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Abstract This study is concerned with the performance

modeling of a fault tolerant system consisting of operating

units supported by a combination of warm and cold spares.

The on-line as well as warm standby units are subject to

failures and are send for the repair to a repair facility

having single repairman which is prone to failure. If the

failed unit is not detected, the system enters into an unsafe

state from which it is cleared by the reboot and recovery

action. The server is allowed to go for vacation if there is

no failed unit present in the system. Markov model is

developed to obtain the transient probabilities associated

with the system states. Runge–Kutta method is used to

evaluate the system state probabilities and queueing mea-

sures. To explore the sensitivity and cost associated with

the system, numerical simulation is conducted.

Keywords Fault tolerant system � Server vacation �
Machine repair � Queue length � Imperfect coverage �
Reboot � Unreliable server � Runge–Kutta method

Introduction

The performance of any fault tolerant system such as

computer or communication system, power plant or

transmission lines, manufacturing or production and many

more, is highly affected by the failure of its operating units.

The breakdowns of the units may cause not only loss of

production but also increase in cost. To avoid this loss and

extra cost, the organization or industry can make the pro-

vision of standbys and repair facility. In some cases, if the

operating unit fails, the system remains operative and

continues to perform its assigned job due to switching over

of failed unit by the spare part. For the smooth functioning

and to achieve desired availability of the concerned system,

the concepts of redundancy and maintainability have drawn

the attention of practitioners as well as researchers. To

reduce the maintainability and operating cost, the provision

of server vacation is a key feature which has been included

in many queueing models to analyze the congestion prob-

lems in different contexts. The machine repair problems

with server vacations have been investigated and applied

extensively in many areas including the computer and

communication networks, manufacturing and inventory

control processes, transportation and service sectors, etc. In

many queueing scenarios of machining systems, the server

is allowed to go for vacation if the system is empty. A

noticeable amount of recent past works on the server

vacation concept has been done by many eminent

researchers (cf. Doshi 1986). Gupta (1997) proposed sev-

eral server vacation schemes such as multiple vacations,

single vacations, hybrid multiple/single vacation for the

machine interference problems. Machine repair models

with different type of policies for the server vacation have

been investigated and studied by a few researchers (cf. Ke

and Wang 2007; Ke et al. 2011; Ke and Wu 2012). Jain

and Upadhyaya (2009) investigated the performance of

multi-component machining system with multiple vaca-

tions of the servers, multiple types of redundant compo-

nents and operating under N-policy. They obtained the

probabilities for the system states and various key metrics

by implementing the matrix recursive method. The queue

size distribution has been established by Kumar and Jain

(2013) for both F-policy and N-policy by employing the
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recursive method. Recently, Jain et al. (2015) developed

multi-component machine repair model with two hetero-

geneous servers and having the facility of warm standby

units along with on-line units. They derived the steady state

queue size distributions and other measures of performance

with the implementation of successive over relaxation

technique.

The timings of reboot operation may vary from a few

seconds to long hours, depending upon the complexity of the

machining system. In many industries, an extensive loss of

production as well as cost occurs due to the failure of some

malicious components if not tackled properly with the help

of suitable mechanism. But in some practical situations, the

fault handling device may prove inadequate to recover a fault

perfectly. These types of situations are called as imperfect

coverage. In literature, some research works can be found on

the reliability analysis of the machine repair problems with

imperfect fault coverage. In this context, we cite some recent

works which are relevant to present investigation. The con-

cept of the reboot was discussed by Trivedi (2008) for the

analysis of some reliability models in his book on ‘Proba-

bility and Statistics with Reliability, Queueing and Com-

puter Science’. Ke et al. (2008) has done the performance

analysis of a repairable system by including the features of

detection, imperfect coverage and reboot. A statistical model

for a standby system involving reboot, switch failure and

unreliable repair was presented by Hsu et al. (2011). The

queueing and reliability indices of the machine repair sys-

tems with imperfect coverage and reboot have been studied

by Jain et al. (2012), Jain (2013), Jain and Gupta (2013),

Wang et al. (2013), and many more. Further, Ke and Liu

(2014) investigated the machine repair system with imper-

fect coverage incorporating the reboot delay concept by

taking the illustration of gamma and exponential time

distributions.

