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Abstract This paper presents a production-inventory
model for deteriorating items with stock-dependent
demand under inflation in a random planning horizon. The
supplier offers the retailer fully permissible delay in pay-
ment. It is assumed that the time horizon of the business
period is random in nature and follows exponential distri-
bution with a known mean. Here learning effect is also
introduced for the production cost and setup cost. The
model is formulated as profit maximization problem with
respect to the retailer and solved with the help of genetic
algorithm (GA) and PSO. Moreover, the convergence of
two methods—GA and PSO—is studied against generation
numbers and it is seen that GA converges rapidly than
PSO. The optimum results from methods are compared
both numerically and graphically. It is observed that the
performance of GA is marginally better than PSO. We have
provided some numerical examples and some sensitivity
analyses to illustrate the model.
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Introduction

In the present competitive market, the supplier influences
the customers in many different ways to capture the mar-
ket. For this reason, they offer a delay period in payment
without any extra charges. The wholesaler allows a time
period after which retailers are to make the payment
without paying any interest. But after the delay period, if it
is not payed, an interest charged for the rest of the period.
Goyal (1985) first established a single-item inventory
model under permissible delay in payment. Later many
researchers worked in this area. Chang et al. (2003) and
Chung and Liao (2004) dealt with the problem of deter-
mining the EOQ for exponentially deteriorating items
under permissible delay in payment. Das et al. (2010a, b)
presented an EPQ model for deteriorating items under
permissible delay in payment. Teng et al. (2011) developed
an EOQ model for stock-dependent demand under sup-
plier’s trade credit offer with a progressive payment
scheme. Min et al. (2012) developed an EPQ model with
inventory-level-dependent demand and permissible delay
in payment. Recently, Ouyang and Chang (2013) proposed
an optimal production lot with imperfect production pro-
cess under permission delay in payment and complete
backlogging

Now—a—days, there is a stiff competition amongst the
multi-nationals to influence the customers and to capture
the market. Thus, in the recent competitive market, the
inventory stock is decoratively exhibited and displayed
through electronic media to attract the customers and thus
to boost the sale. For this reason, a group of researchers
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have considered inventory control systems with stock-de-
pendent demand in their research such as Datta and Pal
(1992), Mandal and Phaujdar (1989a, b), Giri et al. (1996),
Hou (2006), Roy et al. (2009a), and others. They consid-
ered linear form of stock-dependent demand.

Production cost of a manufacturing system depends
upon the combination of different production factors.
These factors are (a) raw materials, (b) technical knowl-
edge, (c) production procedure, (d) firm size, (e) quantity of
product, and so on. Normally, the cost of raw materials is
imprecise in nature. So far, cost of technical knowledge,
that is labor cost, has been usually assumed to be constant.
However, as the employees perform the same task
repeatedly, they learn how to provide repeatedly a standard
level of performance efficiently. Therefore, the processing
cost per unit product decreases in every cycle. Similarly, a
part of the ordering cost may also decrease in every cycle.
In the inventory control literature, this phenomenon is
known as the learning effect. Although different types of
learning effects in various areas have been studied (cf.
Chiu and Chen 2005, Kuo and Yang 2006, Alamri and
Balkhi 2007, etc.), it has rarely been studied in the context
of inventory control problems.

Classical inventory models are usually developed over
the infinite planning horizon. According to Gurnani (1985)
and Chung and Kim (1989), the assumption of infinite
planning horizon is not realistic due to several reasons such
as variation of inventory costs, change in product specifi-
cations and designs, technological changes, etc. Moreover,
for seasonal products like fruits, vegetables, warm gar-
ments, etc., business period is not infinite, rather fluctuates
with each season. Hence, the planning horizon for seasonal
products varies over years and may be considered as ran-
dom with a distribution. Moon and Yun (1993) developed
an EOQ model with the random planning horizon. Also
Das et al. (2010a, b) presented an EPQ model with infla-
tion random product life cycle. Till now, none has devel-
oped EPQ models considering the delay in payment under

random planing horizon. Table 1 represents the summary
of related literature for inventory models with random
planning horizon.

Taking the above shortcomings into account, this paper
presents some EPQ models for a deteriorating item con-
sidering delay in payment and linearly stock-dependent
demand with a random planing horizon, that is, the life
time of the product is assumed as random in nature and
follows an exponential distribution with a known mean.
Learning effect in setup cost and production cost is
introduced, i.e., setup cost and production cost reduce
successively with each cycle. Interest earned and interest
paid vary with the permitted fixed period of permissible
delay offered by the wholesaler. The model is formulated
as a profit maximization problem and solved using
Genetic Algorithm. The model is illustrated with numer-
ical examples and some sensitivity analyses are
performed.

In addition to the above considerations, the rest of the
article is organized as follows. Section “Notations and
assumptions” presents assumptions and notations that are
used throughout this article. Section “Mathematical for-
mulation” formulates a mathematical model in order to
maximize the total profit of the retailer. Two different
solution procedures (GA and PSO) are discussed in Sect.
“Solution procedure”. In Sect. “Numerical example and
sensitivity analysis,” several numerical examples are given
to illustrate the solution procedure and sensitivity analyses
are performed. The paper is concluded in Sect. “Conclu-
sion and future scope.” Finally the managerial insights are
presented in Sect. “Managerial insights.”

Notations and assumptions
The mathematical model of the proposed production-in-

ventory problem is developed based on the following
assumptions and notations :

Table 1 Summary of related literature for inventory models with random planning horizon

Author(s) and year Single/two warehouse ~ Demand rate Inflation  Learning effect ~ Delay in payment  Method

Moon and Yun (1993) SW Constant No No No Classical method
Maiti et al. (2006) ™ Stock dependent  No No No Classical method
Roy et al. (2007) ™ Stock dependent  No No No GA

Roy et al. (2009a) SwW Stock dependent  Yes Yes No FGA

Roy et al. (2009b) SW Stock dependent ~ Yes No No GA

Das et al. (2012) ™ Stock dependent  Yes No No GA

Su et al. (2014) SW Constant No No No Classical method
Present paper SW Stock dependent ~ Yes Yes Yes GA,PSO
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Fig. 1 a Pictorial representation for the inventory model for case 1(a). b Pictorial representation for the inventory model for case 1(b). ¢ Pictorial

representation for the inventory model for case 1(c)

Assumptions

1. Demand rate is stock dependent.

2. Time horizon is random.

Time horizon accommodates first N cycles and ends
during (N + 1) cycles.

Setup time is negligible.

Production rate is known and constant.

Shortages are not allowed.

A constant fraction of on-hand inventory gets deteri-
orated per unit time.

Lead time is zero.

Production cost and setup cost decrease due to the
learning effect.

N ks

o

Notations

The following notations have been used throughout this
paper:

N = Number of fully accommodated cycles to be made
during the prescribed time horizon.

q(t) = On-hand inventory of a
t,(G— DT <t<jT (j = 1,2,...,N).

t; = Production period in each cycle.

P = Production rate in each cycle.

D = Demand rate in each cycle = a + fig(1).

