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Abstract The choice of suitable robots in manufacturing,

to improve product quality and to increase productivity, is

a complicated decision due to the increase in robot man-

ufacturers and configurations. In this article, a novel

approach is proposed to choose among alternatives, dif-

ferently assessed by decision makers on different criteria,

to make the final evaluation for decision-making. The

approach is based on the ellipsoid algorithm for systems of

linear inequalities. Most of the ranking methods depend on

integration that becomes complicated for nonlinear mem-

bership functions, which is the case in robot selection. The

method simply uses the membership function or its

derivative. It takes the decision maker’s attitude in ranking.

It effectively ranks fuzzy numbers and their images, pre-

serving symmetry. It is a simple recursive algebraic for-

mula that can be easily programmed. The performance of

the algorithm is compared with the performance of some

existing methods through several numerical examples to

illustrate its advantages in ranking, and a robot selection

problem is solved.

Keywords Fuzzy multicriteria decision-making � Ranking
fuzzy numbers � The ellipsoid method � Robot selection

Introduction

The wide use of robot automation in the industry creates

new challenges in the development of robot control and in

the preferred choice among robots performing the same

task. The choice of suitable robots is a complicated deci-

sion due to the large increase in robot manufacturers,

configurations, and available options. Based on the evalu-

ation of multiple conflicting criteria, the multicriteria

decision-making (MCDM) provides an effective frame-

work for choice (Rashid et al. 2014). MCDM is the process

of finding the optimal alternative from all possible alter-

natives according to some criteria or attributes (Garg

2017b).

Due to the ambiguity and vagueness in the information

resulting from human judgment and preference and the use

of linguistic assessments instead of numerical values, the

theory of fuzzy sets and its corresponding extensions, e.g.,

intuitionistic fuzzy sets and type-2 fuzzy sets, are applied

in decision-making (Singh and Garg 2017). Fuzzy set

theory is considered as a useful tool, especially when

dealing with complex systems, where the interactions of

the system’s variables are too complex to be precisely

specified (Garg 2016d).

Fuzzy numbers attracted researchers and many studies

were introduced. Fuzzy sets, later named type-1 fuzzy sets

to distinguish them from various types introduced, have a

crisp membership function value in the interval [0, 1]. In

some cases, it is hard to estimate the exact membership

function of fuzzy sets. Therefore, type-2 fuzzy sets were

introduced having a fuzzy membership function. However,

type-2 fuzzy sets need heavy computations. Thus, interval

type-2 fuzzy sets were proposed according to certain sim-

plification assumptions (Ghorabaee 2016).
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In practical applications, when evaluating some candi-

date alternatives, decision makers may fail to express their

preference accurately due to insufficient knowledge of the

alternatives. This led to the introduction of intuitionistic

fuzzy sets (Garg 2016a). They are characterized by defin-

ing a degree of membership and a degree of nonmember-

ship such that their sum is less than or equal to one (Garg

2017a). If the decision maker provides the sum of the

membership degree and the nonmembership degree, of a

certain attribute, greater than 1, the concept of Pythagorean

fuzzy sets (a generalization of intuitionistic fuzzy sets) may

be used under the assumption that the sum of the squares of

the membership degree and the nonmembership degree is

less than or equal to 1 (Garg 2016c). To improve the

flexibility of intuitionistic fuzzy sets, interval-valued intu-

itionistic fuzzy sets were proposed having an interval

membership function, an interval nonmembership function,

and an interval hesitancy function (Garg 2016b).

When the information is indeterminate and inconsistent,

fuzzy sets and their extensions are not appropriate for

decision-making. To deal with such cases, neutrosophic

sets were proposed. They have three independent compo-

nents lying in �0þ; 1þ½: the truth degree, indeterminacy

degree, and falsity degree (Nancy and Garg 2016).

For details on the application of interval type-2 fuzzy

numbers in decision-making, see Ghorabaee (2016) and

Demova et al. (2015). For the applications of intuitionistic

fuzzy sets, see Garg (2016a, b, c, 2017a, b, c) and Singh

and Garg (2017), and for neutrosophic sets, see Nancy and

Garg (2016).

Comparing or ranking fuzzy numbers plays a crucial

role in fuzzy decision problems, e.g., the concept of opti-

mal or best choice is based on ranking. The main difficulty

in ranking fuzzy numbers is that fuzzy numbers do not

always yield a totally ordered set as real numbers do (Yoon

1996). To rank fuzzy numbers, a fuzzy number needs to be

evaluated and compared to other fuzzy numbers. Since

fuzzy numbers are represented by possibility distributions,

they may overlap with each other. Thus, to decide whether

one fuzzy number is bigger than or smaller than the other is

difficult (Shureshjani and Darehmiraki 2013).

The importance of ranking fuzzy numbers in solving

real world decision problems in a fuzzy environment led to

the development of various ranking approaches. Diverse

ranking methods have been proposed based on different

theoretical basis. Accordingly, different ranking methods

may propose different rankings (Brunelli and Mezei 2013).

