

تملیل هندسی شکستگیها در زون افیولیتی سبزوار

سیدمسین میرزینلی یزدی*۱، ممسن پورکرمانی^۷، مهران آرین^۳ و مممود الماسیان^۴

۱) دانشجوی دکتری گروه زمین شناسی، دانشگاه علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، mirzeinaly@gmail.com ۲) استاد گروه زمین شناسی، دانشگاه آزاد اسلامی واحد تهران شمال، mohsen.pourkermani@gmail.com ۳) استاد گروه زمین شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات ٤) استادیار گروه زمین شناسی، دانشگاه آزاد اسلامی واحد تهران شمال ۴) عهدهدار مکاتبات

دریافت: ۹۰/۱۰/۱۹ ؛ دریافت اصلاح شده: ۹۰/۱۲/۱۸؛ پذیرش: ۹۰/۱۲/۲۰؛ قابل دسترس در تارنما: ۹۱/۱/۳۱

مِکيده

زون افیولیتی سبزوار (SOZ) واقع در شمال ایران مرکزی (شمال گسل کویر بزرگ و جنوب گسل میامی) است که حوضه رسوبی کپه داغ در شمال را از فلات ایران مرکزی در جنوب جدا مینماید. زمان تکامل این مجموعه افیولیتی در کرتاسه فوقانی (سانتونین – کامپانین) و زمان جایگزینی آن کامپانین میانی تا ماستریشتین فوقانی بوده است. این نوار افیولیتی شامل حجم زیادی از سنگهای اولترامافیک، تودههای کوچک گابرویی و ترادفی ضخیم از گدازههای بازالتی زیردریایی همراه با آهکهای پلاژیک کرتاسه فوقانی و رادیولاریت است که بطور دگرشیب و با یک قاعـده کنگلـومرایی توسط سنگهای آتشفشانی و رسوبی پوشیده شده است. این مطالعه ساختارهای شکننده منطقه SOZ را جهت تحلیل هندسی آن بررسی می کند.

هدف این پژوهش تعیین الگوی ساختاری مناسب و منطبق با ساختارهای محدوده می باشد. در این پژوهش، وضعیت هندسی کلیه ساختارها و ارتباط های منطقی موجود بین شکستگیها و ساختارهای کلان منطقهای بررسی شد. برای نیل به این اهداف طی بازدیدهای صحرایی و بررسی تصاویر ماهوارهای ساختارهای محدوده شناسایی شده و مبنای تهیه نقشه ساختاری قرار گرفتند. با بررسیهای آماری دادهها و تهیه نمودارهای گل سرخی و کنتوری، روند اصلی شکستگیها و الگوی جهت گیری آنها بدست آمد. راستای بدست آمده N59W هماهنگ با امتداد قطعهای از گسل میامی بوده و ساختارهای منطقه متأثر از این گسل می باشند. اگر این راستا روند اصلی برش راستگرد منطقه در نظر گرفته شود، سایر روندهای بدست آمده از محدوده، با الگوی جهت گیری انواع شکستگیهای مرتبط با یک برش گسلی منطبق می شود. به طوری که شکستگیهای با روند N14E، N86E، N86E، N14E با الگوی جهت گیری انواع شکستگیهای مرتبط با یک برش گسلی منطبق می شود. به طوری که شکستگیهای با روند N14E، N86E، N86E، N14E

واژههای تلیدی: ساختارهای شکننده، گسل میامی، الگوی ساختاری، سنگهای اولترامافیک.

۱– مقدمه

منطقه مورد مطالعه در شمال غربی شهرستان سبزوار بین ۵۷ درجـه و ۲ دقیقه تا ۵۷ درجه و ۲۷ دقیقه طول شرقی و ۳٦ درجه و ۲۲ دقیقه تا ۳٦ درجه و ۳۰ دقیقه عرض شـمالی قـرار گرفتـه اسـت. در تصـویر ۱

موقعیت جغرافیایی و چهارگوش محدوده نشان داده شده است. در منطقه مورد مطالعه، نواحی کوهستانی توسط مجموعههای پریدوتیتی و جریانهای گدازه زیردریایی مربوط به کرتاسه، گدازهها و هیالوکلاستیهای ائوسن، سنگ آهکهای کرتاسه بالا _ پالئوسن و

کنگلومرای پلیوسن شکل پیدا کرده است. نواحی کم ارتفاعتر و نیز دشتها در محدوده سنگهای رسوبی میوسن پدیدار شده است. حوضه فروافتاده جنوب سبزوار نیز در حال حاضر به وسیله رسوبات کواترنر پوشیده شده است. تیپ و نوع عملکرد ساختهای تکتونیکی و ساختارهای شکستگی در این کمپلکس، به خصوص در زون

حاشیهای نشانگر فعالیت گسل های معکوس و امتدادلغز است. علاوه بر تکتونیک فعال عهد حاضر یکسری تغییر شکل های گوشتهای نیز در زمان قبل از جایگیری افیولیت روی بافت کانیایی پریدوتیت ها اثر گذار بوده است (Stöcklin 1968).