In the present scenario, we notice that most of the

studies devoted to the queueing analysis of server vaca-

tion are restricted to the reliable server queueing model,

but in real life, no server can be reliable as such the

incorporation of an unreliable server concept will be

helpful to portray the more versatile queueing scenarios.

In this direction, a few researchers have contributed by

developing Markovian models with unreliable and vaca-

tion servers. Ke et al. (2009) developed a Markovian

model having a finite buffer of the multi-server queueing

system in which the servers are unreliable and allowed to

go for vacation on the basis of (d, c) vacation policy.

Further, Ke et al. (2013) presented the queueing analysis

of unreliable multi-repairmen machining system com-

prising of operating machines and warm spares by

incorporating the concept of imperfect coverage and

reboot action. They determined the queue size distribu-

tions by employing the matrix recursive approach.

Further, Jain et al. (2014) analyzed N-policy model for

the multi-component machining system under the realistic

features of imperfect coverage, reboot and unreliable

server. Yang and Wu (2015) investigated the N-policy for

M/M/1 working vacation queueing model by considering

the server breakdowns. They employed the particle swarm

optimization algorithm to optimize the cost function and

determined the optimal parameters.

Among various available soft computing techniques,

neuro-fuzzy technique which is a hybrid of fuzzy logic and

neural network, has widely used for the performance of

complex systems for which analytical formulae can not be

framed. By using the feature of a neural network and fuzzy

inference system, some researchers have developed the

adaptive neuro-fuzzy inference system (ANFIS) controller

for the performance analysis of various embedded systems

in different frameworks (cf. Lin and Liu 2003; Yang and

Zhao 2012). For the performance prediction of degraded

multi-component system with standby switching failure,

N-policy and multiple vacations, Jain and Kumar (2013)

used ANFIS to match the soft computing based results with

the results obtained numerically using successive over

relaxation (SOR).

In the present investigation, we provide the performance

indices of the machining system supported by a repair

facility and mixed standby units operating under vacation

policy. A few research papers on the machine repair

problem with vacation policy in different frameworks have

appeared in the past few years as mentioned earlier. But to

the best of authors’ knowledge, no research article explores

the transient study of the machine repair problem combined

with vacation, mixed standbys, imperfect coverage and

server breakdown. Further, the implementation of ANFIS

technique to match soft computing results with the analytic

results makes our study to deal with complex dynamic

behavior of the machining system in efficient computa-

tional manner by incorporating many realistic features. The

remaining contents of the paper are structured in different

sections. In section. ‘‘Model description’’, we provide the

notations and assumptions to formulate Markov model. In

section ‘‘Governing equations’’, Chapman-Kolmogorov

equations are constructed for the transient state to develop

Markov model which are further solved numerically based

on the Runge–Kutta method. In section ‘‘Performance

indices’’, some performance indices have been established

explicitly by using the transient probabilities of the system

states. In section ‘‘Cost function’’, the cost function is

constructed. In section ‘‘Numerical illustration’’, numerical

illustration and sensitivity analysis are provided. The out-

comes of the numerical results are displayed in graphs and

tables to explore the effect of system descriptors on the

performance indices. Finally, the conclusion is drawn in

section ‘‘Conclusion’’.
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Model description

In this section, we develop a Markov queueing model by

defining the appropriate transition rates of the concerned

birth–death process for the performance analysis of fault

tolerant system. The assumptions and notations used for

developing the model are as follows:

• The system consists of M operating and Sn (1 B n B l)

of nth type standby units.

• The operating units are prone to failure and have the

life time exponentially distributed with mean 1/k.

When an operating unit fails, it is immediately backed

up by an available standby unit. When a standby unit

moves into an operating state, it has the same failure

characteristic as that of an operating on-line unit.

• The nth type standby unit may also fail; the life time of

nth type unit follows the exponential distribution with

mean 1/an, (0 B an B k).

• When all the spares are used, the system operates in

short (i.e., degraded) mode with at least m (\N)

operating units and its failure rate becomes kd ([k).

• The failed units are repaired by the repairman in the

same order in which failure occur, i.e., repair is

performed by following the FIFO service discipline.

The repair of failed units is rendered by the server

according to exponentially distribution with rate l.

• The operating unit can be successfully recovered with

probability c; the recovery time of operating unit is

exponentially distributed with parameter r.