The existing ranking methods are classified into four cat-

egories each category has several methods (Chen and Chen

2009): preference relation (degree of optimality, hamming

distance, a-cut, comparison function, desirability index),

fuzzy mean and spread (probability distribution), fuzzy

scoring (proportion to optimal, left/right scoring, centroid

index, area measurement) and linguistic expression (intu-

ition, linguistic approximation). For details on different

ranking methods and a comparative study, see Brunelli and

Mezei (2013). For recent research on ranking trapezoidal

fuzzy numbers based on the shadow length and ranking

triangular fuzzy numbers by pareto approach on two

dominance stages, see Chutia et al. (2015).

Most of these methods suffer from several flaws, some

are computationally complex or difficult to implement, and

some are not discriminating, while others occasionally

conflict with intuition (Sharma 2015). Many existing

methods for ranking fuzzy numbers are neutral; they do not

reflect the decision maker’s subjective attitude in the pro-

cess of ranking. To overcome this limitation, Shureshjani

and Darehmiraki (2013) introduced an approach for rank-

ing fuzzy numbers based on a-cuts representing the deci-

sion maker’s preference information explicitly. Since

almost each method has a certain drawback, still none of

the existing ranking methods is superior to the others

(Sharma 2015).

The ellipsoid method has long been used in convex

optimization, and proved to be extremely robust and effi-

cient (Ecker and Kupferschmid 1985), but has not been

applied to MCDM. This article investigates the usage of

the ellipsoid method for systems of linear inequalities to

rank normal and non-normal fuzzy numbers of equal

heights and its application in robot selection. The area

enclosed by the fuzzy number will be dealt with as the

solution set of a system of linear inequalities, where the

membership functions represent the constraints. For fuzzy

numbers, the ellipsoid reduces simply to an ellipse. The

method can effectively rank various fuzzy numbers and

their images, whether the membership function is linear or

nonlinear. Most of the ranking methods depend on inte-

gration, e.g., the centroid, the radius of gyration, the mean

of removals, which becomes more elaborate when dealing

with nonlinear membership functions. On the contrary, the

ellipsoid method uses the membership function directly if it

is linear and uses its derivative if it is nonlinear. It is a

simple recursive algebraic formula that can be easily

implemented. The method can take the decision maker’s

attitude in ranking. It is also shown that it has a significant

impact when ranking overlapping fuzzy numbers.
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The article is organized as follows. Fuzzy numbers are

defined in Sect. 2. The ellipsoid method is presented in

Sect. 3. Section 4 explains setting the area enclosed by the

fuzzy number as a system of linear inequalities. The pro-

posed method is given in Sect. 5. Comparative examples

are given in Sect. 6. The robot selection problem is solved

using the proposed method in Sect. 7. The findings are

discussed in Sect. 8. Finally, the conclusion is given in

Sect. 9.

Preliminaries

Fuzzy numbers are a special kind of fuzzy sets that are

normal and convex (Yoon 1996). They are defined in

various ways using many types of shapes. The most salient

types of fuzzy numbers in practical applications are the

trapezoidal and triangular fuzzy numbers. They are defined

as follows:

Definition 2.1 (Chu and Tsao 2002) A real fuzzy number
~A is a fuzzy subset of the real line R with membership

function f ~A having the following properties:

(a) f ~A is a continuous mapping from R to the closed

interval 0;x½ �; 0�x� 1;

(b) f ~AðxÞ ¼ 0; for all x 2 �1; a1ð �;
(c) f ~A is strictly increasing on a1; a2½ �;
(d) f ~A xð Þ ¼ x; for all x 2 ½a2; a3�; where x is constant

and 0\x� 1

(e) f ~A is strictly decreasing on a3; a4½ �;
(f) f ~A xð Þ ¼ 0; for all x 2 ½a4;1Þ;

where a1, a2, a3, and a42 R. It is assumed that ~A is convex

and bounded unless otherwise stated. If x ¼ 1; ~A is called a

normal fuzzy number; otherwise it is called a non-normal

fuzzy number.

Definition 2.2 (Chu and Tsao 2002) The membership

function of a fuzzy number ~A ¼ ½a1; a2; a3; a4;x� is

expressed by

f ~A xð Þ ¼

f L~A ; a1 � x� a2;

x; a2 � x� a3 ;
f R~A ; a3 � x� a4 ;
0; otherwise ;

8
>><

>>:

where f L~A and f R~A are the left and right membership

functions respectively, and 0\x� 1. f L~A : a1; a2½ � !
0;x½ � is a continuous mapping from the real line R to the

closed interval 0;x½ �, and it is strictly increasing on the

interval a1; a2½ �: Similarly, f R~A : a3; a4½ � ! 0;x½ � is a con-

tinuous mapping from the real line R to the closed

interval 0;x½ �; and it is strictly decreasing on the interval

a3; a4½ �: The inverse functions of both the left and right

membership functions exist and are denoted by

gL~A and gR~A; respectively.

If f L~A and f R~A are both linear, ~A is named as a trapezoidal

fuzzy number, and is usually denoted by ~A ¼
ða1; a2; a3; a4;xÞ: When x ¼ 1; the fuzzy number is sim-

ply denoted by ~A ¼ ða1; a2; a3; a4Þ: Else, if the function is

nonlinear it is named according to the type of function, e.g.,

exponential trapezoidal fuzzy number. If a2 ¼ a3, a

trapezoidal fuzzy number reduces to a triangular fuzzy

number denoted by ~A ¼ ða1; a2; a3;xÞ or ~A ¼ ða1; a2; a3Þ
for x ¼ 1.