C; = Holding cost per unit item per unit time.

Cé =C3+ C;e"sf is setup cost in j-th G =1,2,...,N)
cycle, 0 > 0 (0 is the learning coefficient associated with
setup cost).

cycle at time
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poe” i = Production cost in j-th (j = 1,2,...,N) cycle,
po,y > 0 (y is the learning coefficient associated with
production cost).

mopoe "7 = Selling price in j-th (j = 1,2,...,N) cycle,
po,y > 0, my > 1.

I, = Interest charged per dollar per unit time.

I, = Interest earned per dollar per unit time.

M = The period of cash discount for which the supplier
does not charge any interest.

T = Duration of a complete cycle.

i = Inflation rate.

r = Discount rate.

R = r — i, the net discount rate of inflation is constant.

P(N, T) = Total profit after completing N fully accom-
modated cycles.

H = Total time horizon (a random variable) and 4 is the
real time horizon.
mipoe "™+ = Reduced selling price for the inventory
items in the last cycle at the end of time horizon, py,y >
0, m<1.

0 = Deterioration rate of the produced item.

Ex{P(N,T)} = Expected total profit from N complete
cycles in k-th case, k = 1,2.

E{TP,(T)} = Expected total profit from last cycle in
k-th case, k =1,2.

E{TP(T)} = Expected total profit from the planning
horizon in k-th case, k =1, 2.

Mathematical formulation

In this section, we formulate a production-inventory model
for deteriorating items under inflation over a random
planning horizon incorporating learning effect using per-
missible delay period. Here it is assumed that there are N
full cycles during the real-time horizon h and the planning
horizon ends within (N + 1)th cycle, i.e., between the time
t=NT and t = (N + 1)T. At the beginning of every jth
(G=1,2,...,N+1) cycle, production starts at = (j —
1)T and continues up to t = (j — 1)T + 11, and inventory
gradually increases after meeting the demand due to pro-
duction. Production thus stops at ¢t = (j — 1)T + #; and the
inventory falls to zero level at the end of the cycle time
t = jT, due to deterioration and consumption. The retailer
pays the payment at time period M without any interest. At
the end of this period, he/she starts paying for the interest
charged on the items in stocks. Also during the time, the
account is not settled, and generated sales revenue is
deposited in an interest bearing account. This cycle repeats
again and again. For the last cycle, some amounts may be
left after the end of planning horizon. This amount is sold
at a reduced price in a lot. Regarding the interest payed and
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interest earned based on the length of the jth(1 <j<N)
cycle time 7, two different cases may arise:

Case I: j—1)T+M<(j— 1T +n<jT
Case 2: j— )T+ <(j—1NT+M<;T

Again for last cycle, according to the values of M, T, and ¢,
we have three different subcases for each case, which are
pictorially depicted in Figs.la, b, c, 2a, b, c, respectively.
We discuss the detailed formulations in each subcases.

Here, it is assumed that the planning horizon H is a
random variable and follows exponential distribution with
probability density function (p.d.f) as

e h>0

1

otherwise. (1)
Formulation for N full cycles

The differential equations describing the inventory level
q(®) in the interval (j— )T <:<jT(1<j<N), j=
1,2,...,N are given by

dg(1) {P—(cx—O—[iq(t))—(?q(t), JT<t<(j—1)T+n

(G—1
G—DT+n<t<JT, ’
(2)

where P> 0,0 >0, >0,0>0,and 0 <t; <T, subject
to the conditions that ¢(t) = 0att = (j — 1)T, and ¢(¢t) = 0
at t =JjT.

The solutions of the differential equations in (2) are
given by

dr | —(x+ Bglt) — 0q(1),

P [1 — TP=DT=0 ()T <t<(j— )T +1
gy =3 O |

m[ew*m“) —1], (-DT+n<t<)T.

(3)
Now at t = (j — 1)T + 11, from (3) we get,
P—u {1 e(0+/3)n} __« {e(0+ﬁ)(Tn> _ 1}
0+ p i{% + p) )
=1 = 6+ﬁln[1 +ﬁ(e(‘”/”>T - 1)].

Expected total profit from N full cycles

From the symmetry of every full cycle, present value of the
expected total profit from N full cycles, Ex{P(N,T)} in
kth(k = 1,2) case is given by
Ex{P(N,T)} = ESRN + E[,tEN — EPCN — EHCN

— ETOCN — EIPN. (5)

where ESRN, EIEN, EPCN, EHCN, ETOCN, and EI;PN
are present values of expected total sales revenue, expected
total interest earned, expected total production cost,
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Fig. 2 a Pictorial representation for the inventory model for case 2(a). b Pictorial representation for the inventory model for case 2(b). ¢ Pictorial

representation for the inventory model for case 2(c)

expected holding cost, expected total ordering cost, and
expected total interest paid, respectively, from N full cycles
and their expressions are derived in Appendix 1 [see
equations (22), (25), (31), (16), (13), (19), (28), (34),
respectively].

Formulation for last cycle

Duration of the last cycle is [NT, h], where & is the real-
time horizon corresponding to the random time horizon H.

Here two different cases may arise depending upon the
last cycle length.

Case-I: NT <h<NT + t; and
Case-Il: NT +1 <h<(N+ 1)T.

The differential equations describing the inventory level
q(?) in the interval NT <t<h are given by

dg(t) _ {P — (a+ Bqle)) — Oq()
ar ~ \—(2+ palt)) - 0q(r),

NT<t<NT +1,
NT + 1, <t<(N+ )T.

(6)
subject to the conditions that,
g(NT) =0 and g{(N+1)T}=0.

The solutions of the differential equations in (6) are given
by

P [1 - e“’“‘)(NT*”] , NT<t<NT +1
q(t) = o+ p o
o
O+B{N+T—1} _ 4 NT +1,<t<(N+ 1T
e , <t<(N+DT.
O+ﬁ[ } <IN+ )

(7)
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Expected total profit from last cycle

Present value of expected total profit from last cycle,
Ey{TP.(T)}, in kth(k = 1,2) case is given by

E{TP.(T)} = ESR, + ERSP, + EI,E, — EHC, — EPC,,
— EOC, — EL,P,, (8)

where ESRL, ERSPL, EIkEL, EHCL, EPCL, EOCL, EIkPL are
present values of expected sales revenue, expected reduced
selling price, expected interest earned, expected holding
cost, expected production cost, expected ordering cost, and
expected interest paid, respectively, from the last cycle and
their expressions are derived in Appendix 2 [see equations
(45), (49), (60), (68), (41), (44), (48), (61), (69),
respectively].

Expected total profit from the system

Now, expected total profit from the complete time horizon,
E{TP(T)}, in kth(k = 1,2) case is given by

EATP(T)} = E{P(N,T)} + E{TPL(T)}. ©)

Problem formulation

When the resultant effects of inflation and discounting (R)
are crisp in nature, then our problem is to determine 7 from

Max Ei(TP),
subject to T > 0. (10)
k=1,2.

