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Abstract
Usually, in monitoring a proportion p, the binary observations are considered independent; however, in many real cases,

there is a continuous stream of autocorrelated binary observations in which a two-state Markov chain model is applied with

first-order dependence. On the other hand, the Bernoulli CUSUM control chart which is not robust to autocorrelation can be

applied two-sided control chart to able to detect either increases or decreases in the process parameter. In this paper, a two-

sided Bernoulli-based CUSUM control chart is proposed based on a log-likelihood-ratio statistic using a Markov chain

model and average run length relationship. The average run length relationship is set using the corresponding upper and

lower Bernoulli CUSUM charts. Simulation studies show the superior performance of the proposed monitoring scheme.

Numerical results show the superior performance of the proposed control chart.
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Introduction

Reynolds and Stoumbos (2001) extended a Bernoulli

CUSUM control chart to be utilized in process monitoring

when there is a stream of such binary inspection data. In

this regard, their control chart can be applied to show a

shift in p from the in-control value p0 resulting in assign-

able causes in the process monitoring. An augment in p

would indicate worsening in the performance of the con-

sidered process. On the other hand, showing a decline in

p is significant for alarming-enhanced process quality. For

example, consider a decrease in the value of p; in this

situation, the control limits for the control chart should be

recomputed to better process monitoring in the future

changes.

Cumulative sum (CUSUM) control charts and their

applications have been considerably discussed in the sta-

tistical literature; see, for example, Ewan and Kemp

(1960), Van Dobben de Bruyn (1968), Bissell (1969), and

Kemp (1971). In this respect, a general definition of the

construction of one-sided and two-sided CUSUM control

charts is proposed by Van Dobben de Bruyn (1968), in

which the run length distribution, its parameters measure

the performance of a CUSUM procedure and are applied in

real cases to obtain a suitable scheme. The average run

length (ARL) has most often been used to measure and

compare the performance of CUSUM procedures. How-

ever, the exclusive use of the ARL has been criticized, and

the use of percentage points of the run length distribution

has been suggested; see, for example, Bissell (1969). In this

regard, some works on CUSUM chart relate to the

healthcare context, for example Zhang and Woodall

(2015), in which they proposed a dynamic probability

control limits for risk-adjusted Bernoulli CUSUM charts.

The properties of the one-sided CUSUM control

chart have received more attention than two-sided CUSUM

control chart in which two one-sided control charts moni-

tored process simultaneously. Different expressions for the

exact run length distribution and its parameters have been

proposed for the one-sided CUSUM procedure by Ewan

and Kemp (1960), Brook and Evans (1972), Zacks (1981),

and Woodall (1983). In addition, different estimations have

been presented by many authors.

Kemp (1971) proposes the ARL in the two-sided

CUSUM control chart in terms of the ARL in the two-
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component one-sided control chart. Nadler and Robbins

(1971) utilized a Wiener process to estimate the run length

distribution as a special case of the two-sided control chart.

More recently, Lucas and Crosier (1982) applied a Markov

chain description of the two-sided CUSUM control chart to

set the ARL and the run length distribution. In this paper,

we present results that will allow a more accurate Markov

chain approach in two-sided Bernoulli-based CUSUM

control chart with autocorrelated observation.

Most of the published works on control charts for

autocorrelated binary observations assume that the obser-

vations can be modeled as a two-state Markov chain in

which the probability of an observation being defective

depends on the value of the previous observation (first-

order dependence). In this regard, see, for example,

Shepherd et al. (2007), Keramatpour et al. (2013), Vakilian

et al. (2015), and Ashuri and Amiri (2015), in which

observations are autocorrelated according to first-order

dependence. Some additional published works have con-

sidered monitoring problems more related to what is

studied here. For example, Bhat and Lal (1990) considered

monitoring autocorrelated binary observations when sam-

ples have a continuous stream of observations and are

available from the process. Moreover, Niaki and Abbasi

(2007) considered the situation in which there is autocor-

relation and a defective item can have more than one

defect. It is worth mentioning that when constructing

control charts to monitor a process with binary observa-

tions, it is significant to explicitly account for autocorre-

lation when it is present. The main objective of this paper is

to extend a two-sided Bernoulli-based CUSUM control

chart, called the two-sided Markov binary CUSUM

(MBCUSUM) chart, for monitoring a process in which the

observations follow the two-state Markov chain model and

are binary. We consider the situation in which a continuous

stream of binary observations is available for process

monitoring. It is assumed that these binary observations

become available individually, so the control charts can be

based on samples of n = 1. The two-sided Markov binary

CUSUM (MBCUSUM) control chart is based on a log-

likelihood-ratio statistic obtained from the two-state Mar-

kov chain model. This study can be considered to be an

extension of the Stoumbos and Reynolds (2008) work,

which extended the MBCUSUM procedure for a continu-

ous stream of autocorrelated binary observations (for more

details, see Reynolds and Stoumbos (2000).