Definition 2.3 (Chu and Lin 2009) The a-cuts of a fuzzy

number ~A are given by ~Aa ¼ x : f ~A xð Þ� a
� �

; a 2 0; 1½ �;
where ~Aa is a nonempty bounded closed interval in R. The

crisp set ~Aa is denoted by ~Aa ¼ ½~Aa
l ;
~Aa
u�; where ~Aa

l is the

lower bound and ~Aa
u is the upper bound.

If ‘‘a’’ is close to 1, the pertaining decision is referred to

as a ‘‘high-level decision’’. Meanwhile, if ‘‘a’’ is close to 0,

the pertaining decision is referred to as a ‘‘low-level

decision’’.

Using interval arithmetic some basic operations on the

fuzzy numbers ~A and ~B 2 Rþ with a-cuts
~Aa ¼ ~Aa

l ;
~Aa
u

� �
and ~Ba ¼ ½~Ba

l ;
~Ba
u�, are expressed as follows

(Chu and Lin 2009):

ð~A� ~BÞa ¼ ~Aa
l þ ~Ba; ~Aa

u þ ~Ba
u

� �
;

ð~A� ~BÞa ¼ ~Aa
l :
~Ba; ~Aa

u:
~Ba
u

� �
;

and ð~A� rÞa ¼ ~Aa
l :r;

~Aa
u:r

� �
; r 2 Rþ:

The ellipsoid algorithm

Yudin and Nemirovski (1976) and Shor (1977) introduced

the ellipsoid method as an iterative method for general

convex optimization problems. Later, Khachiyan (1979)

applied the method to linear programs to prove that they

can be solved in polynomial time (Beck and Sabach 2012).

However, the ellipsoid method proved to be more effective

in decision problems than optimization problems (Reben-

nack 2008).

Consider the decision problem of finding a feasible point

for the system of linear inequalities

Ax� b; where A 2 Rm	n; x 2 Rn and b 2 Rm:
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The basic idea of the algorithm is to start with an initial

ellipsoid containing the solution set of the system of linear

inequalities Ax� b. In each step, the center of the ellipsoid

is a candidate to be a feasible point of the problem. It is

checked whether this point satisfies all the linear inequal-

ities or not. If the point is feasible, then the algorithm

terminates. Otherwise, this point violates one or more of

the given inequalities. One of the violated constraints is

used to construct a new ellipsoid of a smaller volume

having a different center. The procedure is repeated until

either a feasible point is obtained or the number of the

carried out iterations implies that the system is infeasible.

It’s worth noting the algorithm possesses a geometric

property which can be used to rank fuzzy numbers. The

ellipse generated in the ðk þ 1Þ iteration,Ekþ1, is tangential

to the ellipse in the kth iteration, Ek; and passes through the

points of intersection of the cutting constraint and the kth

ellipse as shown in Fig. 1a. Therefore, if two constraints

can be used for cutting, the center of the ellipse generated

by a leading constraint is in an advanced position as seen in

Fig. 1a, b. This geometric property is exploited to rank

fuzzy numbers.

In this study, the area enclosed by the fuzzy number will

be dealt with as the solution set of a system of linear

inequalities, where the membership functions represent the

constraints. Therefore, the algorithm can be applied to rank

fuzzy numbers, extending the conventional ellipsoid

method to MCDM. The details will be given in Sect. 5.

Fuzzy numbers with linear inequalities

The membership function y ¼ f ~A xð Þ is used to represent the

area enclosed by the fuzzy number by a system of linear

inequalities with the non-negativity condition as follows:

y� f L~A ðxÞ� 0;

y�x;

y� f R~A ðxÞ� 0;

and y� 0:

For a normal trapezoidal fuzzy number ~A ¼
ða1; a2; a3; a4Þ with a piecewise linear membership func-

tion defined by

f ~A xð Þ ¼

x� a1

a2 � a1
when a1 � x\a2;

1 when a2 � x� a3;
a4 � x

a4 � a3
when a3\x� a4;

0 otherwise;

8
>>>><

>>>>:

the system of linear inequalities Ax� b is given by

�1 a2 � a1
0 1
1

0

a4 � a3
�1

0

B
@

1

C
A

x

y

� �

�
�a1
1
a4
0

0

B
@

1

C
A:

For a triangular fuzzy number ~A ¼ ða1; a2; a3Þ with a

piecewise linear membership function defined by

f ~A xð Þ ¼

x� a1

a2 � a1
when a1\x� a2;

a3 � x

a3 � a2
when a2\x� a3;

0 otherwise

8
>><

>>:

the system of linear inequalities is given by

�1 a2 � a1
1

0

a3 � a2
�1

 !
x

y

� �

�
�a1
a3
0

 !