Solution procedure
Genetic algoritm (GA)

The discovery of genetic algorithms (GA) by Holland
(1975) is further described by Goldberg (1998). GA is a
randomized global search technique that solves problems
imitating processes observed from natural evolution. GA
continually exploits new and better solutions without any
pre-assumptions such as continuity and unimodality. GA
has been successfully adopted in many complex opti-
mization problems and shows its merits over traditional
optimization methods, especially when the system under
study has multiple local optimal solutions. A GA normally
starts with a set of potential solutions (called initial popu-
lation) of the decision making problem under considera-
tion. Individual solutions are called chromosomes.
Crossover and mutation operations happen among the
potential solutions to get a new set of solutions and it
continues until terminating conditions are encountered.

’r @ Springer

Michalewicz (1992) proposed a GA named contractive
mapping genetic algorithm (CMGA) and proved the
asymptotic convergence of the algorithm by Banach’s
fixed-point theorem. In CMGA, movement from old pop-
ulation to new takes place only when average fitness of
new population is better than the old one. The algorithm is
presented below. In the algorithm, p., p,, are probability of
crossover and probability of mutation, respectively, T is the
generation counter, and P(T) is the population of potential
solutions for generation 7. M is iteration counter in each
generation to improve P(7T) and M, is the upper limit of
M. Initializing (P(1)) function generates the initial popu-
lation P(1) (initial guess of solution set). Objective function
value due to each solution is taken as fitness of the solution.
Evaluating (P(7)) function evaluates fitness of each mem-
ber of P(T).

GA algorithm

1. Set generation counter 7 = 1, iteration counter in
each generation M = 0.
2. Initialize probability of crossover p., probability of
mutation p,,, upper limit of iteration counter M,
population size N.
Initialize (P(T)).
Evaluate (P(7)).
While (M < My).
Select N solutions from P(T) for mating pool using
roulette-wheel selection process Michalewicz
(1992). Let this set be P'(T).
7. Select solutions from P'(T), for crossover depending
on p..
8. Make crossover on selected solutions.
9. Select solutions from P'(T), for mutation depending
on py,.
10. Make mutation on selected solutions for mutation to
get population P (7).
11. Evaluate (P1(T)).
12. SetM =M + 1.
13. If average fitness of P(T) > average fitness of
P(T), then
14. Set P(T + 1) = P, (7).
15. SetT =T+ 1.
16. Set M = 0.
17. End if
18. End while
19. Output: Best solution of P(7).
20. End algorithm.

The above model is solved by using GA approach, dis-
cussed in article-2. Our GA consists of parameters, popu-
lation size = 50, probability of crossover = 0.6, probability
of mutation = 0.2, and maximum generation = 50. A real
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number presentation is used here. In this representation,
each chromosome X is a string of n numbers of GA, which
denote the decision variable. For each chromosome X,
every gene, which represents the independent variables, is
randomly generated between their boundaries until it is
feasible. In this GA, arithmetic crossover and random
mutation are applied to generate new offsprings.

Perticle swarm optimization (PSO)

PSO is a population-based stochastic optimization tech-
nique developed by Eberhart and Kennedy in 1995,
inspired by social behavior of bird flocking or fish
schooling. A swarm of m particles moving about in an n-
dimensional real-valued search space, the ith particle is a n-
dimensional vector, denoted as X; = (X;1,Xi2,Xi3, - - -, Xin )5
i=1,2,3,...,n. The ith particle’s velocity is also a n-
dimensional vector, denoted as V; = (vi1,Vi2, Vi3, - - -, Vin)s
i=1,2,3,...,n Denote the best position of the ith particle
as Ppesii = (pil,piz,pig, .. .,pm),i = 1, 2, 3, ..o n, and the
best position of the colony Pgpest = (Dol s Pe2, Pa3s - - - Pan)s
i=1,2,3,...,n. Each particle of the population modified
its position and velocity according to the following math-
ematical expression:

VI = wx VI 4 ¢) # rand * (Ppegi
* (Pgbest - th)
Xl(-o-l :Xl{ 4 Vit+l

—X!) + ¢, *rand

where 7 is the current generation number, w is the inertia
weight factor, ¢; and ¢, are learning factors, determining
the influence of Ppegi and Pgpest, rand and Rand are random
numbers uniformly distributed in the range (0, 1), V! and X!
are the current velocity and position of the particle,
respectively, Ppesii 1S the best solution this particle has
reached, and Py is the current global best solution of all
the particles.

The first part of the first formula is the inertia velocity of
particle, which reflects the memory behavior of particle; the
second part (the distance between the current position and
the best position of the ith particle) is “cognition” part,
which represents the private thinking of the particle itself;
the third part (the distance between the current position of
the ith particle and the best position of the colony) is the
“social” part, showing the particle’s behavior stem from the
experience of other particles in the population. The particles
find the optimal solution by cooperation and competition.

Numerical example and sensitivity analysis

Let us consider a numerical example with the following
numerical data:

Table 2 The sensitivity analysis of the demand parameter when
0=0.1, and 2 = 0.01

o p Case-1 Case-2
Total profit 1 Total profit 1
0.20 3884.8872 5.02 4160.5547 2.540
55 0.25 4060.8811 5.02 4271.1099 2.702
0.30 4227.2261 5.02 4385.8486 2.780
0.20 4276.6484 5.02 4594.0981 2.540
60 0.25 4441.4120 5.02 4695.0381 2.552
0.30 4595.8433 5.02 4798.8311 2.780
0.20 4684.2881 5.02 5030.7891 2.540
65 0.25 4834.4668 5.02 5121.1382 2.552
0.30 4974.2280 5.02 5211.9111 2.714

Table 3 The sensitivity analysis of the deterioration parameter when
o =355,and 2 =0.01

p 0 Case-1 Case-2
Total profit 1 Total profit I3
0.075 3955.4363 5.02 4184.4292 2.540
0.20 0.100 3884.8872 5.02 4160.5547 2.540
0.125 3817.8208 5.02 4139.3906 2.282
0.075 4130.3584 5.02 4299.8169 2.756
0.25 0.100 4060.8811 5.02 4271.1099 2.702
0.125 3994.7908 5.02 4244.6841 2.552
0.075 4295.7216 5.02 4419.2905 2.906
0.30 0.100 4227.2261 5.02 4385.8486 2.780
0.125 4161.9863 5.02 4354.9688 2.756

C3=50,C,=40,C, =075, P=95my=18, 1=
0.01,=0.1,i=0.05, R=0.05,y=0.05,pg =4,1, =
0.15,1, =0.2,m; = 0.8,0 = 0.5 in appropriate units.

According to the proposed computational procedures
(GA and PSO), the results listed in Table 1 are obtained for
different values of M = 4.0,4.2,4.4,4.5,4.6,4.8 of case 1
and 2.

From the above numerical illustration, it is observed that
for fixed o, f , and 0 as M increases, total profit also
increases in both cases. Results are as per expectation.