تصویر ۱- موقعیت جغرافیایی و چهارگوش محدوده مورد مطالعه

Mitra 1988, Ramsay & Huber 1987) یهنه های برشی کمک شایانی در شناخت سازوکارهای ایجاد آنها، تنشهای وارده، تاریخچه دگرشکلی، جهت تنش وارده در این مناطق میباشد (حاجی حسینلو ۱۳۸۷). تحلیل هندسی شکستگیها یک روش پایه در مطالعات ساختاری بوده و برای مناطق مختلف ایران و جهان انجام شده است. از آن جمله میتوان به تحلیل هندسی منطقه

این مطالعه ساختارهای شکنندهای را که در فرآیند شکل گیری کوهها پیشرفت کردهاند را به منظور تحلیل هندسی و تعیین الگویی که منطبق بر ساختارهای محدوده باشد، بررسی میکند. روش تحلیل هندسی، هندسه ساختارها را با هم مقایسه کرده و ارتباط منطقی بین شکستگیها برقرار میکند. همچنین میتوان به رابطه بین ساختارهای کلان منطقه و شکستگیهای محدوده مورد مطالعه پی برد (Marshak)

لانیز، جنوب البرز مرکزی (یساقی و همکاران ۱۳۸۱)، منطقه کندوان (نیک نـژاد و همکاران ۱۳۸۲)، سـه چاهون (میرزینلی و همکاران ۱۳۸۵)، چغارت (پورکرمانی و همکاران ۱۳۸۵)، نیمه باختری گسل میامی (باقری ۱۳۸۷)، (William 2003)، (Ford 2007) و بسیاری مقالات علمی متعدد اشاره نمود. از دستاوردهای این پژوهش و پس از شناخت مبانی ساختارها و تعیین الگوی جهت گیری ساختارهای منطقه، میتوان در بررسیهای تعیین میدان تنش منطقه و بازسازی نحوه تکامل ساختاری منطقه استفاده کرد.

۲- زمین شناسی و تکتونیک

منطقه مورد مطالعه بخشی از کمربند افیولیتی سبزوار واقع در شمال خرده قاره ایران مرکزی (شمال گسل کویر بزرگ) است که حوضه رسوبي کپه داغ در شمال را از فلات ايـران مركـزي در جنـوب جـدا مینماید. نوار افیولیتی شمال سبزوار یک فرازمین بلند بــا رونــد تقریبــاً شرقی _غربی را به نمایش می گذارد که مناطق پست جنوبی (دشت سبزوار) را از مناطق پست شمالی(دشت جوین) جدا مینماید. در منطقه مورد مطالعه این نوار افیولیتی که مرتفعترین بخـشهـای رشـته کوه جغتای را تشکیل میدهد شامل حجم عظیمی از سنگهای اولترامافیک (عمدتاً هارزبورژیت و خیلی کم دونیت و لرزولیت)، تودههای کوچیک گابرویی و ترادفی ضخیم از گدازههای بازالتی زیردریایی (دارای ساخت بالشی) همراه با آهکهای پلاژیک کرتاسه فوقانی و رادیولاریت است که بهطور دگرشیب و با یک قاعده کنگلومرایی توسط سنگهای آتشفشانی و رسوبی ـ آتشفشانی ائوسن میانی _ بالایی پوشیده شده است. بنابراین زمان تکامل ایـن مجموعـه افیـولیتی در کرتاسـه فوقـانی (سـانتونین _کامپـانین) و زمـان بـه هـم آمیختگی و جایگزینی آن قبل از ائوسن میانی است (میرینلی ۱۳۹۰).

طبق مطالعات فسیل شناسی که روی آهکهای پلاژیک منطقه صورت گرفته در مجموع ۸ جنس و ۱۷ گونه شناسایی شده و بر این اساس ۵ بیوزون شناسایی شده و در مجموع سن جایگزینی این مجموعه کامپانین میانی تا ماستریشتین فوقانی تعیین شده است. با مقایسه این نتایج با نتایج حاصل از دادههای رادیومتری یک انطباق نسبی بین این دو روش به دست خواهد آمد. لذا در نهایت میتوان نتیجه گرفت که سن جایگزینی افیولیت ملانژ ناحیه سبزوار کامپانین میانی تا ماستریشتین فوقانی بوده است (وحیدی نیا و آریایی ۱۳۷۸).