:

For the previous types of fuzzy numbers, if the mem-

bership function is a nonlinear function, it can be replaced

by its tangent plane at the point xa; a½ �, where xa ¼ g ~AðaÞ:
Then, the inequality representing the nonlinear function is

given by

�f
0
xað Þ 1

� 	 x

y

� �

� a� xaf
0
xað Þ


 �
:

The proposed method

Suppose ~Ai; i ¼ 1; 2; . . .;N are the N normal fuzzy numbers

to be ranked, each having a membership function f ~Ai
xð Þ:

Let xmin ¼ inf X and xmax ¼ supX; where

X ¼
[N

i¼1

xi; xi ¼ xjf ~Ai
xð Þ[ 0

n o
:

Cu�ng constraint 1 

 (a) 

Cu�ng constraint 2 

 (b) 

Fig. 1 a Leading cut. b Lagging cut
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An ellipse with center xc is formulated algebraically as

the set E x;Bð Þ ¼ x : x� xcð ÞTB�1 x� xcð Þ� 1
n o

, where

B is a symmetric, positive definite, and real valued 2 9 2

matrix. The eigenvectors of B define the principal axes of

the ellipse, while the eigenvalues define the squares of the

semi-axes rx and ry:

A Starting ellipse Eo is chosen large enough to contain

the core of all the N fuzzy numbers, its center xc and matrix

B are given by

xoc ¼ xoc yoc½ �T and B ¼ r2x 0

0 r2y

� �

;

where xoc ¼ ðxmin þ xmaxÞ=2, yoc ¼ x=2,
rx ¼ xmax � xminð Þ=2, and ry ¼ x=2.

Starting from Eo, the following procedure is applied to

each fuzzy number ~Ai to construct N smaller ellipses one

for each fuzzy number. In each iteration, it is checked

whether the current ellipse center xkc satisfies the inequal-

ities y� f L~A xð Þ� 0 and y� f R~A ðxÞ� 0: If one of them is

violated, it is used to cut the ellipse into two parts. One part

does not contain any part of the fuzzy set, while the other

part encloses part of the set. If both of them are violated,

the one with the deepest possible cut, i.e., the cut corre-

sponding to the largest q, is chosen. Whenever the factor q
is the same for both cuts, the right inequality is used when

xc � 0, while the left inequality is used when xc\0.

A new ellipse Ekþ1, which is smaller in area than Ek is

generated enclosing the core of the fuzzy number. The

updating formulas are given as follows (Bland et al. 1981):

xkþ1
c ¼ xkc � sðBkA

T
mÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AmBkA
T
m

� 	q

; ð1Þ

Bkþ1 ¼ d Bk � r BkA
T
m

� 	
BkA

T
m

� 	T
= AmBkA

T
m

� 	
 �
; ð2Þ

where s; r and d are given by

s ¼ 1=3ð Þ 1þ 2qð Þ; r ¼ 2=3ð Þðð1þ 2qÞ= 1þ qð ÞÞ;
d ¼ ð4=3Þ 1� q2

� 	
;

where q ¼ ðAmx
k
c � bmÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AT
mBkAm

q

ð3Þ

and ð�1=2Þ\q\1: ð4Þ

As mentioned in Sect. 4, for fuzzy numbers with linear

membership function Am and bm are given by AR ¼
1 a3 � a2½ � and bR ¼ a3 for triangular fuzzy numbers;

AR ¼ 1 a4 � a3½ � and bR ¼ a4 for trapezoidal fuzzy

numbers, AL ¼ �1 a2 � a1½ � and bL ¼ �a1. For non-

linear membership function they are replaced by Am ¼
�f

0
xað Þ 1

� �
and bm ¼ a� xaf

0
xað Þ:

The procedure is repeated, if possible, to get an ellipse

with a specified area reduction ratio. The reduction ratio is

given by ¼ ArðEkþ1Þ=Ar Ekð Þ ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
:

Several researchers pointed out that ranking fuzzy

numbers using both the value on the horizontal axis x, the

degree of representative location, and the value on the

vertical axis y, average height, often demean the impor-

tance of the value on the horizontal axis and makes the

ranking order not consistent with intuitions. It gives the

same degree of importance to x and y in ranking, while

actually, they have different degrees of importance since

the importance of x is higher than y (Wang and Lee 2008).

It was also pointed out that ranking order differs with the

decision level (Liou and Wang 1992; Shureshjani and

Darehmiraki 2013). Therefore, the value xc of the center of

the final ellipse is used for ranking, while the value of y is

used as the decision level at which the ranking is done.

The algorithm is geometrically interpreted as follows.

The smaller ellipse Ekþ1 which is generated from the

ellipse Ek passes through the points of intersection of the

ellipse Ek with the line used as a cut. Thus, a fuzzy number

with leading membership function(s) yields a leading

ellipse whose center xc is greater than the center of a fuzzy

number with lagging membership function(s) (see Fig. 2).

If it is required to rank the fuzzy numbers at a high

decision level in which only parts of the fuzzy numbers,

with membership values between ‘‘a’’ and ‘‘1’’, is con-

sidered. The center of Eo is elevated taken as xoc ¼
ðxmin þ xmaxÞ=2 ð1þ aÞ=2½ �T keeping the same B matrix.

For low decision levels, a\0:5, the center of the starting

ellipse Eo is lowered taken as xoc ¼ ðxmin þ xmaxÞ=2 a½ �T:
The B matrix is slightly enlarged in the direction of x,

rx ¼ 3 xmax � xminð Þ=4, to make sure that the inequalities

cut the ellipse since the fuzzy numbers are wider at low

levels. This way the undesired decision levels of the fuzzy

number is excluded.