Sensitivity analysis

Sensitivity analyses are performed using GA to study the
effect of changes in different values of o, f3, 0, 4, , R, and y
which are executed through the Tables 2, 3, 4, 5, 6, 7. It is
observed that if 0 and / are fixed for different values of « as
f increases, total profit increases. If o and A are fixed for
different values of § as 0 increases, total profit decreases.
And for fixed values of «, f, and 6 as A increases, total
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Table 4 The sensitivity analysis of A when o =55, f=0.2 and
0=0.1

Table 7 The sensitivity analysis of y when o =55, f=0.2 and
0=0.1

A Case-1 Case-2 Y Case-1 Case-2
Total profit 1 Total profit 1 Total profit 1 Total profit 1

0.007 3994.9146 5.02 4316.1123 2.540 0.047 3933.0518 5.02 4245.4448 2.282
0.008 3957.1479 5.02 4263.0098 2.540 0.048 3916.9043 5.02 4215.8638 2.282
0.009 3920.4871 5.02 4211.1714 2.540 0.049 3900.8491 5.02 4187.4551 2.540
0.010 3884.8872 5.02 4160.5547 2.540 0.050 3884.8872 5.02 4160.5547 2.540
0.011 3850.3074 5.02 4111.1191 2.540 0.051 3869.0166 5.02 4133.9204 2.540
0.012 3816.7051 5.02 4062.8242 2.540 0.052 3853.2368 5.02 4107.5469 2.540
0.013 3784.0439 5.02 4016.8979 2.282 0.053 3837.5469 5.02 4081.4312 2.540

Table 5 The sensitivity analysis of the learning coefficient ¢ asso-
ciated with setup cost

o 0 Case-1 Case-2
Total profit h Total profit f
0.4 3875.7031 5.02 4148.0098 2.54
55 0.5 3884.8872 5.02 4160.5547 2.54
0.6 3891.9399 5.02 4169.6669 2.54
0.4 4267.4639 5.02 4581.5532 2.54
60 0.5 4276.6484 5.02 4594.0981 2.54
0.6 4283.7007 5.02 4603.2099 2.54
0.4 4675.1040 5.02 5018.2441 2.54
65 0.5 4684.2881 5.02 5030.7891 2.54
0.6 4691.3403 5.02 5039.9004 2.54

Table 6 The sensitivity analysis of R when o =55, f =0.2 and
0=0.1

R Case-1 Case-2
Total profit 1 Total profit 1

0.047 4057.3096 5.02 4319.6108 2.540
0.048 3998.2109 5.02 4265.3291 2.540
0.049 3940.7598 5.02 4212.3247 2.540
0.050 3884.8872 5.02 4160.5547 2.540
0.051 3830.5315 5.02 4109.9785 2.540
0.052 3777.6306 5.02 4061.0032 2.282
0.053 3726.1289 5.02 4014.2515 2.282

profit decreases. It is also observed that for different values
of o as J increases, total profit increases, and for fixed
values of o, ff, and 0 as R and y increase, total profit
decreases. All these observations agree with the reality.

Comparison of results using GA and PSO
From Table 8, it is observed that in all cases, GA gives the

better results than PSO. For comparison, we consider ten
different generations in 50 runs of both the algorithms and

’r @ Springer

Table 8 Optimal solutions of illustrated examples for case 1 and 2
using GA and PSO

M o f 0

Case-1 Case-2

Total profit 1, Total profit 1,

40 55 02 01 GA 3318.6824 5.02
PSO 3290.6721 4.96
42 55 02 01 GA 3538.1899 5.02
PSO 3502.2781 4.96
44 55 02 0.1 GA 3767.0151 5.02
PSO 3699.1854 4.96
45 55 02 01 GA 3884.8872 5.02
PSO 3816.3524  4.96
46 55 02 0.1 GA 40050486 5.02
PSO 3928.7324  4.96
48 55 02 0.1 GA 4252.1855 5.02
PSO 8166.4732 4.96

3688.8113  2.54
3652.3742  2.47
3874.9792 254
3838.4371  2.47
4064.5139  2.54
3998.4203  2.47
4160.5547  2.54
4086.3254  2.47
4257.4502  2.54
4178.3794  2.47
4453.8202  2.54
4361.7524  2.47

perform a t-test to study the convergence. The result of
t- test is shown in Table 9. In view of that the performance
of GA is acceptable. Also it is clear that there is no sig-
nificant difference in the mean with the two optimization
algorithms. In addition, PSO can also provide a more stable
and reliable solution, because it yields significantly smaller
standard deviation.

Conclusion and future scope

In this paper, a realistic production-inventory model for
deteriorating items has been considered under inflation and
permissible delay in payments with stock-dependent
demand, over a random planning horizon. Also learning
effect on production and setup costs is incorporated in an
economic production quantity model. The model is for-
mulated as a nonlinear programing problem and solved
numerically by both GA and PSO and the compaired.
Sensitivity analyses are also performed for different
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parameters to study the effect of the decision variable.
Here, for the first time, trade credit is allowed in an
inventory model with random planning horizon which is
obtained in the case fashionable goods.

Finally, for future research, one can incorporate more
realistic assumptions in the proposed model considering
shortages, variable deterioration rate, stochastic nature of
demand, and production rate. The similar problems can be
formulated with multi-items with budget and space
constraints.

Managerial insights
From the Table 8, it is observed that profit increases with

trade credit. Therefore, a retailer will try to avoid the
maximum trade credit from the supplier. In Table 2, higher

Table 9 Optimal solutions of the Model for different generations of
case-1 and case-2 using GA and PSO

M Case-I Case-II

T1 Total Profit Tl1 Total Profit

GEN-5 45 GA 488 3873.9843 242 4149.0486
PSO 4.85 3808.2343 232 4078.3434
GEN-10 45 GA 489 3874.2342 242 4150.7432
PSO 485 3808.6031 232 4079.1364
GEN-15 45 GA 491 3874.8439 245 4151.2436
PSO 4.85 3809.0012 236 4080.0006
GEN-20 45 GA 491 38754311 246  4151.9033
PSO 4.87 3809.3433 2.38  4080.2329
GEN-25 45 GA 492 3876.0821 249  4151.9033
PSO 4.87 3810.1045 242 4080.2329
GEN-30 45 GA 495 3876.9807 249  4152.0134
PSO 4.89 3811.2430 242 4080.8792
GEN-35 45 GA 495 3878.1205 249  4152.7657
PSO 490 3812.1236 2.44  4081.0806
GEN-40 45 GA 496 3880.0283 250  4152.7657
PSO 491 3813.4326 245  4082.9801
GEN-45 45 GA 497 3882.1838 2.51  4158.7657
PSO 491 3815.1062 2.45 4085.0018
GEN-50 45 GA 5.02 3884.8872 2.54  4160.5547
PSO 496 3816.3524 2.47  4086.3254

Mean of GA is 4.9722 and SD of GA is 0.03153. Mean of PSO is
4.9344 and SD of PSO is 0.03126 and t — cal = 2.69003, t — tab =
2.872 at 18 d.f. with 1 % level of significance