۳- روش مطالعه

مراحل رایج در انجام تحلیلهای هندسی شامل جمع آوری داده های میدانی، ترسیم نقشه ساختاری، پردازش و تفکیک داده ها، محاسبه

روندهای اصلی و در نهایت ارائه تحلیل با توجه به مکانیسم و روند ساختارها است. بر این اساس با انجام چندین مرحله بازدید میدانی دادههای مورد نیاز برای انجام مطالعات از جمله مشخصات صفحات گسلی و شواهد حرکتی سطح گسل ها برداشت گردید. مرحله بعد به کارگیری اطلاعات برداشتی جهت تهیه نقشه ساختاری محدوده میباشد که در این راستا از نقشه زمین شناسی ۱۰۰۰۰۰ ورقه باشتین، عکسهای هوایی و تصویر ماهوارهای منطقه نیز استفاده شده است. نقشه ساختاری تهیه شده که در تصویر ۲ نشان داده شده است مبنای تحلیل های بعدی میباشد. به منظور انجام تحلیل های هندسی کلیه اطلاعات گسل ها که شامل شیب، جهت شیب، طول و مکانیسم آنها است، وارد نرم افزار Dips شده، کنتور دیاگرام و رزدیاگرام آنها ترسیم گردیده و پس از تحلیل آنها روندهای اصلی ساختارهای محدوده بدست آمده است.

۲- ساغتارهای ممدوده مورد مطالعه

با توجه به اینکه بزرگترین گسل های اطراف هر منطقه از اساسی ترین عوامل موثر در شکل گیری آن منطقه و یا بروز تغییر شکل در آن بودهاند، به بررسی خصوصیات مهمترین گسلاطراف منطقه یعنی گسل میامی پرداخته میشود. این گسل یکی از گسلهای طولی و عمده ایران مرکزی است که از خاور شاهرود تا مرز افغانستان ادامه دارد. گسل میامی تا آخرین مراحل چین خوردگی آلپی در پلیوسن حرکت راست گرد داشته است. بارزترین ساختار تکتونیکی که در منطقه مشاهده می شود، شکستگی هایی می باشد که دارای طبیعت، سن و نقش متفاوت بوده و متـأثر از جنـبش،ای تکتـونیکی عهـد حاضـر هستند. اکثر این شکستگیها، گسلهای معکوس راستگرد میباشد که با مکانیسم حرکتی گسل میامی همخوانی دارد (باقری ۱۳۸۷). گسلهای ارائه شده از ایـن منطقـه شـامل برداشـتهـای صـحرایی و برداشتی از تصاویر ماهوارهای میباشند. جهت برداشت گسل ها طی عملیات صحرایی، تعدادی مسیر جهت پیمایش کے منطقہ تعیین گردید. به طوری که کل زون افیولیتی مربوطه را قطع کـرده و در طـی عبور از این مسیرها بتوان بیشترین ساختارها را در محدوده مشاهده و برداشت نمود. این مسیرها راستای تقریبا شمالی _جنوبی دارند. بعد از اتمام برداشت های صحرایی، نتایج بدست آمده با برداشت های ماهوارهای نیز تلفیق گردید و در نهایت نقشه ساختارهای منطقه با حدود ۱۸۰ گسل ترسیم شد. جدول ۱ مشخصات گسل های برداشتی و تصویر ۲ نقشـه سـاختاری منطقـه را نشـان مـیدهـد. در ادامـه شـرح مختصری در مورد تعدادی از سیستمهای گسلی محدوده ارائه شده است.