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
E
oE

2 E
1

A
~

A
~
12

Fig. 2 Ranking using the ellipsoid method
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Comparative examples

In this section, several numerical examples are given

serving the following purposes: clarifying the idea of the

method, testing its effectiveness in ranking especially at

different decision levels and finally its ability to avoid

some shortcomings in some previous ranking methods. The

first three numerical examples are from Chen and San-

guansat (2011), example 4 is from Wang and Luo (2009),

examples 5 and 6 are from Deng et al. (2006), while

example 7 is due to Rezvani (2014). Finally, example 8 is

from Singh (2015). All the fuzzy numbers in the examples

are ranked at a ¼ 0:5 unless otherwise stated, and the

reduction ratio used is 0.9.

Example 6.1 Consider the fuzzy numbers
~A1 ¼ ð0:1; 0:2; 0:4; 0:5Þ, ~A2 ¼ ð1; 1; 1; 1Þ shown in Fig. 3.

Several ranking methods cannot calculate the ranking score

of crisp-valued fuzzy numbers (Chen and Sanguansat

2011). When representing a crisp value, say x ¼ a, in the

form of inequalities; it is replaced by x� a and x� a which

is changed to �x� � a. As such, the ellipsoid method

keeps the value of the crisp-valued fuzzy number. The

obtained results are Cð~A1Þ ¼ 0:3351 0:4735½ �T, and

Cð~A2Þ ¼ 1 0:5½ �T. Then ~A2 [ ~A1, which agrees with the

ranking of Chen and Sanguansat (2011).

Example 6.2 Consider the fuzzy numbers
~A1 ¼ ð�0:5;�0:3;�0:1Þ, ~A2 ¼ ð0:1; 0:3; 0:5Þ shown in

Fig. 4. Cheng’s method (1998) gets unreasonable results

when comparing positive and negative fuzzy numbers

(Chen and Sanguansat 2011). Applying the proposed

method the result is Cð~A1Þ ¼ �0:2811 0:4238½ �T, and

Cð~A2Þ ¼ 0:2811 0:4238½ �T, then ~A2 [ ~A1: It is clear

from this example that the proposed method preserves the

symmetry of a number and its image.

Example 6.3 Consider the fuzzy numbers
~A1 ¼ ð0:3; 0:5; 1Þ, ~A2 ¼ ð0:1; 0:6; 0:8Þ shown in Fig. 5. The
starting center x0c ¼ 0:55 0:5½ �T. The result is Cð~A1Þ ¼
0:6011 0:4874½ �T and Cð~A2Þ ¼ 0 :4989 0:4874½ �T, then

Fig. 3 Example 6.1
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~A1 [ ~A2 which coincides with the ranking of several

methods (Chen and Sanguansat 2011). A different ranking

order is obtained taking a� 0:8. Wang and Luo (2009) and

Shureshjani and Darehmiraki (2013) pointed out the dif-

ference in ranking according to the decision level.

Changing the starting center to x0c ¼ 0:55 0:9½ �T, the

result is Cð~A1Þ ¼ 0:5387 0:6262½ �T, and Cð~A2Þ ¼
0 :5613 0:6262½ �T for ~A2, then ~A1\~A2.

Example 6.4 Consider the following fuzzy numbers:

~A1 ¼ ð5:06; 5:06; 10Þ; ~A2 ¼ ð3:53; 6; 8:47Þ
~A3 ¼ ð2; 6:94; 6:94Þ

shown in Fig. 6. These three fuzzy numbers cannot be ranked

by the method of maximizing set and minimizing set due to

their equal total utilities (Wang and Luo 2009). Let xoc ¼

6 0:5½ �T and B ¼ 16 0

0 0:25

� �

. The resulting centers are

Cð~A1Þ ¼ 6:7065 0:5½ �T, Cð~A2Þ ¼ 5:4777 0:4798½ �T,

and Cð~A3Þ ¼ 5:2933 0:5000½ �T: Then ~A3\~A2\~A1. This

ranking is the same as the ranking of Wang and Luo (2009).

While the ranking of Wang and Luo (2009) was not affected

by the decision level, the proposed method revealed that this

ranking order is valid for a low-level decision, i.e., a� 0:5:

Changing the starting center to 6 0:9½ �T; the results are

Cð~A1Þ ¼ 5:8542 0:6137½ �T, Cð~A2Þ ¼ 5:8680 0:6169½ �T,
and Cð~A3Þ ¼ 6:1458 0:6137½ �T for ~A3. Then, for a high-

level decision the order is ~A1\~A2\~A3.

Example 6.5 Consider the triangular fuzzy numbers ~A1 ¼
0:2; 0:3; 0:5ð Þ; ~A2 ¼ 0:17; 0:32; 0:58ð Þ and ~A3 ¼ 0:25;ð
0:4; 0:7Þ shown in Fig. 7. The proposed method yields

C ~A1

� 	
¼ 0:3406 0:4095½ �T; C ~A2

� 	
¼ 0:3638 0:4341½ �T

and C ~A3

� 	
¼ 0:4162 0:4799½ �T. Accordingly, the rank-

ing is ~A1\~A2\~A3: Taking the images of these fuzzy

numbers, the resulting centers are C �~A1

� 	
¼

�0:3406 0:4095½ �T;C �~A2

� 	
¼ � 0:3638 0:4341½ �T and

Fig. 5 Example 6.3

Fig. 6 Example 6.4
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C �~A3

� 	
¼ �0:4162 0:4799½ �T, producing the order

�~A1[ � ~A2[ � ~A3 which copes with the logical inference.