So we failed to reject HO at 1 % level of significance

o and f furnish more profits. Specially, as f§ increases,
profit increases. Hence, a retailer will adopt more display
of goods for more sales and profits. From Tables 5 and 7,
the profit increases with 6 and y. Thus, manager should
always employ experience workers to get the benefit of
their experience.
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
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Appendix 1

[Calculation for expected sales revenue for N full cycles]:
present value of holding cost of the inventory for the
jth(1 <j<N) cycle, (HC;), is given by

(i—1)T+1 JT
e —Rt —Rt
HC; = C, /U_])T q(t)e ™Mdt + C /(I._])T_Hl q(t)e "dt
(G ()G
L0+ PR O+ B)(O+B+R)

= (0+B+R Cio
X<1e ) O B0+ TR

> <eRT _ e(9+ﬁ)T(9+ﬁ+R)tl>

N 7 ilz)R (eRT B eRn):l o—RG-1T

Total holding cost from N full cycles, (HCN), is given by

(11)

HCN = XN:HC]»
=1
_ [CI(P—“) (1 —eR"> G-
T L (0+P)R 0+ B)(O+p+R)
_ —(0+p+R | _ Cio
) R e

% (eRT _ e(()+/3)T(()+/3+R)z,)
n Cia o~ RT _ ,—Rn 1 — e M7 _
0+ PR 1—e &
(12)

So, the present value of expected holding cost from N
complete cycles, (EHCN), is given by
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00 (N+1)T
EHCN :1;) /N ; HCN. f(h) dh
_ {CI(P— )(1 _e—Rtl) T )
(0+ P)R 0+ B0+ +R)

_ = (0+p+R) | _ Cia
x<1 e« ) O+ B)(0+B+R)

% (eRT _ e(9+/3)T(9+/3+R)tl)
-F—ClOC e Rl — g7hn e —.
(0+ PR 1 — e~ RHAT
(13)
Present value of production cost for the jth(1<j<N)
cycle, (PC;), is given by

) (—1)T+n
PCj = poeiw.P/ eitht
(-1 (14)

:Pof”-P (1 _ eRt1>eR(jl)T

R

Present value of total production cost from N full cycles,
(PCN), is given by

N
PCN = > PC;
j=1
_ ,—N(y+RT)
_ PO RT (_ -Ruy —(rT) (L€ T
fR.P.e (l—e)e \ T )

(15)

Present value of expected total production cost from N full
cycles, (EPCN), is given by

(N+1)T
EPCN = Z / PCN. f(h
NT

N=0

PO p KT (1 — Rty o~ +RT) e’
TR ’ | (1 — e~ OHRTHT)

(16)
Present value of ordering cost for the jth(1 <j<N) cycle,
Cé, is given by

C, = {C3 + Ch.e™¥}.eR-DT ¢ CL 0 > 0. (17)

Present value of total ordering cost from N full cycles,
(TOCN), is given by

N
TOCN = » ¢}
j=1
1 — ¢ NRT s (11— o~ N(6+RT)
_C3( = RT)+C/3€ ( [ o (1RT) )
(18)
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Present value of expected total ordering cost from N full
cycles, (ETOCN), is given by

00 (N+1)T
ETOCN =) / TOCN. £ (h) dh
N=0 JNT
C3€7AT . s ef/lT
= (1 — e GHRIT) +Ce (1 — ¢ OHRTHT)Y”

(19)
Present value of selling price for the jth(1 <j<N) cycle,
(SR;), is given by

T

SR, = mo.po.e? / (o + Pa(i)}.eMdr
G-1)T

= mo.po.e” [4@0_:—;;);; (1 — e_R’1>

armorm ()

o fB (04+B)(T—11)—Rt, _ —RT)
+W+mw+ﬁ+m<e ‘

. 7 i.OB)R <6—Rz| _ e—RT):l o—RG-1T

Present value of total selling price from N full cycles,
(SRN), is given by

(20)

N
SRN =) "SR;
—y 0.0+ Pp ok
= mgy.po-€ |: 0+B
N <_<9+M )]
(9+ﬁ 6+ﬁ+R
(0+p)(T—t,)—Rty __ ,—RT
) 6+[3+R ( ¢ )
0.0 ke - . 1 — ¢ NO+RT)
(9+ﬁ) e — e .e W .
(21)

Present value of expected total selling price from N full
cycles, (ESRN), is given by

0o p(NHIT
ESRN = ; /NT SRN. £(k) dh
0,,0{(0‘09:[;??(1 —e )
_ % (1 — e~ (0+h+RI) )
i Wiﬁﬂ?) (e O+DT=1)-Rn _ ,=RT)
+ U fa[})R (e R — o FT) % |
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Calculation for interest earned and interest paid
in jth cycle

The retailer pays the payment at M without any interest,
and at the end of this period, He/She starts paying for the
interest charges on the items in stocks. Also during the time
the account is not settled, generated sales revenue is
deposited in an interest bearing account. Regarding the
interest pay and interest earned based on the length of the
Jjth (1 <j<N) cycle time T, two different cases may arise:

Case-1 (j— DT +M<(j— )T+t <jT

Present value of Interest earned in jth cycle, I, E; is given
by

CG-DTM
LE; = I,.my.pg.e”” / {Of + .BQ(’)}-

(-1)T
X {(j— DT+ M— t}e”"dt
= I,.mg.py.e”" { (199:;;[;; M+ (00(6’++ﬁ1;£2 (e —1) (23)
B MB(P — )
0+ B)(O+B+R)
P —2) ~R(-1T

(0+p+R)M e
(0+ﬁx0+ﬁ+Rf{ —H

Total interest earned during N full cycles, I} EN is given by

N
LEN = LE;

J=1

of + Pf o0 + Pf

:’e'm""")'[(ew)R orpe' Y
_ MpP-—u) B(P —a)
(O+P)O+B+R)  (0+p)(0+ p+R)
(0+B+-R)M 1 — e (RN —y
x {e” 1}} TG € (24)

Present expected value of total interest earned during N full
cycles, EILEN, is given by

00 (N+1)T
szNzg;J&‘ LEN f(h)dh
_ ol + Pf ol + P, _
—1e~m0~P0-[(0+ﬁ)R~M+ 01 PR (e ®M 1)
_ MBP-—x) PP — o)
O+P)O+F+R)  (0+p)(0+p+R)?
(0+B+R)M e (D)
e 0 |
(25)

Present value of interest paid to the wholeseller for the
jth (1 <j<N) cycle, (I,P;), is given by

T
LP; = Ic.po.e”']/ q(t).e R de
(—1)T+M

= Ic_po.efvij(ifl)T_ [g;;{; (eRM . eR")

1
(e(0+ﬁ+R)M e(0+/3+R)z,> }

0+ p+R
(e—(()+/}+R)t1+(()+/})T _ e—RT)

o 1
+H+ﬁ{9+ﬁ+R

e o)) -

Total interest paid during N full cycles, I}PN, is given
by

N
LPN =" IP;
j=1

_ P—u l —RM _ _—Rn
~tem i (e

1
_ —(0+B+R)M —(0+B+R)1, 27
o ( c )} (27)
o 1
—(0+p+R)t, +(0+8)T _ ,—RT
+0+/3{9+ﬁ+R(€ ¢ )