تصویر ۲– نقشه ساختاری زون افیولیتی سبزوار، الف) بخش شرقی، ب) بخش غربی

مكانيسم	طول کل (m)	جهت شيب	اندازه شيب(درجه)	نام گسل	مكانيسم	طول کل (m)	جهت شيب	اندازه شیب (درجه)	نام گسل
امتدادلغز راستگرد	3.50	٥٧	٩٠	F38	امتدادلغز چپگرد	۱۷۸۳	١٦	٩٠	F1
امتدادلغز راستگرد	122.	۲٥	٩٠	F39	امتدادلغز چپگرد	۳۳٦٥	١٥	٩٠	F2
معكوس راستگرد	٤٠٠٣	۱.	٧٩	F40	امتدادلغز راستگرد	0027	١٥	٩٠	F3
معكوس چپگرد	٥٨٢٢	٥٣	٦٥	F41	امتدادلغز چپگرد	٦٣٣٠	١٦	٩٠	F4
معكوس راستگرد	700V	٩	00	F42	معكوس راستگرد	٨٩٢.	۲۳	٣٢	F5
معكوس راستگرد	۲۳٦۲	۳۲.	٦٠	F42	معكوس راستگرد	۱۱۲۰٦	۲۲.	٧.	F6
نرمال	1.41	•	٤٥	F43	-	7710	١٨	٩٠	F7
نرمال	٩٢٥	٦٣	٤٥	F43	امتدادلغز راستگرد	2012	١٤٨	٩٠	F8
معكوس راستگرد	1271	۳۳.	АЛ	F44	-	2221	١٤٧	٩٠	F9
امتدادلغز راستگرد	0272	١٨٦	٩٠	F45	امتدادلغز راستگرد	1779	110	٩٠	F10
امتدادلغز چپگرد	١٠٩٨٣	١٩	٥٢	F46	-	1 VAV	٣٦	٩٠	F11
نرمال راستگرد	17077	212	٧٥	F47	-	٤٢٠٨	١	٩٠	F12
نرمال چپگرد	907	10.	٧.	F48	-	7709	۳.	٩٠	F12
نرمال راستگرد	29.2	۲٦	٥٩	F49	نرمال چېگرد	91	۳٥٩	۳.	F13
امتدادلغز راستگرد	7017	٣٢	٩٠	F50	نرمال چېگرد	۳۷۷۰	۳۲.	۳.	F13
امتدادلغز چپگرد	۳۲٦.	11	٩٠	F51	امتدادلغز چپگرد	11.4	١٧٩	٩٠	F14
-	34.2	١٤٨	٩٠	F52	امتدادلغز چپگرد	٦٢٨	110	٩٠	F15
-	۲۰۵۳	۲۳	٩٠	F53	نرمال چپگرد	۳۰۲٦	۱۸۰	٧.	F16
امتدادلغز راستگرد	0.27	١٨	٩٠	F54	نرمال چېگرد	70.9	۲.	٧.	F17
معكوس راستگرد	7889	•	۲٥	F55	نرمال راستگرد	٨٥٠٥	rov	٨٥	F18
معكوس راستگرد	1077.	٣٠	۲٥	F55	امتدادلغز راستگرد	٩٦٤٨	۳٥٨	٥٨	F19
معكوس راستگرد	٤٢٤٩	۲۰٥	٤٥	F56	نرمال راستگرد	7270	170	٧.	F20
معكوس راستگرد	٥٢٩٦	۱۸۰	٤٥	F56	نرمال	०१९٣	٤٣	٧٥	F21
نرمال	۱۳۲۸	۳	7.4	F57	امتدادلغز راستگرد	1175	٤٩	٩٠	F22
چپگرد معکوس	Y00/	٣٤٠	٧A	F58	چپگرد نرمال	2422	٥٣٣	۳.	F23
معكوس چپگرد	٤٨١٢	١٦٣	٥٠	F59	چپگرد معکوس	1917	۳٥٠	٧٩	F24
معكوس چپگرد	2.51	702	٧٢	F60	امتدادلغز چپگرد	070V	١٤	٨٥	F25
نرمال چپگرد	0127	٣٢٤	٤٢	F61	نرمال راستگرد	2970	۱.	V9	F26
-	19/1	777	۷٥	F62	امتدادلغز راستگرد	٩٦٢	٣٣	٩٠	F27
-	17.7	۲۸۰	٧٣	F63	نرمال راستگرد	8797V	١٢	۷٥	F28
-	1744	777	٩٠	F64	نرمال چپگرد	٥٣٣٨	300	٦٥	F29
چپگرد معکوس	3997	٣٤٠	٦٥	F65	امتدادلغز راستگرد	2222	٤٠	٩٠	F30
نرمال چپگرد	٥٣١٠	۲.	٦٩	F66	امتدادلغز راستگرد	٢٣٤٥	٤٦	٩٠	F31
معكوس چپگرد	٤٨٥٥	١٦	00	F67	امتدادلغز راستگرد	7797	٥١	٩٠	F32
معكوس راستگرد	71EV	۱۸.	٨٥	F68	-	۲۷۰۹	٥	٩٠	F33
معكوس راستگرد	19.7	٥٢٣	00	F69	امتدادلغز راستگرد	٩٥٥	٤٦	٩٠	F34
امتدادلغز چپگرد	1077	۲۲	٤٨	F70	-	٩٦٣	۲۲	٩٠	F35
معكوس چېگرد	٤٢٥٨	۰۰	۸۰−٦۰	F71	نرمال راستگرد	119.9	۲۲	٥٩	F36
امتدادلغز چپگرد	1229	۲۷.	٦٥	F72	امتدادلغز راستگرد	7.91	٥٣	٩٠	F37