We next propose the two-sided Bernoulli CUSUM

chart by defining the two-state Markov chain model.

Finally, the performance of the proposed control chart is

appraised in terms of the ARL criterion.

Proposed control chart

In situations that autocorrelation is known to be present,

one approach is to adjust the control limits of the tradi-

tional charts to try to produce more acceptable values for

the in-control average number of observations to signal.

However, we next extend a CUSUM chart when there is

autoregressive (1) autocorrelation and show that this

chart has better ability to detect shifts in parameter p than

the other traditional charts, even with adjusted control

limits. For this aim, in the next section, a two-state Markov

chain model is defined. Then, the two-sided Bernoulli

CUSUM chart is proposed. Finally, a two-sided MBCU-

SUM chart is given for autocorrelated data using assump-

tion and definitions in these subsections.

The two-sided markov chain model

Consider a sequence X1, X2, X3, … of binary observations

with the values 0 or 1 (non-defective and defective,

respectively). The first observation Xl will be observed

without understanding the value of a previous observation.

Then, consider that X1 is a binary observation with P(X1-

= 1) = p and P(X1 = 0) = 1 - p. When X1 is observed,

the other X2, X3, X4,… can be generated using the two-state

Markov chain model. The transition probabilities, pij, i,

j = 0, 1, for the two-state Markov chain model satisfy

pio = 1 - pil, i = 0, 1, In this regard, this model can be

characterized using only two parameters, pi0 = P(Xk-

= 1|Xk - 1 = 0) and p10 = P(Xk = 0|Xk - l = 1) (see Bhat

and Lal (1990)). The long-run proportion defective p and

the correlation coefficient q between successive observa-

tions can be defined as p = P(Xk = 1) = p01/(p0l ? p10) and

q = 1 - (p01 ? p10), respectively. For process monitoring

applications, it seems more suitable to parameterize the

process in terms of p and q instead of p01 and p10. In

addition, let p0 be the in-control value of p. Then, for

specialized values of p and q, some transition probabilities

are as follows:

p00 ¼ 1� pð1� qÞ;
p10 ¼ ð1� pÞð1� qÞ;

ð1Þ

where p01 and p11 can be derived easily from them using

this model in practice which usually needs that the in-

control parameter values be estimated during a Phase I

analysis when process data are gathered for this aim.

Suppose that there are N observations in the Phase I data

set, so that the observed number of transitions between two

states is N - 1. The maximum likelihood estimator of pij is

pij= Nij/Nio ? Nil, according to Bhat and Lal (1990), where

Nij is the number of transitions from state i to state j for i,
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j = 0, 1. Then, the estimators of p0 and q are according to

Eq. (2):

p̂0 ¼
p̂01

p̂01 þ p̂10
;

q̂ ¼ 1� ðp̂01 þ p̂10Þ:
ð2Þ

The two-sided Bernoulli cusum chart

Using the two-sided Bernoulli CUSUM chart needs one to

specify p0 and the sizes of the different shifts that need to

be detected rapidly. In this paper, we follow the notation of

Stournbos and Reynolds (2008), where p1 shows the

enlarged value of p to be detected rapidly and p2 is the

corresponding decreased value, where p2\ p0\ p1. The

two-sided Bernoulli CUSUM statistics are according the

following equation:

Si ¼ max 0; Si�1 þ Xi � c1ð Þ; i ¼ 1; 2; 3; . . .

Ti ¼ max 0; Ti�1 þ Xi � c2ð Þ; i ¼ 1; 2; 3; . . .;
ð3Þ

where S0= T0= 0, and Xi is the Bernoulli random variable

that becomes equal to 1 if the ith inspected item is non-

conforming and 0 if it is conforming. The control

chart signals when either Si[ h1 or Ti\- h2. The upper

CUSUM control chart is constructed to show unnormal

condition in the process while the lower CUSUM control

chart is constructed to show betterments. (Stournbos and

Reynolds 2008) provided the likelihood ratio-based refer-

ence values c1 and c2 calculated using Eq. (4):

c1 ¼
� log 1�p1

1�p0

� �

log
p1 1�p0ð Þ
p0 1�p1ð Þ

� � ; and c2 ¼
� log 1�p2

1�p0

� �

log
p2 1�p0ð Þ
p0 1�p2ð Þ

� � : ð4Þ

It should be noted that 1 - c1 and 1 - c2 show growth

in the Si and Ti statistics, respectively, attributed to Xi when

Xi= 1. In addition, we have c1 [ c2 because p1[ p0[ p2.