• The server is allowed to go for vacation if there is no

work load of repair job of failed units in the system and

returns back from the vacation as soon as any unit fails.

To develop the model, Markov process for the three

mutually exclusive system states, i.e., (1) operating state, (2)

recovery state and (3) reboot state is taken into account. The

transient probabilities of the failed units at time t for different

states are defined for the scenarios when the server is in (1)

vacation state, (2) busy state, and (3) broken down state. Let

Pi, j, k (t) denote the probability that there are i, (1 B i B L)

failed units when the server is in jth (j = 0, 1, 2) state and

the system is operating in kth (k = 0, 1, 2) mode. Here

indices j = 0, 1, 2 when the server is on vacation, busy and

broken down states, respectively. Also indices k = 0, 1, 2

represent the system status in operating state, recovery state

and reboot state, respectively.

The failure rate of the operating units which depends

upon the number of already failed units is given by:

ki ¼
Mk i\SðlÞ

ðM þ SðlÞ � iÞkd SðlÞ � i\L

(
; ð1Þ

where S(l) =
P

n=1
l S(n) and kd is the degraded failure rate.

The failure rate of the standby units is given by:

ai ¼

Xl
x¼2

Sxmx þ ðS1 � iÞm1; i\SðxÞ

Xl
y¼xþ1

Symy þ ðSðxÞ � iÞmx; Sðx�1Þ � i\SðxÞ

ðSðlÞ � iÞml; Sðl�1Þ � i\SðlÞ

0; SðlÞ � i\L:

8>>>>>>>>>><
>>>>>>>>>>:

x ¼ 2; 3; . . .; l� 1

ð2Þ

Governing equations

For evaluating the probabilities associated with different

server states, Kolmogorov Chapman equations have been

constructed using the transition flow rates of birth death

process specifying the Markov model. The state transition

for in-flow and out-flow rates of specific model when

M = 5, S1 = 2, S2 = 1, l = 2, m = 1 is shown in Fig. 1.

1. Server vacation state when j ¼ 0; k ¼ 0:

As soon as the server becomes free when there is no job

of repairing the failed machines in the system, it reaches

to vacation state (0, 0, 0). In this case, the server is in

vacation state and reaches to other state using appropri-

ate transition rates. Now, we frame the Chapman-

Kolmogorov equation for state (0, 0, 0) as follows:

dP0;0;0ðtÞ
dt

¼ �ðk0 þ a0ÞP0;0;0ðtÞ þ lP1;1;0ðtÞ: ð3Þ

The server returns back to busy state with rate hwhen a

failed machine joins the system; in between, some

more mahines may fail so that during vacation period,

the system states may be (i, 0, 0), i = 1, 2,…, L.

Using appropriate in-flow and out-flow rates, we for-

mulate the governing equations for (i, 0, 0), i =

1, 2,…, L as follows:

dPi;0;0ðtÞ
dt

¼�ðkiþhþaiÞPi;0;0ðtÞþai�1Pi;0;0ðtÞ

þrPi�1;0;1ðtÞþbPi�1;0;2ðtÞ; 1�i�SðlÞ �1;

ð4Þ
dPSðlÞ;0;0ðtÞ

dt
¼ �ðkSðlÞ þ hÞPSðlÞ;0;0ðtÞ þ aSðlÞ�1PSðlÞ;0;0ðtÞ

þ rPSðlÞ�1;0;1ðtÞ þ bPSðlÞ�1;0;2ðtÞ;
ð5Þ

dPi;0;0ðtÞ
dt

¼�ðkiþhÞPi;0;0ðtÞþrPi�1;0;1ðtÞ

þbPi�1;0;2ðtÞ; SðlÞ þ1� i�L�1;

ð6Þ
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dPL;0;0ðtÞ
dt

¼ �hPL;0;0ðtÞ þ rPL�1;0;1ðtÞ þ bPL�1;0;2ðtÞ:

ð7Þ

2. Server being in busy state when j ¼ 1; k ¼ 0:

When the server is busy in providing repair of the

failed machines, the transient equations are framed

using appropriate transition rates for states

(i, 1, 0), i = 1, 2,…, L as follows:

dP1;1;0ðtÞ
dt

¼ �ðki þ aþ lþ aiÞP1;1;0ðtÞ þ hP1;0;0ðtÞ
þ lP2;1;0ðtÞ þ bP1;2;0ðtÞ;