جدول ۱- مشخصات و مکانیسم گسلهای برداشت شده

مكانيسم	طول کل (m)	جهت شيب	اندازه شيب(درجه)	نام گسل	مكانيسم	طول کل (m)	جهت شيب	اندازه شيب (درجه)	نام گسل
معكوس چپگرد	17719	۲۱.	٨٠	F111	نرمال چپگرد	٩٧٩	٩٠	٣٥	F73
امتدادلغز راستگرد	7577	۲۸	٩٠	F112	نرمال راستگرد	٩٠١	۱۷۰	٤٠	F74
-	٤٥٥٨	۲٦	٩٠	F113	معكوس راستگرد	A119	800	٦٧	F75
معكوس راستگرد	1890	٩٧	٦٤	F114	معكوس راستگرد	7770	٣٤٠	٣٥	F76
امتدادلغز راستگرد	٥٢٤٣	٣٠	٩٠	F115	نرمال چپگرد	٤٨٦٩	۳.	٥٠	F77
امتدادلغز راستگرد	١٩٩٩	٤٥	٩٠	F116	معكوس راستگرد	٧٤٣	۳۱.	٣٥	F78
امتدادلغز راستگرد	2412	177	٩٠	F117	نرمال چپگرد	8729	٣٤٠	٨.	F79
امتدادلغز چپگرد	W1W	102	٩٠	F118	معكوس راستگرد	००९१	٥	٦٠	F80
امتدادلغز چپگرد	2219	٦٦	٩٠	F119	معكوس راستگرد	1.4.7	۱۸۰	۸.	F81
امتدادلغز راستگرد	1975	۲	٩٠	F120	معكوس چپگرد	۳۱٦۰	17.	٣٠	F82
معكوس راستگرد	٤٣٤٩	٨٦	٦٤	F121	نرمال	۷۱۷۸	٤٠	۸.	F83
معكوس راستگرد	7777	۲١٥	٦٠	F122	معكوس راستگرد	۳۰۸٥	17.	٥٦	F84
امتدادلغز راستگرد	۸٦٠٠	۱.	٩٠	F123	نرمال چېگرد	٧٢٨٦	٤٠	77	F85
نرمال راستگرد	٤٥٧٠	٤٠	٦٢	F124	-	7111	١٧٥	٧.	F86
امتدادلغز چپگرد	٢٨٤٣	175	٩٠	F125	-	7778	197	٩٠	F87
معكوس راستگرد	0717	٣٥	٨٥	F126	امتدادلغز چپگرد	1200	٦٧	٩٠	F88
نرمال	27450	٣٠	٥٠	F127	نرمال راستگرد	1775	١٥٩	٣٥	F89
نرمال	172.	10V	٩٠	F128	-	٤٤١٤	77	۰۰	F90
نرمال	١٨٣٨	107	٩٠	F129	-	Y•VA	٢٢٥	۰۰	F91
نرمال	١٠٨١	١٥٨	٩٠	F130	-	5121	٨	٩٠	F92
نرمال راستگرد	7777	٥٣	٦٢	F131	-	1471	٦٢	٩٠	F92
امتدادلغز راستگرد	۳٦١٢	٥٣	٩٠	F132	معكوس چپگرد	٣٦٤٥	۳.	٣٨	F93
معكوس	1290	19.	٤٠	F133	امتدادلغز راستگرد	2012	۳۳۵	00	F94
نرمال راستگرد	1217	۲.,	٨.	F134	نرمال راستگرد	0077	۱.	۰۰	F95
نرمال	٩٢٦	100	٩٠	F135	معكوس راستگرد	٣٨٦٢	151	٨.	F96
امتدادلغز راستگرد	3797	۲۷	٩.	F136	نرمال چېگرد	79	١٣٣	٨٥	F97
-	٣٤٧٠	177	٩.	F137	نرمال چپگرد	١٧٨٠	112	٨.	F98
شيبلغز معكوس	1727	٦٥	۳.	F138	امتدادلغز چپگرد	٣٢٤٨	٣٢	٩.	F99
شيبلغز معكوس	١٨٦١	٦٧	٣٥	F139	معكوس راستگرد	1 2 1 2	12.	٨.	F100
امتدادلغز چپگرد	2415	V٦	٩.	F140	امتدادلغز راستگرد	224.	٤٣	٩.	F101
امتدادلغز راستگرد	0777	v	٩.	F141	معكوس راستگرد	17827	٢٠٤	٧٥	F102
امتدادلغز راستگرد	0907	٦	٩٠	F142	معكوس راستگرد	2297	٣٤٠	٦.	F103
نرمال	٤٨٢٤	302	٣٨	F143	نرمال راستگرد	١٨٩٨٥	٣٢	٨١	F104
-	0129	٤٥	٩٠	F144	نرمال راستگرد	۸٦١٦	۳.	٨١	F105
نرمال راستگرد	18989	۲۱۳	٧٦	F145	امتدادلغز راستگرد	٤٠٤٩	۱.	۲.	F106
امتدادلغز چپگرد	1 444	٣٤٨	٩٠	F146	امتدادلغز راستگرد	~~~~~	٩	٩٠	F107
امتدادلغز چپگرد	1017	٨٣٣	٨٥	F147	معكوس راستگرد	٣٤٣٢	۳۳.	٥٦	F108
امتدادلغز چپگرد	۲۹۷۸	٤٧	٩٠	F148	امتدادلغز چپگرد	174.	177	٩٠	F109
-	2411	٣	٩.	F149	-	٥٠٧٣	٦١	٩.	F110