1 o R _ RT 1 — e kTN o
R | — e~ (+RT)

Present expected value of total interest paid during N full
cycles, EI1 PN, is given by

0 (N+1)T
EILPN = /

_ P—u l —RM _ _—Rny
—Ic.po.{—0+ﬁ{R<e e

_ 1 e_(0+/;+R)M _ e—(()+/f+R)t]
0+pB+R

(e—(()+/i+R)rl+(0+/})T _ e—RT)

LPN f(h)dh

o 1
+
9+ﬁ{9+B+R
B l (e—Rn B e‘RT> H e*(vﬂT) .
R 1 — e~ (FHATHRT))

Case-:2 (j— NT+un<(i— )T +M<T
Present value of Interest earned in jth cycle, LE;, is
given by

(28)

Y
ﬁ @ Springer
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CpG-DTEM
LE; = Ic.mo.po.e’”/ {fx + [)’q(t)}.
(-1

{G-DT+M- t}e’R’ dt = I,.mg.pg.e W RG=DT

af + Pp PB .
{(eJrﬁ)R'MJr(ngﬁ)R( M)eR
0 p ,
+ (HJr“W(eiRM — 1) +ﬁ(‘e—R _ 1)
PP —a) Bu
I A M AT
X (l] — M)e*(0+ﬁ+R)t| (1 - e<0+ﬁ)T)
Pp s
B W(zl — M)e~ (OHFHR)
— L%@*(‘”/HRM o 1)
0+ B)(0+B+R)
+ mﬂ)(;—iﬂwewﬁ)r(ﬁ—(wﬁmw — e (O+B+RIY |
(29)

Total interest earned during N full cycles, LEN, is given by

N
LEN = LE;
j=1

of + Pp PB

~lemo {(9 THRM Ty Rt M
o6 B PB "
tarpe " e D
BP — =) pa
(0+.3)(0+,3+R) M+ O+ p)(O0+p+R)
x (1] — M)e™ ORI (] _ ((0+H)T)
Pp - .
_ (f)-‘rﬂ)(e—-‘r/f-‘rR) (tl — M)e (04+p+R)
— M (e’(‘”ﬁ*R)!l _ ])
0+ B)(O+p+R)?
B (OB (o~ ORI _ (03B

+ B ——
(0+B)(0+p+R)?
1— e*('HRT)N )

X e GiERn) €

(30)

Present expected value of total interest earned during N full
cycles, ELEN, is given by
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(N+1)T

ELEN = NZ /N LEN (b
_ af + PB PB .
,Ie.mO.Po[(O_i_[),)R.M-F(0+ﬁ) (11 — M)e
ol _ PR ,
o T g Y
_ B(P —a) v B
(O+B)O+Bp+R)"  (0+B)(0+B+R)
X (l‘] — ) —(0+p+R) t](l 9+/{) )
_P—ﬁ( M)e~(O+B+RN
O+pO+p+R)" ™
_&(8—(0#&@11 )
(0+B)(O0+p+R)
+ Wgﬁe(hﬂﬁ(@—(wmmzw e‘(0+/3+R)f|)
e~ (r+T)
(31)

Present value of interest paid to the wholeseller for the
jth(1 <j<N) cycle, (I,P;), is given by
T

LP; =1I.pg.e’ " /
(j—1)T+M

q(t).e X dt

o 1
= IC' . 7}77R(‘]71)T. * |:
po-€ 0+ BlO+p+R

« (e(0+ﬁ)T(6’+l3+R)M _ eRT)

— I% <eRM - eRTﬂ . (32)

Present expected value of total interest paid during N full
cycles, EIL,PN, is given by

N
LPN =) " LP;
j=1

o 1
=L..po. e(0+/£)T—(()+[5+R)M _ e_RT
po 0+[3[0+ﬁ+R(

1 1 — ¢~ +RT)N
—— e ”M _ o RT .—e e 7.
R 1 — e~ O+RT)

Present expected value of total interest paid during N full
cycles, EILPN, is given by

(33)
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00 (N+1)T
ELLPN = /

o 1
et epr—sprm emr)
P9 p {9+[3+R(

1 —(y+4T)
—— e R’M _ ¢ RT e—
R 1— e—(y+AT+RT))

LPN f(h) dh

(34)

Appendix 2
[Calculation for expected sales revenue for last cycle] part-

I ( NT <h < NT + t;): present value of holding cost of the
inventory for the last cycle is given by

h
HC,;, = C]/ q(l‘)eithl‘
N’

T
Ci(P— 1
= 1é . ﬁ“) {E <e—RNT _ e—Rh) (35)
_ ﬂ o~ (O+B+RINT _ ,—(0+p+R) | |
0+pB+R
Present value of production cost is given by
h
PCLI = po.e —p(N+1) P/ e*tht
NT
(36)
—(N+1)
__bo-e P |:eRNT . eRh:| _
R
Present value of ordering cost = {Cs + Cj.e°V+D1

efNRT.

Present value of sales revenue is given by

h
SRy = mo-Po-eﬂj(NH)/ {o+ Pa(1) e ™dr
NT
= mg.pg.e” "V [—OCQ + PD (e_RNT — e‘Rh)

(0+ PR
B(P — ) "HANT NT e—(9+[f+R)h>:|_
(37)

_ ( e (0+B+R)
O+B)(0+F+R)
Part-Il (NT +t; <h < (N + 1)T): Present value of holding
cost of the inventory for the last cycle is given by

h
HC;, = C]/ q(t)e’R’dt
NT

_ Ci(P—a) l o RNT _ ,—R(NT+1)
0+ |R

o O+BNT
- {e—(0+/3+R)NT _ o (O+B+R)(NT+11) H
(0+B+R)
cid {W {e*(9+/f+R)(NT+r,) _ 67(9+ﬁ+R)h}
0+pL(O+F+R)

1 {e—R(NT-H]) _ e—Rh}:|.
R

(38)
Present value of production cost is given by
NT+1;
PC;, = Po-€ —7(N+1) P/ Eithl
NT (39)

po.e "N p

[ERNT _ eR(NT+t|):| '
R

Present value of ordering cost= {Cq—i—C’
Present value of sales revenue is given by

(N+1)} o—RNT

h
SRz = mopoe Y [ (ot )} e
NT

= mo.po.e T+ [e—RNT{ E‘;Ilgi(l )
B(P —a)

~arpaerrm e )

o0 —R(NT+1)) _ —Rh)
TR ( ‘

Bae0+HN+)T
(0+ﬂ)(0+ﬁ+R)

(e—(0+ﬁ+R)(NT+tl) _ 67(0+/3+R)h>} )

(40)
Present value of expected holding cost for the last cycle is
given by

(N+1)T
EHC, = Z / HC, f (h

00 NT+1, o0 (N+1)T
= Z / HCy, f(h)dh + Z / HCp, f(h)dh
N=0 /N N=0 /N

T T+
= EHC;; + EHCy,.
(41)

where
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NT+1
EHC,, = Z / HCy, f (h

