ 1
2
βbC2 T � t1ð Þ2 T þ t1ð Þ

þ S 1� βð Þ a T � t1ð Þ þ 1
2
b T 2 � t21
� �� �

2
666666666666666666666664

3
777777777777777777777775

:

ð10Þ

Differentiating Equation 10 with respect to t1 and T,
we then get the following:

∂TC
∂t1

and
∂TC
∂T

:

To minimize the total cost TC(t1, T) per unit time, the
optimal value of T and t1 can be obtained by solving the
following equations:

∂TC
∂t1

¼ 0 and
∂TC
∂T

¼ 0; ð11Þ

providing that Equation 10 satisfies the following con-
ditions:

∂2TC
∂t21

� �
∂2TC
∂T2

� �
� ∂2TC

∂t1∂T

� �2
> 0 and

∂2TC
∂t21

� �
> 0:

ð12Þ

By solving (11), the value of T and t1 can be obtained,
and with the use of this optimal value, Equation 10 provides
the minimum total inventory cost per unit time of the
inventory system. Since the nature of the cost function
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is highly nonlinear, thus the convexity of the function is
shown graphically in the next section.
t1
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Figure 3 Total cost vs. t1 at T = 0.1282.
Results and discussion
The following numerical values of the parameter in
proper unit were considered as input for numerical and
graphical analysis of the model, A = 2,500, a = 10, b = 50,
C = 10, C2 = 4, h = 0.5, θ = 0.8, α = 20, β = 0.8, and S = 8.
The output of the model by using maple mathematical
software (the optimal value of the total cost, the time
when the inventory level reaches zero, and the time
when the maximum shortages occur) is TC = 2,463.65,
t1 = 1.127, and T = 1.562.
If we plot the total cost function (10) with some

values of t1 and T such that fixed T at 1.562 and t1
varies from 0.8 to 1.2, fixed t1 at 1.127 and T varies
from 1.2 to 1.8, and t1 = 0.08 to 1.2 with equal inter-
val T = 1.2 to 1.8, then we get the strictly convex
graph of total cost function (TC) given by Figures 2, 3, 4,
respectively.
The observation from Figures 2, 3, 4 is that the total

cost function is a strictly convex function. Thus, the
optimum value of T and t1 can be obtained with the help
of the total cost function of the model provided that
the total inventory cost per unit time of the inventory
system is minimum.
Conclusion
This paper presents an inventory model of direct
application to the business enterprises that consider
the fact that the storage item is deteriorated during
T
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Figure 2 Total cost vs. T at t1 = 0.1265.
storage periods and in which the demand, deterior-
ation, and holding cost depend upon the time. In this
paper, we developed a deterministic inventory model
with time-dependent demand and time-varying hold-
ing cost where deterioration is time proportional. The
model allows for shortages, and the demand is par-
tially backlogged. The model is solved analytically by
minimizing the total inventory cost. Finally, the pro-
posed model has been verified by the numerical and
graphical analysis. The obtained results indicate the
validity and stability of the model. The proposed
0.8

0.9236
1.2

1.3 1.0

256

t11.4
1.5 1.1

276

T 1.6
1.7

1.2

296

1.8

101

Figure 4 Total cost vs. t1 and T.
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model can further be enriched by taking more realistic
assumptions such as finite replenishment rate, probabilistic
demand rate, etc.
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