Example 6.6 Consider the triangular fuzzy number ~A1 ¼
1; 2; 5ð Þ and the general fuzzy number ~A2, shown in Fig. 8,

whose membership function is defined as

f ~A2
¼

½1� x� 2ð Þ2�1=2; 1� x� 2;

1� 1

4
x� 2ð Þ2


 �1=2

; 2� x� 4;

0; otherwise:

8
>><

>>:

Using the proposed method, the nonlinear membership

function is replaced by the tangent planes at the point

1:1340 0:5½ � for f L and at the point 3:7321 0:5½ � for f R:
The result is C ~A1

� 	
¼ 2:6800 0:4400½ �T and

C ~A2

� 	
¼ 2:8100 0:4863½ �T. The order is ~A2 [ ~A1. This

is the same order as given by Deng et al. (2006). Ranking

the numbers at a low decision level (a ¼ 0:2), the result is

C ~A1

� 	
¼ 2:8522 0:1877½ �T and

~A2

� 	
¼ 2:7204 0:1968½ �T. Then, the ranking ~A1 [ ~A2

which is the same ranking as given by Chu and Tsao

(2002). Liou and Wang (1992) also produced different

rankings according to the decision level. For an optimistic

decision maker ~A2 [ ~A1; while for a moderate and pes-

simistic decision maker ~A1 [ ~A2 (Chu and Tsao 2002).

Example 6.7 Consider the exponential trapezoidal fuzzy

numbers ~A1 ¼ 0:1; 0:2; 0:4; 0:5ð Þ and ~A2 ¼
ð0:1; 0:3; 0:3; 0:5Þ shown in Fig. 9, whose membership

functions are defined by

f ~A1
¼

e10x�2 0:1� x� 0:2;
1 0:2� x� 0:4;
e4�10x 0:4� x� 0:5;

8
<

:
and

f ~A2 ¼
e5x�1:5 0:1� x� 0:3;
e�5xþ1:5 0:3� x� 0:5

:

�

The results are C ~A1

� 	
¼ 0:3307 0:5383½ �T and

~A2

� 	
¼ 0:2991 0:4976½ �T, then ~A1 [ ~A2. This agrees

with the result of Rezvani (2014).

Example 6.8 Consider the following fuzzy numbers:

~A1 ¼ ð�0:1; 0; 0:1; 0:4Þ; ~A2 ¼ ð�0:2;�0:1; 0:1; 0:2; 0:4Þ

shown in Fig. 10. The methods of Cheng (1998) and Chu

and Tsao (2002) are not applicable. The methods of Yager

(1978) and Chen and Sanguansat (2011) give ~A1 ¼ ~A2

which is considered not intuitive (Singh 2015). Starting

with xoc ¼ 0 0:2½ �T. The results are C ~A1

� 	
¼

0:0135 0:1986½ �T and C ~A2

� 	
¼ 0:0529 0:2052½ �T. The

ranking of the numbers is ~A1\~A2, the same ranking as

Singh (2015).

Fig. 8 Example 6.6

Fig. 9 Example 6.7 Fig. 10 Example 6.8
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Robot selection

Robot selection has always been an important issue for

manufacturing companies to improve product quality and

to increase productivity. Prospective robot buyers must

choose from several robots which are capable of per-

forming a specific task. Robots are selected according to

certain criteria. These criteria are either objective or sub-

jective (Chu and Lin 2009). Objective criteria are defined

in numerical terms, e.g., cost, load capacity and positioning

accuracy. Subjective criteria have qualitative definitions,

e.g., training, man–machine interface, and programming

flexibility. Measures of subjective criteria may not be

accurately defined by decision makers. Furthermore, the

evaluation of robot suitability versus subjective criteria,

and the weights of the criteria are usually expressed in

linguistic terms.

In this section, the proposed method is used in the robot

selection problem given by Liang and Wang (1993) and

resolved later by Chu and Lin (2003) using a different

approach. Liang and Wang (1993) used the maximizing

and minimizing set for ranking, which might fail in ranking

as shown in Example 6.4. It was also shown to be illogical

(Chu and Lin 2003). Chu and Lin (2003) used the tech-

nique of order preference by similarity to an ideal solution

(TOPSIS). TOPSIS avoids the complicated calculations of

irregular fuzzy numbers by deffuzification, this leads to

loss of information and doesn’t reflect the whole picture.

In the following example, the procedures to develop the

membership function of the final fuzzy evaluation value for

each alternative are due to Chu and Lin (2009).

A manufacturing company demands a robot to do a

material-handling task. A committee of four decision

makers D1;D2;D3; and D4 is formed to rate and select the

most suitable robot from three robots R1;R2 and R3 that

passed the preliminary screening. Six selection criteria are

considered:

(a) Three subjective criteria: man machine interface

(C1), programming flexibility (C2) and vendor’s

service (C3).

(b) Three objective criteria: purchase cost (C4), load

capacity (C5) and positioning accuracy (C6).