ادامه جدول ۱– مشخصات و مکانیسم گسل های برداشت شده

مكانيسم	طول کل (m)	جهت شيب	اندازه شيب(درجه)	نام گسل	مكانيسم	طول کل (m)	جهت شيب	اندازه شیب (درجه)	نام گسل
نرمال راستگرد	۷۲۵۰	777	٧.	F167	امتدادلغز چپگرد	A11	٥٩	٩٠	F150
-	١٨٠٦	٦١	٩٠	F168	شيبالغز معكوس	1977	7777	٤٥	F151
معكوس چپگرد	1120	719	٦٥	F169	شيبلغز نرمال	1777	242	۸.	F152
نرمال راستگرد	1291	٩١	٤٦	F170	-	1200	٣٣	٩٠	F153
نرمال راستگرد	7177	۳۲٥	۲٥	F171	امتدادلغز راستگرد	۳٩٠	٩٤	٩٠	F154
-	۳۱٤٣	TTV	٥٠	F172	امتدادلغز راستگرد	٥٤٧	٣٤	٩٠	F155
معكوس	0.71	۲۱۳	٦٠	F173	امتدادلغز راستگرد	1017	215	٤٠	F156
-	۳۰٥٣	٥٢	٩٠	F174	امتدادلغز راستگرد	٩١٦	٢٥	٩٠	F157
شيبلغز معكوس	٧٩٦٥	٣٢	٣٣	F175	امتدادلغز راستگرد	٤٥٧	۳۱	٩٠	F158
شيبلغز معكوس	٦٣٠٥	۲٦	۳٥	F176	معكوس راستگرد	920	777	۷٥	F159
-	1910	٦٧	٩٠	F177	امتدادلغز راستگرد	٥٢٨	٤٩	٩٠	F160
نرمال راستگرد	۲۷۹۸	١٠٧	٦٠	F178	امتدادلغز چپگرد	٣٠٥٦	٧٩	٩٠	F161
نرمال راستگرد	1 222	٨.	٤٤	F179	معكوس راستگرد	τενλ	٥٣٣	۷٥	F162
شيبلغز معكوس	2224	۲۹	٤٠	F180	معكوس	371V	۳۳۰	٥٠	F163
امتداد لغز راستگرد	7717	۱.	٩٠	F181	امتدادلغز راستگرد	٥٧٥١	٣٤٧	٩٠	F164
شيبلغز معكوس	917.	٦٠	۸.	F182	معكوس چپگرد	9797	777	٧٢	F165
					نرمال چپگرد	٥٠٠٤	170	٤٦	F166

ادامه جدول ۱- مشخصات و مکانیسم گسل های برداشت شده

F₂₈ گسل

گسل F₂₈ دارای امتداد کلی شمال غرب _ جنوب شرق (S78E) و شیب رویه ۷۵ درجه به سمت شمال می باشد. ادامه شمال غربی آن به گسل F₃₆ ختم شده است. در واقع این گسل شکستگی ریدل (R) از گسل F₃₆ می باشد. طول گسل حدود ۳۳۹۷ متر بوده و سازوکار حرکتی آن همانند گسل F₃₆ نرمال راستگرد است. موقعیت هندسی خطواره لغزشی این گسل بصورت ۱۵/۷٤ می باشد. تصویر ۳ نمایی از صفحه گسل مذکور و همچنین قسمتی از زون خرد شده آن را نشان می دهد.

F₅₆ گسل

سازوکار حرکتی این گسل شیب لغز معکوس با مولفه امتدادلغز راستگرد است. گسل دارای دو امتداد شمال غربی – جنوب شرقی و شرقی – غربی است که می توان گفت مسبب این تغییر در روند، گسل F₅₇ است که با حرکت چپگرد خود باعث جابجایی و تغییر امتداد F₅₆ گردیده است. ۲۲٤۹ متر از F₅₆ دارای امتداد N89E و شیب صفحه گسلی ۷۰ درجه به سمت جنوب می باشد. ادامه گسل با امتداد

شمال غربی _ جنوب شرقی (S65E) دارای ۲۹۹۵ متر طول و ۲۰ درجه شیب رویه به طرف جنوب غربی است. موقعیت هندسی خطواره لغزشی این گسل بصورت ۱۳۸/٤۳ میباشد.گسل F₅₆ احتمالا گسل ریدل (R) گسل F₅₅ است. گسل های F₅₇ F₅₄ و F₆₁ این گسل را در مسیر حرکت خود جابجا کردهاند. تصویر ٤ خط اثر گسل مورد بحث را نشان میدهد و جهت حرکت فرادیواره روی آن مشخص شده است.