Bt (M

0+p |R 9+[3+R)(1 —e)

A <1_ R+/)t|)+ A
R(R+7) O+p+R)(O+P+R+ 1)

; 1
_ o (0+p+R+)t -
x (1 ¢ ’ 1>} 1 — e (REAT"

(42)
and
00 (N+1)
EHCpr=) / HCp, f (h)dh
N= NT+1,
1
|: —/lrl _e—/vT){I_e(l _e—er)
1_ 7(0+/3+R)t]
0+/3+R< ¢
n o {<e<9+ﬂ)T(9+ﬂ+R)n _eRn> (e,m _ efﬂ.r)
0+p 0+B+R R
A
"~ (0+B+R)(0+B+R+ 1)
<e(0+ﬁ)T(9+/3+R+A)z, _ e*(R‘f’).)tl
A . , 1
| R+ —(RHAT -
*Rm+m<e o )Hl—emwr
(43)

Present value of expected production cost for the last cycle
is given by

00 (N+1)T
EPC, = Z / PC, f(h
NT

NT+1 W+OT
=3 [, reusmane S [ e s
N=0 JNT+n
p() 6 7P —t 1 ‘
_ 1— ). -
{( e ) (1— e_(RT+AT+v)) (R+2)

e (R g po.e P
X (1 _ e—(RTJriTﬂ')) + R
1
—Rt, —At —iT
(1—6 ‘).(e‘ l—e )m}

(44)

Present value of expected sales revenue from the last cycle
is given by

00 N+1
ESR, = Z / SRy, .f(h)dh
N=0 JNT

00 NT++t,
_ SR, f(h)dh
N; /NT oS (h) , (45)

00 (N+1)T
+Y° / SRy, f (h)dh
N=0 /N

T+t
= ESR;; + ESR,,.
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where
NT+1
ESR;; = / SRy f (h
NT

o ol + Pf o
B °"’°{<6+ﬁ>R{“ :
PP —2)

w1 ) e e

o — S (A

e’
1 — e~ (+RT+AT) *

(40)

and
(N+1)T
SRy, .f (h)dh

a3 [

:"““{{wi%> (ei@>

ﬁ(P*a) —(0+B+R), —n —iT
“wrporpen e >)}“) —e)

_ L ef(RJrl)tl _ e—(RJr/l)T
0+ BR(R + 1)
Bue0+HT
+w+@@+ﬂ+m

_ A (e—(0+[)’+R+).)t1 _
0+ B+R+2

-y

(1—e Ry

{e—(0+[)’+R)t| (6—),11 _ e—).T)
a1

(47)

e
>< S ——
1 — e—(+RT+T)

Present value of expected ordering cost for the last cycle is
given by

0 (N+D)T
EOCL = Z / {C3 + C/ <N+l>}'eNRTf(h)dh
N=0 JNT

M +Cled. (- _eilT) )
(1 — ¢~ U+RIT) 3 (1 — e~ (O+AT+RT))

(48)

:C3

Present value of expected reduced selling price from the
last cycle is given by

= (N+1)T
ERSP; = m1poz e TWNH) / e ®q(h) f(h)dh
N=0 NT

o0 NT+1
= mpoe T e VN”/" e Rig(h) f (h)dh

=0

00 (N+1)T
e S e ™ [ Mg f(h)ah
N

N=0 T+t
= ERSP,; + ERSPp,. (49)
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where

o) NT+1,
ERSP;; = mlpoe’yz e’"”N/ e ®q(h) f(h)dh

1— 7<R+ﬂ.)tl
0+p +z( ¢

I (1 B e(6+/3+R+i)z,)]
0+B+R+

Le™?
1 — e~ WHRTHIT) *

= my.po

and

(N+1)T

ERSP;, = mpge ’Z e " / e Ry

NT+1

h) f(h)dh

Wm0+ﬂb+ﬁ+R+i

™ (e(0+/3)T(0+ﬁ+R+/l)t1 _ e(RJri)T)

1 o~ (RN _ ~(R4A)T re”’
R+ 4 1 — e~ (7 +RT+IT)
(51)

Calculations for interest earned and interest paid in last
cycle

Case I (NT +M <NT +1t; <(N + 1)T)

Subcase (la) (NT <t <NT + M)

Present value of interest earned in last cycle, IEL,y, is
given by

h
IEL,, = I,.mg.poe '+ / {oc + ﬁq(t)}(h — e Rdr
NT

ol + Pp
0+ PR

efRNT)

(h — NT)e RN

(h — NT)e RN

= Ie.mo.poe_""(NH) {

al + Pp
w+mm(
B
O+ AO+ TR
B(P —a)
S0+ )0+ +R)

(e(ﬁ‘Fﬁ)NT*(H‘F/;‘FR)h _ e—RNT):| )

(52)

Present expected value of interest earned in the last cycle,

EIEL, is given by

o0 (N+1)T
EIELy = ) / IEL,, f(h)dh

N=0
W +PB [ e -1
0+ PR (Te 7

(o{;ﬁ—:-ﬂP/f { iﬂ <e*(R+/‘.)T _ 1) (T - 1)}

) R
( o) i ¢ ]
<0+mw+ﬁ+m<T 3 )

= I,.my.po { -

BP —a) { 4 <e—(()+/f+R+/)T _ 1)
O@+BO+B+R*\0+F+R+2

_; e’
— (e T I)H 1 — e—(HiT+HRT) "
(53)
Subcase (1b) (NT + M <t < NT + t;)

Present value of interest earned in last cycle, IEL,, is
given by

NT+M
IELy; = I,.mg.pe "™V / {CX + [3‘](’)}

NT
e Mdr = 1,.mg.poe”"

i (1"6_RM>
B(P - 1)

(04 B)(0+ B +R)*

(NT +M — THRIN =7

of + Pp

[w+mn

)
O0+BO+B+R)

(1))

Present expected value of interest earned in the last cycle,
EIEL,, is given by

(54)

(N+1)T

EIELj; = ) / IEL,5.f (h)dh
N=0 JNT

B ol + Pp ol + Pp _RM
‘”m”mhe+mR 'X0+mm(“e )
 Br-n
O+BO+B+R)
BP — ) _ (0 pRM
w+mW+ﬁ+m2@ )]
(1—e*T)e™

1 — e~ (W+RTHIT)
(55)

Present value of interest paid in the last cycle, IPL;, is
given by
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h
an:Lp@own/‘ g().e Rdr
NT+M
. P—ol|l/ _ _
=1.po.e »(N+1).0+ﬂ [R (e RINT+M) _, Rh>

MEYEY:
(56)

Present expected value of interest paid in the last cycle,
EIPL,, is given by

00 (N+1)T
EIPL; =) / IPLy,.f(h)dh

N=0 /AT

_ P—oll [ ey, i
7lc'p0'9+ﬁ {R {e <1 e >

1
s —(0+p+R)M 1— —T
0+ f+R {e < ¢ >

_ ; 1 — e~ O+B+R+AT
O0+B+R+ 4 '

e’

X | — e~ G+RT+T)

(57)
Subcase (Ic) (NT +1; <t<(N+ 1)T)

Y4
ﬁ @ Springer

1 < S OHONT— (04 f R _ eRNT(9+ﬂ+R)M>:| .