It is important in the applicable cases to evaluate the

effect of the selection of control limits on the performance

of the monitoring procedure. The average run length is

often the metric applied in checking the performance of

control charts, where we descript the average run length as

the average number of items inspected until a signal from

the chart is given. Consider ARLT referring to the ARL of

the two-sided Bernoulli CUSUM control chart and ARLU

and ARLL to be the corresponding ARLs of the upper and

lower control charts, respectively. Stournbos and Reynolds

(2008) stated Eq. (5).

1

ARLT

� 1

ARLU

þ 1

ARLL

: ð5Þ

Hence, we determine the conditions in which Eq. (5) is

an equality so that the two-sided Bernoulli CUSUM control

chart performance can be derived from the ARL perfor-

mance of the two one-sided control charts. Reynolds and

Stoumbos (1999) detected that the ARL of the one-sided

Bernoulli CUSUM control charts should be estimated

partly using Markov chains or revised processes. Appling

Eq. (5) as an equality could be used with the Markov chain

approach since one can avoid the more awkward two-di-

mensional Markov chain representation of the two-sided

CUSUM control chart stated by Woodall (1983). The use

of Eq. (5) as an equality is also useful in simulation studies

in which one wants to fix the value of ARLT when main-

taining the same values for ARLU and ARLL.

The two-sided MBCUSUM
chart for autocorrelated data

As aforementioned, in this paper, the proposed two-sided

MBCUSUM control chart is based on the log-likelihood-

ratio statistics for an increase in p from p0 to p1 in the two-

state Markov chain model. On the other hand, the Si
statistics are derived according to Mousavi et al. (2000) in

that notation Ci denotes Si. Similarly, Ti statistics are

computed for two-sided MBCUSUM control chart; the

joint density of X1, X2, …, Xk is as follows:

L0
k
¼

ln
f x1jp2ð Þ
f ðx1jp0Þ

; k ¼ 1;

ln
f ðxkjxk�1; p2Þ
f ðx1jxk�1; p0Þ

; k ¼ 2; 3; . . .

8>><
>>:

ð6Þ

Using the Bernoulli distribution of X1 gives

L0
1
¼ x1ln

p2

p0
þ ð1� x1Þln

1� p2

1� p0
: ð7Þ

Now for k� 2;

f ðxkjxk�1Þ ¼ pð1�xk�1Þð1�xkÞ
00

� pð1�xk�1Þxk
01

� p
xk�1ð1�xkÞ
10

� pxk�1xk
11

; ð8Þ

and this gives

L0
k
¼ 1� xk�1ð Þ 1� xkð Þl0

00
þ 1� xk�1ð Þxkl

0

01

þ xk�1 1� xkð Þl0
10
þ xk�1xkl

0

11
; ð9Þ

which

l000 ¼ ln
1� p2ð1� qÞ
1� p0ð1� qÞ

l0
01
¼ ln

p2

p0

l0
10
¼ ln

1� p2

1� p0

l0
11
¼ ln

1� ð1� p2Þð1� qÞ
1� ð1� p0Þð1� qÞ

8>>>>>>>>><
>>>>>>>>>:

; ð10Þ
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Hence, we have for k� 2; i; j ¼ 0; 1L
0

k
¼ l

0

ij
if xk - 1= i

and xk= j. The Ti statistics for the two-sided MBCUSUM

control chart for k = 1, 2, … are as follows:

Tk ¼ min 0; Tk�1f g þ L0k; ð11Þ

in which T0 = 0. An alarm is released if Tk � h0T : Note that,
when q = 0, we get l000 ¼ l010 and l

0
01 ¼ l011; the MBCUSUM

control chart decreases to the Bernoulli CUSUM control

chart when we divide Tk by l001 � l010.

Note that properties of the Bernoulli CUSUM control

chart can be appraised using a small adjustment of the

monitoring scheme. In this regard, let the CUSUM control

statistic is a lattice random variable with values that are

integer multiples of 1
m

0 , in which m’ is a positive integer.