F₆₁ کسل F₆₁

گسلی طویل با طول حدود ۱۹۱۲ متر و امتداد شمال شرقی _ جنوب غربی (N54E) است. شیب گسل روی صفحات مختلف گسلی از ۲۲ تا ۷۰ درجه متغیر و به سمت شمال غرب دارای مکانیسم حرکتی نرمال چپگرد میباشد. موقعیت هندسی خطواره لغزشی این گسل نرمال چپگرد میباشد. گسل مذکور گسلهای F55 و F56 را جابجا کرده است. گسل F61 را میتوان به عنوان شکستگی کششی (T) گسل F46 در نظر گرفت. همان گونه که در نقشه نیز مشخص میباشد، این شکستگیها با دیواره زون برشی (F46) زاویه ٤٥ درجه میسازد.

تصویر ۳– رخنمون گسل F28 و زون خرد شده وابسته به آن (دید به سمت شمال غرب)

تصویر ٤- خط اثر گسل F56 و نمایش حرکت فرادیواره (دید بهسمت شمال)

میرزینلی یزدی و همکاران: تحلیل هندسی شکستگیها در زون افیولیتی سبزوار

تصویر ۵- موقعیت گسل F61 به عنوان شکستگی کششی T ازگسل F46

F₈₁ گسل F₈₁

لغزشی آن ۱۳۳/۷٦ میباشد.میباشد. گسل F₈₁ در مسیر حرکت خود باعث جابجایی گسلهای F₇₇ ، F₈₅ ، F₈₅ ، F₁₇₈ و F₇₁ به صورت راستگرد شده است.تصویر ٦ از محل تقاطع این گسل با گسل F₈₅ را نشان میدهد. همانطور که در شکل نیز مشخص میباشد، گسل F₈₁ باعث جابجایی F₈₅ شده است.

گسل F_{81} دارای امتداد کلی شرقی _غربی است و ادامه غربی آن توسط F_{13} محدود شده است. گسلی است طویل با طول ۱۰۸۰۲ متر که دارای روند N90E میباشد. شیب گسل ۸۰ درجه به سمت جنوب و مکانیسم حرکتی آن معکوس راست گرد و موقعیت هندسی خطواره

تصویر ٦- محل تقاطع دو گسل \mathbf{F}_{81} و \mathbf{F}_{85} (دید به سمت جنوب شرق)

F₈₂ کسل -۵-۴

درازای گسل حدود ۳۱٦۰ متر و امتداد آن شـمال شـرقی- جنـوب غربی (N30E) است. سازوکار حرکتی گسل دارای دو مولفه شیبالغـز معکوس و امتدادلغز چپگرد است. شیب صفحه گسلی نیز ۳۰ درجـه به سمت جنوب شرق مـیباشـد. موقعیـت هندسـی خـش لغـز گسـل

۱٦٥/٢٦ میباشد. این گسل باعث جابجایی گسل های متعددی چون F84 ،F85 و F83 به صورت چپگرد شده است. تصویر ۷ خط اثر گسل مورد بحث را نشان میدهد و جهت حرکت فرادیواره روی آن مشخص شده است.

تصویر ۷- خط اثر گسل F₈₂ و نمایش حرکت فرادیواره (دید بهسمت شمال)

F₈₅ حسل F₈₅

گسل F_{85} با امتداد کلی شمال غربی _ جنوب شرقی و طول ۲۸۸ متر، توسط گسل های F_{82} (به صورت چپگرد)، F_{84} و F_{81} (به صورت راستگرد) جابجا شده است. سازوکار حرکتی این گسل با توجه به خطواره های بسیار شاخص آن، شیب لغز نرمال با مولفه امتداد لغز چپگرد است. امتداد گسل S52E و شیب صفحه گسلی آن ۷۲ درجه به سمت شمال شرقی می باشد. ادامه شمال غربی گسل از محدوده نقشه منطقه مورد مطالعه خارج شده و انتهای جنوب شرقی آن به گسل F_{80} ختم می گردد. تصویر ۲ صفحه قرمز رنگ این گسل و خش لغزهای بسیار مشخص آن را، نشان می دهد.

۵– بررسی آماری کسستگیهای توده سنگ

جهت انجام مطالعات آماری سیستم شکستگی های محدوده مورد بررسی، مشخصات لازم گسل ها برای ترسیم دیاگرام های گلسرخی و کنتوری از نقشه ساختاری محدوده استخراج گردید. این مشخصات شامل طول، امتداد، شیب و جهت شیب هر یک از گسل ها میباشد. گسل های محدوده طرح، بر اساس دو پارامتر امتداد و امتداد طول در گروه های امتدادی ۹ درجه ای دسته بندی شده و سپس هم بر اساس امتداد و هم بر اساس طول آن ها نمودار مورد نظر ترسیم گردید (تصویر ۸-الف و ب).