The expression of the present expected value of interest
earned in the last cycle, EIEL3, is same as Eq. (55).
Present value of interest paid in the last cycle, IPL3, is
given by
h

mu3zumg%MU/ q(t).e ®dr
NT+M
NT+1,
= I.po.e /Nt {/ q(t).e ®dr
NT+M

h
+/ q(t).etht} :Icpoe*)r(NJrl)
NT+1;

|:eRNTg+;{%(ERM — e Ry
1

_ 5 /3 <e(0+ﬁ+R)M _ e(0+/3+R)z,> }
+B+R

+ o { e(()+ﬁ)T
0+p10+p+R

« (e—(0+/f+R)z, —RNT _ e—(()+/}+R)h+(0+/i)NT>

_ l <e—Rt1—RNT _ e—Rh) H .
R

Present expected value of interest paid in the last cycle,
EIPL,3, is given by

(58)
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00 (N+1)T
EIPL;3 = / IPL 3./ (h)dh
N=0 /NT

P—oafl 1
I Lo RM Ry
‘p°{9+ﬁ{k(6 ) 0+B+R

(e—(9+ﬁ+R)M _ e—(9+ﬂ+R)t|> }(1 _ E—AT)

o 1
(0+B)T—(0+p+R)1y 1— —iT

+0+B{0+ﬁ+R<e (1=e™)

A ,
M O+pT _ —(RHAT

0T f R ¢ )>
L pn oy A RedT

e’

X

1 — e~ (7HRT+IT) "
(59)

Total expected interest earned for the last cycle,EL Ey, is
given by

h

IELy, = Ie.n’lo.p()e‘_h"y(Nﬁ_l) / {OC + ﬁq(t) } (h — l)e_Rldl
N

T

NT+1, h
= I,.mg.poe” "™+ {/ {oc + ﬁq(t)}(h —t)e ®dt + /
N

NT

, P 1
= ]e.molpoe—r’(Nﬁ-l) {Me—RNT{tle—Rtl _ (/’l — NT — _) (e—Rtl _ 1)}

(0+ p)R

B BP — o) e—RNT{tle—(6+ﬁ+R)t1 _ (h _NT — ! ) <6—<6+ﬂ+R>zl _ 1)}
) 0+ pB+R

a0 { (h CNT -1 — %)eR(NTth]) I le—Rh

O+p)(O+B+R

_|_ -
(0+ B)R
ﬁa.ewﬂ;)wﬂﬁ

R

EILE, = EIEL,, + EIEL,, 4 EIEL 3. (60)

Total expected interest paid for the last cycle,El; Py, is
given by

EI P, = EIPL,, + EIPL 3. (61)

Case 2 (NT+t, <NT+M<(N+1)T)

Subcase (2a) (NT <t <NT + 1)

The expression of the present expected value of interest
earned in the last cycle, EIEL,;, is same as Eq. (53).

Subcase (2b) (NT +t; <t <NT + M)

Present value of interest earned in last cycle, IELy;, is
given by

{oc + Bq(t) } (h — t)etht}

T+t

R

—Rh

CNT — g — L RN ) e}]
+(0+ﬁ)(0+ﬂ+R){(h NT =n 0+ﬁ+R> +0+/?+R '
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Present expected value of interest earned in the last cycle,
EIEL,,, is given by

00 (N+1)T
EIELy =) / IELy, f (h)dh
N=0 JNT

0+ 550102 R) {(1 — e Tyne THHRN

+ <e<9+ﬂ+R>ﬂ - 1) (Te“ T i)) } (63)

- (Hj_‘eﬁ)R {eR" (Te“ + (1 —e (1t + % — i)) + R<R’1+)u) <e<R“>T - 1> }

1 1
— o ﬂ)(gi— TR {e(()+/f)T((J+ﬁ+1e)z1 <Te” F (1= e Y + o - i))

n A o (REDT _ e’
O+ B +R)(R+7) | — e GHRTT)

Subcase (2c) (NT + M <t < (N +1)T)
Present value of interest earned in last cycle, IEL,3, is
given by

NT+M

IELy; = I,.mg.poe” "™+ / {rx + ﬂq(t)}(NT +M —t)e Ridr
NT

NT+1,
= I,.mg.poe” "™ [/ {oc + ﬁq(t)}(NT +M —t)e Rt
NT

+ /NWH)T {oc + ﬁq(t)}(NT +M— t)e_tht}

T+t
B (N 1)— +Pp  Pp “Rnng
= Ie.mo.po.e YN+ RNT|:(0 T ﬂ)R M (0 T ﬁ)Re R (M l‘l) (64)
o0 —RM Pp —Rt,
R T ) Tar et e
- 0+ g)(fﬁla/; +R) <(M —ne T - M)
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n o T (e—(9+/}+R)M _ o (04 R } .
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Present expected value of interest earned in last cycle, Total expected interest paid for the last cycle, ELL Py, is

EIEL,3, is given by given by
00 (N+1)T
EIELy; = ) / IELy3.f (h)dh
N=0 JNT
of + P Pp Rt
=1,.my. M — (M —
oo Gy M~ e e =
o0 —RM Pp —Rt|
orpre! ) T prett e 5
B(P —a) ( (O R) )
M —t '—M
T OFPOLE+R) ( e
n po (0BT prrn gy PP =) (e—<9+/;+k>n N 1)
O+B)(O0+B+R) (O+B)(0+B+R)’
n po e+P)T < o (HBHRM _ —(O4pR): ] % .
O+ B)(0+p+R) 1 — emUrthTs
Present value of interest paid in the last cycle, IPLys, is ELLP; = EIPL,;. (69)

given by

h
IPLy; = I,.pg.e "™ +D) / q(t).e ®dr
NT+M
1
= I.pg.e WD), x
po 0+B|0+B+R

~ (e(9+ﬁfRN)T—(9+ﬂ+R)M _ e(9+l3+R)h+(9+ﬂ)(N+1)T>

(66)

Present expected value of interest paid in the last cycle,
EIPL,3, is given by

o0
EIPL,; = Z /
N=0 YN

o 1
L . —
p"e+ﬁ{0+ﬂ+R

A .
—(REDT (04T
Y (e ¢ ) }

1 A ] ;
+E { m (1 _ ef(RJr/L)T) + (e—RM—/LT _ e—RM)}:|

e’
>< R ——
1 — e~ (HRT+iT)

(N+1)T
IPL,; £ (h)dh
T

{e(9+/f)T7(6+/i+R)M(1 _ efir)

(67)

Total expected interest earned for the last cycle, ELE] ,, is
given by

ELE; = EIELy; + EIEL;; + EIEL,3. (68)
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