This modification permits the Bernoulli CUSUM to be

modeled as a Markov chain. Similarity, for the MBCU-

SUM control chart, we adopt the same approach and obtain

an estimation MBCUSUM control chart by estimating L
0
k

by a random variable where the values are integer multiples

of a fixed value. The strategy applied to estimate Lk is to

get the integer m0 ¼ nint j 1
l0
00

j
� �

; in which nint(�) represents

the nearest integer value. Then, L
0

k is estimated using a new

statistic denoted as L
0�
k for which the possible values are

integer multiples of 1
m

0 . Hence, we have Eq. (12) according

to Mousavi and Reynolds (2009) for k� 2;

L
0�
k ¼

l
0�
00 ¼ nintðl000m0Þ=m0 if xk�1 ¼ 0 and xk�1 ¼ 0

l
0�
01 ¼ nintðl001m0Þ=m0 if xk�1 ¼ 0 and xk�1 ¼ 1

l
0�
10 ¼ nintðl010m0Þ=m0 if xk�1 ¼ 1 and xk�1 ¼ 0

l
0�
11 ¼ nintðl011m0Þ=m0 if xk�1 ¼ 1 and xk�1 ¼ 1:

8>><
>>:

ð12Þ

Here, for the first observation, L
0
1 ¼ l

0
10 when x1 = 0 and

L
0

1
¼ l

0

01
when x1 = 1, so L

0�
1 ¼ l

0�
10 when x1 = 0 and L

0�
1 ¼

l
0�
01 when x1 = 1. Then, the estimation MBCUSUM control

statistic is as follows:

T�
k ¼ min 0; T�

k�1

� �
þ L

0�
k ; k¼ 1; 2;. . . ð13Þ

in which T�
0 ¼ 0: An alarm is released if T�

k � h
0
T ; and hc is

denoted as an integer multiple of 1
m

0 : For more details, see

Mousavi and Reynolds (2009).

Performance evaluation

Not that the ARL is not an suitable performance index

when comparing control charts based on various sample

sizes, Hence, instead we utilize the average number of

observations to signal (ANOS), considered as the expected

number of observations from the start of process moni-

toring until an alarm is released using the control

chart (Reynolds and Stoumbos 1999, 2000). When the

process is in-control, the ANOS should be large and the

number of false alarms should be small. Moreover, if

p shifts, it needs an index of how rapidly this augment is

shown.

In some control charts, such as CUSUM control charts,

the control statistics may not be at their starting values

when the shift in parameter occurs. Because observations

are gathered accumulately in the during time. Hence, the

steady state ANOS is applied based on the assumption that

the distribution of the control statistic occurs is the steady-

state distribution of this statistic when the increase in p,

conditional on any false alarms. In this regard, consider

first a process with p0 = .010 and p = .05 and the proposed

control chart based on samples of n = 100.

Table 1 shows the in-control ANOS and out-of-control

SSANOS values for the Bernoulli CUSUM chart and the

one-sided MBCUSUM chart as well as the two-sided

MBCUSUM chart. It is worth mentioning that control

limits in the CUSUM control charts have been set to obtain

an in-control ANOS nearly the same as for the Shewhart

control chart. Also, the ANOS and SSANOS values were

calculated by a simulation study using 10,000 simulation

runs for the exact MBCUSUM. In addition, the number of

states used is given at the bottom of the table when the

ANOS and SSANOS values of a control chart were given

using a Markov chain model. Note that the properties of the

approximate two-sided MBCUSUM control chart were

evaluated by modeling the statistics Tk and Sk as a Markov

chain similar to Mousavi and Reynolds (2009).

Succinctly, as seen in this table, the two-sided MBCU-

SUM chart has better performance than the Bernoulli

CUSUM and Shewhart control chart. In other words, the

proposed monitoring procedures work well and provide

appropriate ARL criteria. The results of simulation studies

show that the proposed MBCUSUM control chart performs

better than monitoring the autocorrelated Bernoulli obser-

vations. So we conclude that the MBCUSUM is a better

choice when there is autocorrelation.

Conclusion and future researches

Sometimes, there are binary observations from a process

that follow a two-state Markov chain model. In these sit-

uations, it has shown that the autocorrelation affects a

deleterious on traditional procedures designed for inde-

pendent observations due to many false alarms. Thus, the

two-sided MBCUSUM control chart proposed here is

based on a log-likelihood-ratio statistic obtained from the

two-state Markov chain model. The two-sided Bernoulli-

based MBCUSUM control chart can be well estimated

using a Markov chain, and this allows the two-sided
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MBCUSUM chart to be set up to have specific desired

statistical properties. For this aim, we used the general

result by Megahed et al. (2011) to set sufficient conditions

in which the ARL of the two-sided MBCUSUM procedure

can be obtained exactly from the ARLs of the corre-

sponding upper and lower CUSUM control charts. The

simulation studies showed the satisfactory performance of

the proposed control chart. Considering the other dis-

tributed observations and self-starting procedure could be

considered as future researches in this context.
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tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a
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made.
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