ð8Þ
dPi;1;0ðtÞ

dt
¼ �ðki þ aþ lþ aiÞPi;1;0ðtÞ þ hPi;0;0ðtÞ

þ lPiþ1;1;0ðtÞ þ bPi;2;0ðtÞ þ ai�1Pi;1;0ðtÞ
þ rPi�1;1;1ðtÞ þ bPi�1;1;2ðtÞ; 1\i� SðlÞ � 1;

ð9Þ
dPSðlÞ;1;0ðtÞ

dt
¼ �ðkSðlÞ þ aþ lÞPSðlÞ;1;0ðtÞ þ hPSðlÞ;0;0ðtÞ

þ lPSðlÞþ1;1;0ðtÞ þ bPSðlÞ;2;0ðtÞ þ aSðlÞ�1Pi;1;0ðtÞ
þ rPSðlÞ�1;1;1ðtÞ þ bPSðlÞ�1;1;2ðtÞ;

ð10Þ

dPi;1;0ðtÞ
dt

¼ �ðki þ aþ lÞPi;1;0ðtÞ þ hPi;0;0ðtÞ

þ lPiþ1;1;0ðtÞ þ bPi;2;0ðtÞ þ rPi�1;1;1ðtÞ
þ bPi�1;1;2ðtÞ; SðlÞ þ 1� i� L� 1;

ð11Þ
dPL;1;0ðtÞ

dt
¼ �ðlþ aÞPL;1;0ðtÞ þ hPL;0;0ðtÞ þ bPL;2;0ðtÞ

þ rPL�1;1;1ðtÞ þ bPL�1;1;2ðtÞ: ð12Þ

3. The failed server is under repair state when

j ¼ 2; k ¼ 0:

In this case the server is broken down and the repairman

is performing the repair job to restore it. Now for states

(i, 2, 0), i = 1, 2,…, L, the transient equations are

framed by law of conservation of flows as follows:

dP1;2;0ðtÞ
dt

¼ �ðk1 þ bþ a1ÞP1;2;0ðtÞ þ aP1;1;0ðtÞ;

ð13Þ
dPi;2;0ðtÞ

dt
¼ �ðki þ bþ aiÞPi;2;0ðtÞ þ aPi;1;0ðtÞ

þ rPi�1;2;1ðtÞ þ ai�1Pi;2;0ðtÞ
þ bPi�1;2;2ðtÞ; 1\i� SðlÞ � 1;

ð14Þ

Fig. 1 Transition state diagram
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dPSðlÞ;2;0ðtÞ
dt

¼ �ðkSðlÞ þ bÞPSðlÞ;2;0ðtÞ þ aPSðlÞ;1;0ðtÞ

þ rPSðlÞ�1;2;1ðtÞ þ bPSðlÞ�1;2;2ðtÞ
þ aSðlÞ�1PSðlÞ;2;0ðtÞ; ð15Þ

dPi;2;0ðtÞ
dt

¼ �ðki þ bÞPi;2;0ðtÞ þ aPi;1;0ðtÞ þ rPi�1;2;1ðtÞ

þ bPi�1;2;2ðtÞ; SðlÞ þ 1� i� L� 1;

ð16Þ
dPL;2;0ðtÞ

dt
¼ �bPL;2;0ðtÞ þ aPL;1;0ðtÞ þ rPL�1;2;1ðtÞ

þ bPL�1;2;2ðtÞ: ð17Þ

4. For k ¼ 1; j ¼ 0; 1; 2, when the system is in recovery

state:

From (i, j, 0) state, due to perfect failure detection, the

system can go to recovery state (i, j, 1), for

i = 1, 2,…, L - 1; j = 0, 1, 2. For the recovery

states, the transient equations are framed as:

dPi;j;1ðtÞ
dt

¼ �rPi;j;1ðtÞ þ kicPi;j;0ðtÞ; j

¼ 0; 1; 2; i ¼ 1; 2; . . .; L� 1:

ð18Þ

5. For k ¼ 2; j ¼ 0; 1; 2, when the system is in reboot

state:

From (i, j, 0) state, due to imperfect failure detection,

the system can go to reboot state (i, j, 2), for

i = 1, 2,…, L - 1; j = 0, 1, 2. For these state, the

transient equations are constructed as:

dPi;j;2ðtÞ
dt

¼ �bPi;j;2ðtÞ þ ki�cPi;j;0ðtÞ;
j ¼ 0; 1; 2; i ¼ 1; 2; . . .; L� 1:

ð19Þ

The Eqs. (3)–(19) have been solved numerically using

Runge–Kutta 4th order method, which is a powerful tool to

solve the ordinary differential equations of first order. It is a

good choice to employ this technique to solve the set of dif-

ferential equations governing the system state probabilities. It

is worth noting the R–K method is quite accurate, stable and

easy to implement in comparison to other methods available to

solve the differential equations. For the coding purpose, we

have chosen this particular method here and MATLAB’s

‘ode45’ function is exploited for the programming purpose.

Performance indices

To analyze the transient system behavior, we derive vari-

ous performance indices using the probabilities which can

be evaluated as described in previous section. The

expressions for the expected number of failed units in the

system, failure frequency of the system, availability of the

server and the system state probabilities for the server

being in different states and other performance metrics are

established as follows:

1. The average number of failed units in the system at

time t, is:

E½NðtÞ� ¼
XL
i¼1

X2

j¼0

iPi;j;0ðtÞ

þ
XL
i¼1

X2

j¼0

i Pi;j;1ðtÞ þ Pi;j;2ðtÞ
� �

: ð20Þ

2. Failure frequency of the server at time t, is:

f ðtÞ ¼ a
XL
i¼1

Pi;2;0ðtÞ: ð21Þ

3. System availability of the at time t, is:

AðtÞ ¼ 1

�
XL
i¼0

Pi;2;0ðtÞ þ
XL�1

i¼1

Pi;2;1ðtÞ þ Pi;2;2ðtÞ
� � !

:

ð22Þ

4. The transient probability that the system is in recovery

state:

PRCðtÞ ¼
XL�1

i¼0

Pi;0;1ðtÞ þ
XL�1

i¼1

Pi;1;1ðtÞ þ
XL�1

i¼1

Pi;2;1ðtÞ:

ð23Þ

5. The transient probability that the system is in reboot

state:

PRðtÞ ¼
XL�1

i¼0

Pi;0;2ðtÞ þ
XL�1

i¼1

Pi;1;2ðtÞ þ
XL�1

i¼1

Pi;2;2ðtÞ :

ð24Þ

6. The transient probability that the server is in broken

down state:

PBDðtÞ ¼
XL
i¼1

Pi;2;0ðtÞ þ
XL�1

i¼1

Pi;2;1ðtÞ þ
XL�1

i¼1

Pi;2;2ðtÞ:

ð25Þ

7. The transient probability that the server is in busy

state:

PBðtÞ ¼
XL
i¼1

Pi;1;0ðtÞ þ
XL�1

i¼1

Pi;1;1ðtÞ þ
XL�1

i¼1

Pi;1;2ðtÞ:

ð26Þ

8. The transient probability that the server being on

vacation state:
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PVðtÞ ¼
XL
i¼0

Pi;1;0ðtÞ þ
XL�1

i¼1

Pi;1;1ðtÞ þ
XL�1

i¼1

Pi;1;2ðtÞ:

ð27Þ

Cost function

The system designer may be interested to determine the

proper combination of the spares and repairmen so as the

total cost incurred on the system should be minimum.

While making such decisions, it should be kept in mind

that the organization should not bear the burden of exces-

sive costs of keeping the spares and repairmen. To deter-

mine the optimal number of repairmen and spare machines,

we construct the cost function by considering various cost

elements involved in different activities. We denote the

various cost elements incurred on different activities as

follows:

CV Cost per unit time of the server when he is on

vacation;

CV Cost per unit time of the server when he is in busy

state;

CH Holding cost of one failed unit per unit time in the

system;

CBD Cost of repairing of a broken down server per unit

time

Now we evaluate the total cost function by considering

the above cost elements and respective performance mea-

sures as follows:

CðtÞ ¼ CVPVðtÞ þ CBPBðtÞ þ CHE½NðtÞ� þ CBDPBDðtÞ: ð28Þ

Numerical illustration

To reveal the practical applicability of the underlying

model in real time machining system, we consider an

illustration from flexible manufacturing systems where

robots are used for the packing purpose. In normal func-

tioning mode, the system requires five robots, however, the

system can work in degraded mode, i.e., in short mode if

there are less than five but at least one operating robot is in

active state. The system has two types of standby robots

which acts as back up unit in case of failure of any oper-

ating unit and immediately put in place of broken down

robot. The failure rate of the operating robot is k = 0.1

robots per day. To maintain the desired level of availabil-

ity, three standby robots having failure rate a0 -

= 0.7, a1 = 0.4, and a2 = 0.2 robots per day and one

robot which cannot fail in active mode, are taken as warm

and cold standby units, respectively. Whenever a robot

fails, its failure is detected, diagnosed and recovered with

probability c = 0.5 and recovery rate is assumed to be

r = 0.8. If fault is not detected due to imperfect coverage,

it is cleared by the reboot or reset operation with a rate

b = 10 per day. To evaluate the performance results,

coding of the program is done in MATLAB software. The

subroutine ode45 is employed for solving the set of equa-

tions associated with the probabilities of different system

states. For the computation of results, we fixed the various

parameters as:

Cost Set : CV ¼ $10;CB ¼ $100;CH ¼ $20;CBD ¼ $200

M ¼ 5; S1 ¼ 2; S2 ¼ 1; l ¼ 3; m ¼ 1; c ¼ 0:5;

a ¼ 0:02; b ¼ 1; l ¼ 2; k ¼ 0:1; a0 ¼ 0:07;

a1 ¼ 0:04; a2 ¼ 0:02; r ¼ 0:8; b ¼ 10; m ¼ 0:02:

The sensitivity analysis has been done to explore the

effect of varying parameters on different performance

indices. The numerical results displayed in the form of

tables and graphs are quite easy to understand the behavior

of system. The numerical results obtained have been dis-

played in graphs and tables.

The numerical results for various performance indices

for varying values of different parameters are presented in

Tables 1, 2, 3. The effects of different parameters are

examined by displaying the numerical results for the

availability and average number of failed units in the sys-

tem in Figs. 2, 3, 4, 5, 6, 7. From Figs. 2, 3, 4, 5, we

observe that as time increases, the system availability ini-

tially decreases rapidly and then after becomes almost

constant. In the case of curves of E{N(t)}plotted in Figs. 6,

7, sharp increment is noticed up to t = 20, then after it

becomes asymptotically stable as time passes.

The trends of various performance indices for varying

different parameters are as follows:

1. Effect of failure rate of operating unit and repairman

(k, a): from Figs. 2 and 3, it is noted that the

availability of the system decreases as k and a in-

crease. From Table 1, it is clear that the average

number of failed units increases as k increases.

2. Effect of reboot rate and service rate ðb; lÞ: Table 2

displays that the average number of failed units

E{N(t)} exhibits the increasing trend as reboot rate b
increases; on the contrary, the availability A(t) of the

system decreases as reboot rate b increases. It is seen

in Fig. 5 that as l increases, the availability A(t) of the

system increases while E{N(t)} decreases.

3. Effect of repair rate of repairman and coverage factor

ðb; cÞ: From Figs. 4 and 7, it is noticed that the

availability A(t) of the system increases as repair rate

(b) increases. The average number of failed machines
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Table 1 Effect of failure rate

of operating unit (k) on various

performance indices

k t PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) C(t)

0.1 10 0.13 0.0094 0.00051 2.75 0.00049 0.99949 0.0289 67.6

30 0.06 0.0045 0.00095 3.96 0.00085 0.99905 0.0486 93.9

50 0.05 0.0041 0.00100 4.07 0.00088 0.99900 0.0506 96.2

0.3 10 0.14 0.0093 0.00090 4.08 0.00079 0.99910 0.0545 96.7

30 0.07 0.0057 0.00156 4.41 0.00119 0.99844 0.0836 106.0

50 0.07 0.0058 0.00156 4.41 0.00119 0.99844 0.0837 106.2

0.5 10 0.12 0.0073 0.00112 4.47 0.00096 0.99888 0.0731 106.1

30 0.09 0.0074 0.00215 4.43 0.00152 0.99785 0.1238 110.2

50 0.09 0.0075 0.00218 4.43 0.00153 0.99782 0.1250 110.3

Table 2 Effect of reboot rate

(b) on various performance

indices

b t PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) C(t)