The decision makers use two sets of linguistic terms for

evaluating the importance of each criterion and to assess

the rating of each robot under each subjective criterion; the

weighting set W ¼ fVL; L;M;H;VHg and the rating set

S ¼ fVP; P; F;G;VGg. The linguistic terms of the

weighting set are: VL ¼ very low ð0; 0; 0:3Þ,L ¼ low

ð0; 0:3; 0:5Þ, M ¼ medium ð0:2; 0:5; 0:8Þ, H ¼ high

ð0:5; 0:7; 1Þ and VH ¼ very high ð0:7; 1; 1Þ. The linguistic

terms of the rating set are: VP ¼ very poor ð0; 0; 0:2Þ,
P ¼ poor ð0; 0:2; 0:4Þ, F ¼ fair ð0:3; 0:5; 0:7Þ, G ¼
good ð0:6; 0:8; 1Þ and VG ¼ very good ð0:8; 1; 1Þ. The

data of the problem can be found in details in Liang and

Wang (1993) and Chu and Lin (2003).

The solution procedure is briefly described as follows

(Chu and Lin 2009):

Step 1 Aggregate the importance weights.

Let Wtj ¼ atj; btj; ctj
� 	

; for t ¼ 1; . . .6 and

j ¼ 1; . . .; 4 be the weight assigned to criterion

Ct by decision maker Dj

Wt ¼ 1=4ð Þ � Wt1 �Wt2 �Wt3 �Wt4ð Þ
¼ ðat; bt; ctÞ;

where at ¼ ð
P4

j¼1 atjÞ=4,
bt ¼ ð

P4
j¼1 btjÞ=4 and ct ¼ ð

Pn
j¼1 ctjÞ=4:

W1 ¼ 0:6; 0:85; 1ð Þ; W2 ¼ 0:525; 0:8; 0:95ð Þ;
W3 ¼ 0:1; 0:4; 0:65ð Þ;

W4 ¼ 0:15; 0:45; 0:725ð Þ; W5 ¼ 0:65; 0:925; 1ð Þ;
W6 ¼ 0:6; 0:85; 1ð Þ:

Step 2 Aggregate the ratings of the alternatives under

subjective criteria.

Let Ritj ¼ oitj; pitj; qitj
� 	

be the rating assigned to

robot Ri for the subjective criterionCt by decision

maker Dj; for i ¼ 1; . . .3; t ¼ 1; . . .3

and j ¼ 1; . . .; 4:

Rit ¼ 1=4ð Þ � Rit1 � Rit2 � Rit3 � Rit4ð Þ
¼ ðoit; pit; qitÞ;

where, oit ¼ ð
P4

j¼1 oitjÞ=4, pit ¼ ð
P4

j¼1 pitjÞ=4
and qit ¼ ð

Pn
j¼1 qitjÞ=4:

R11 ¼ 0:5; 0:7; 0:85ð Þ;
R12 ¼ 0:375; 0:575; 0:775ð Þ;
R13 ¼ 0:3750; 0:5750; 0:7750ð Þ;

R21 ¼ 0:45; 0:65; 0:85ð Þ;
R22 ¼ 0:625; 0:825; 0:925ð Þ;
R23 ¼ 0:575; 0:775; 0:925ð Þ;

R31 ¼ ð0:575; 0:775; 0:925Þ;
R32 ¼ 0:575; 0:775; 0:925ð Þ;
R33 ¼ 0:65; 0:85; 1ð Þ:
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Step 3 Normalize the objective criteria.

To make the values of the subjective and the

objective criteria compatible; the values of the

objective criteria, whether fuzzy or not, must

be converted to dimensionless indices.

Let Tit ¼ ðgit; uit; vitÞ, for i ¼ 1; . . .3 and t ¼ 3; . . .6,

represents the values assigned by the decision

makers to the robot Ri for objective criterion Ct.

The objective criteria are classified to benefit

(load capacity) and cost (purchase cost and

positioning accuracy). The computation of the

converted objective criteria Rit ¼ oit; pit; qitð Þ
differs according to the class of the objective

criteria. For benefit criteria oit ¼ git=v
þ
t ; pit ¼ uit=v

þ
t

and qit ¼ vit=v
þ
t , where vþt ¼ maxvit.

While oit ¼ g�t =vit; pit ¼ g�t =uit and qit ¼ g�t =git,

where g�t ¼ min git for cost criteria.

R14 ¼ ð0:9122; 0:9247; 0:931Þ;
R15 ¼ ð0:9327; 0:9615; 1Þ; R16 ¼ ð0:7857; 0:9167; 1Þ;

R24 ¼ 0:9375; 0:9643; 0:9783ð Þ;
R25 ¼ 0:8462; 0:8654; 0:8942ð Þ;

R26 ¼ ð0:6111; 0:6875; 0:7333Þ;

R34 ¼ ð0:9643; 0:9926; 1Þ;
R35 ¼ ð0:8365; 0:8654; 0:9135Þ;

R36 ¼ ð0:5789; 0:6471; 0:6875Þ:

Step 4 Calculate the final ratings.

Sit ¼ Wt � Rit

¼ bt � atð Þaþ at; ðbt � ct½ Þaþ ct��
pit � oitð Þaþ oit; ðpit � qit½ Þaþ qit�
¼ ½ bt � atð Þ pit � oitð Þa2 þ fat pit � oitð Þ
þ oit bt � atð Þgaþ atoit;

	 ðbt � ctÞ pit � qitð Þa2 þ fctðpit � qitÞ
þ qitðbt � ctÞgaþ ctqit�

Si ¼ ð1=6Þ
X6

t¼1

Wt � Rit ¼ Ii1a
2 þ Ji1a

�

þQi; Ii2a
2 þ Ji2aþ Zi

�
;

where Ii1 ¼ ð1=6Þ
P6

t¼1 bt � atð Þ pit � oitð Þ,
Ji1 ¼ ð1=6Þ

P6
t¼1 at pit � oitð Þ þ oit bt � atð Þ,

Ii2 ¼ ð1=6Þ
P6

t¼1 ðbt � ctÞ pit � qitð Þ,
Ji2 ¼ ð1=6Þ

P6
t¼1 ctðpit � qitÞ þ qitðbt � ctÞ,

and Qi ¼ ð1=6Þ
P6

t¼1 atoit, Yi ¼ ð1=6Þ
P6

t¼1 btpit,

Zi ¼ ð1=6Þ
P6

t¼1 ctqit:

Step 5 Develop the membership function of each

weighted rating.

The left and right membership functions f LSi
and f RSi of Si can be obtained as

f LSi ¼ �Ji1 þ ½J2i1 þ 4Ii1ðx� QiÞ�1=2
n o

=2Ii1;

Qi � x� Yi;

f RSi ¼ �Ji2 � ½J2i2 þ 4Ii2ðx� ZiÞ�1=2
n o

=2Ii2;

Yi � x� Zi

Then, the membership functions of the three

alternatives are given as follows.

For the first robot,

f LS1 ¼ �0:2352þ ½0:05522þ 0:1396ðx� 0:2915Þ�1=2
n o

=0:0698; 0:2915� x� 0:5616;

f RS1 ¼ 0:2554� ½0:0652þ 0:0798ðx� 0:7942Þ�1=2
n o

=0:0339; 0:5616� x� 0:7942:

For the second robot,

f LS2 ¼ �0:2385þ ½0:05688þ 0:1316ðx� 0:2855Þ�1=2
n o

=0:0658; 0:2855� x� 0:5569;

f RS2 ¼ 0:2368� ½0:0561þ 0:0636ðx� 0:7775Þ�1=2
n o

=0:0318; 0:5569� x� 0:7778:

For the third robot,

f LS3 ¼ �0:2450þ ½0:0600þ 0:1324ðx� 0:2913Þ�1=2
n o

=0:0662; 0:2913� x� 0:5693;

f RS3 ¼ 0:2430� ½0:0590þ 0:0628ðx� 0:7966Þ�1=2
n o

=0:0314; 0:5693� x� 0:7966:

Step 6 Rank.

Applying the proposed method for ranking after

replacing the nonlinear membership functions by their

tangent planes at the points ½x0:5; 0:5�, the following results

are obtained: C ~S1
� 	

¼ 0:5525 0:4882½ �, C ~S2
� 	

¼
0:5312 0:4917½ � and C ~S3

� 	
¼ 0:5548 0:4853½ �. This

makes the third robot R3 the most suitable selection for the

loading task. This result agrees with the result of Liang and

Wang (1993) while it differs from the result of Chu and Lin

(2003) TOPSIS that ranked R1 as the best selection.
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Discussion

The proposed algorithm proved to be robust, have a strong

discriminating ability and never fails to rank. While some

methods fail in ranking crisp-valued fuzzy numbers, e.g.,

Chu and Tsao method (2002), the algorithm can calculate

the ranking score of crisp values. The algorithm could also

rank fuzzy numbers that could not be ranked by the method

of maximizing and minimizing set, i.e., fuzzy numbers

having the same left, right and/or total utility (Wang and

Luo 2009). In addition, it is not affected by the centroid

like the distance method and the area method that fail in

ranking fuzzy numbers having the same centroid (Deng

et al. 2006).

Most of the extant methods are neutral and don’t reflect

the decision maker’s preference in ranking. For example,

the methods of Chu and Tsao (2002), Chen and Chen

(2009) and Chen and Sanguansat (2011) ignore the deci-

sion level in ranking which is inconvenient in the case of

intersecting fuzzy numbers that may differ in ranking

according to the decision level (Shureshjani and

Darehmiraki 2013). The proposed algorithm can simply

take the decision level into consideration without using the

traditional alpha cuts or the parametric form.

The proposed algorithm preserved symmetry and kept

consistency in ranking fuzzy numbers and their images. In

the methods proposed by Wang et al. (2009) and Asady

(2010), the orders of the images were inconsistent (Sharma

2015).

Finally, the algorithm deals with the fuzzy numbers

regardless being normalized or not, since some methods

cannot rank fuzzy numbers unless being normalized, e.g.,

Chen and Sanguansat (2011).

Conclusion

In this article, the ellipsoid method was exploited to solve

the robot selection problem by ranking various fuzzy

alternatives. Most of the ranking methods use integration

which needs more computations for fuzzy numbers with

nonlinear membership functions. The main advantage of

the proposed method is the usage of the linear membership

functions directly, or the usage of the derivative of non-

linear membership functions. The method also preserves

the symmetry between the fuzzy number and its image in

defuzzification. The method can take the decision maker’s

attitude in ranking. Several numerical examples were

solved to test the proposed method. The method proved to

be robust and effectively ranked various fuzzy numbers

and their images, even if they are overlapping. It is a

simple recursive algebraic formula that can be easily

programmed.
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