10 0.1255 0.0478 0.00049 2.6 0.00045 0.99951 0.0278 65.5

2 30 0.0561 0.0222 0.00097 3.9 0.00083 0.99903 0.0494 93.3

50 0.0501 0.0200 0.00102 4.0 0.00087 0.99898 0.0517 95.6

10 0.1266 0.0157 0.00051 2.7 0.00049 0.99949 0.0287 67.3

6 30 0.0567 0.0074 0.00096 4.0 0.00084 0.99904 0.0488 93.8

50 0.0509 0.0068 0.00100 4.1 0.00088 0.99900 0.0508 96.1

10 0.1268 0.0094 0.00051 2.7 0.00049 0.99949 0.0289 67.6

10 30 0.0569 0.0045 0.00095 4.0 0.00085 0.99905 0.0486 93.9

50 0.0510 0.0041 0.00100 4.1 0.00088 0.99900 0.0506 96.2

Table 3 Effect of failure rate

of standby unit (a)on various

performance indices

a t PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) C(t)

10 0.127 0.0094 0.00051 2.75 0.00049 0.99949 0.0289 67.64

0.03 30 0.057 0.0045 0.00095 3.96 0.00085 0.99905 0.0486 93.90

50 0.051 0.0041 0.00100 4.07 0.00088 0.99900 0.0506 96.23

10 0.120 0.0088 0.00055 2.89 0.00053 0.99945 0.0310 70.79

0.06 30 0.054 0.0043 0.00098 4.02 0.00087 0.99902 0.0498 95.03

50 0.049 0.0039 0.00102 4.11 0.00090 0.99898 0.0517 97.18

10 0.114 0.0084 0.00059 3.02 0.00056 0.99941 0.0329 73.41

0.09 30 0.052 0.0041 0.00100 4.06 0.00089 0.99900 0.0510 95.97

50 0.047 0.0038 0.00104 4.15 0.00092 0.99896 0.0527 97.98

Fig. 2 Variation in A(t) for different values of k
Fig. 3 Variation in A(t) for different values of a
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E{N(t)} reveals the increasing trend as the coverage

factor c increases.

Neuro-fuzzy technique is applied to compute the per-

formance indices of the fault tolerant MRP. The member-

ship function of input parameters k, a and b are taken as

trapezoidal function by taking the very low, low, average,

high and very high values as depicted in Fig. 8. The

numerical results by ANFIS approach have been computed

by using the neuro-fuzzy tool in Matlab software. To

facilitate the comparison of results obtained by Runge–

Kutta method with neuro-fuzzy results, we plot the avail-

ability by both approaches in Figs. 9, 10, 11.

The sensitivity of availability obtained by R–K method

is depicted by continuous line for varying parameters

k, a and b. The numerical results obtained using neuro-

fuzzy technique are shown by tick marks. From these fig-

ures, we notice that both R–K and ANFIS results are quite

close to each other.

Conclusion

In this paper, we have investigated the performance of fault

tolerant system supported by mixed standbys and repair

facility. Some realistic concepts such as reboot, recovery,

unreliable server and vacation are incorporated in order to

develop generalized queueing model so as to analyze the

queueing and reliability characteristics of many real time

fault tolerant systems. The transient probabilities of the

system states and other performance measures evaluated

Fig. 4 Variation in A(t) for different values of b

Fig. 5 Variation in A(t) for different values of l

Fig. 6 Variation in E{N(t)} for different values of k

Fig. 7 Variation in E{N(t)} for different values of c

Fig. 8 Membership function for k, a and b
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using Runge–Kutta method can be easily implemented for

the evaluation of cost function and to determine the opti-

mal control parameters for many redundant systems such

as embedded computer and communication systems, power

plants, automated manufacturing systems, etc. The sensi-

tivity analysis carried out may be helpful to the decision

makers and system engineers for the further improvement

of the concerned systems operating under machining

environments. There is scope of further extension of pre-

sent investigation by incorporating the correlated rates and/

or bulk failure and work is under process in that direction.
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