به دلیل اینکه در نمودارهای گلسرخی که بر اساس پارامتر امتداد تهیه می شود، ارزش تکتونیکی یک گسل کوتاه برابر با گسلی طویل تلقی می گردد، نمودارهای مذکور بر اساس پارامتر طول گسل های موجود در ناحیه واقع در یک گروه امتدادی خاص نیز تهیه شده است (پهلوانی و پورکرمانی ۱۳۸۷). نمودار گل سرخی گسل های منطقه نشان دهنده جهت نیروهای فشارشی و جهت نیروهای کششی وارد شده به این پهنه در زمان تشکیل این گسل ها می باشد. نتایج بهدست آمده از نمودارها نشان می دهد که در هر دو مورد شش دسته اصلی گسل

وجود دارد. این شش دسته عبارتند از گسل های با آزیموت 014، 068، 086، 103، 121 و 139 درجه. در هر دو نمودار بیشترین امتداد مربوط به امتداد 121 درجه می باشد. کنتور دیاگرام های تفکیکی گسل ها نیز ترسیم شد (Leyshon & Lisle 1996). این دیاگرام ها به ترتیب شامل کلیه گسل های معکوس، نرمال، امتدادلغز راستگرد و امتدادلغز چپ گرد می باشد که در تصویر ۹-الف تا ۹-د دیده می شود. در هر یک از دیاگرام های بدست آمده روند اصلی سیستم های گسلی تفکیک شده است (میرزینلی ۱۳۹۰).

ج) گسل های امتدادلغز راستگرد، د) گسل های امتدادلغز چپگرد

۴– تعیین ارتباط بین گسل میانی و سافتارهای ممدوده

مىباشد.

با بررسیهای آماری روی ساختارهای این محدوده، ارتباط منطقی بین روندهای بدست آمده از ساختارها و روند کلی منطقه بدست آمده است. هرگاه در یک منطقه یک گسل اصلی (در اینجا گسل میامی)

گسل میامی با مکانیسم امتـدادلغز راسـتگرد در شـمال زون افیـولیتی سبزوار قرار دارد (باقری ۱۳۸۷). طبق نقشههای تکتونیکی ایران، امتداد کلی گسل میامی در نزدیکی محدوده مورد مطـالعه حـدود ۱۲۰ درجـه ٤- شکستگیهای کششی یا گسلهای نرمال یا برشهای T که با راستای پهنه جابجایی اصلی(PDZ) زاویه ٤٥ درجه می سازند (PDZ) پهنه جابجایی اصلی(PDZ). شکستگیهای کششی به موازات محور کوتاه شدگی و نیمساز زاویه میان R , 'R را تشکیل می دهند.
٥- شکستگیهای نوع C: شکستگیهای برشی که همسو و هم جهت با حرکت گسل می باشند.
٦- شکستگیهای نوع X: شکستگیهای برشی کمیاب و غیرهمسو با گسل که در صورت توسعه، قرینه شکستگیهای نوع 'R می باشند (Bartlet et al. 1981).

می توان در تصویر ۱۰ مشاهده نمود. البته گسل میامی که ساختار اصلی ناحیه می باشد، در محدوده نقشه ساختاری منطقه رخنمون ندارد. بوجود می آید، تعدادی شکستگی به ترتیب زیر در اثر آن و در اطراف گسلش اصلی ایجاد می شود (Sylvester 1988): ۱- شکستگی های نوع R که شکستگی های برشی همسو با حرکت گسل بوده و به طور متوسط با زاویه ۱۵ درجه نسبت به دیـواره گسـل

اصلی توسعه مییابند و به شکستگی های سینتتیک و شکستگی های پر مانند نیز معروفند. ۲- شکستگیهای نوع 'R: شکستگیهای برشی غیرهمسو با حرکت

گسل که بهطور متوسط با زاویـه ۷۵ درجـه نسبت بـه دیـواره گسـل گسترش پیدا میکند.

۳- گسلهای راستالغز سینتیک دومین یا برشهای P که تحت زاویه
 ۱۵ درجه با جهت برش قرار دارند و جهت حرکتشان با جهت برش
 اصلی، همسو است (Tchalenko 1970).

تصویر ۱۰- جهت گیری انواع شکستگی ها در ارتباط با برش گسلی (Woodcock 1994)

۷- نتيمەكىرى

با توجه به رز دیاگرامهای ترسیم شده، شش روند اصلی برای انواع گسلهای منطقه تشخیص داده می شود. طبق این بررسی ها روند اصلی و غالب گسلهای منطقه شمال غرب _ جنوب شرق با آزیموت ۱۲۱ درجه می باشد. این راستا کاملا منطبق بر امتداد قطعهای از گسل میامی می باشد که در نزدیکی شمال محدوده مورد مطالعه قرار دارد. با توجه به فرآیند تشکیل شکستگی های برشی مرتبط با گسل های امتدادلغز اصلی، می توان ارتباط منطقی بین روندهای شناسایی شده در محدوده

مورد مطالعه و الگوی جهت گیری انواع شکستگیها در ارتباط با یک گسل تشخیص داد بهطوریکه: شکستگیهای با روند 014 در محدوده، منطبق بر شکستگیهای نوع X، شکستگیهای با روند 068 در محدوده، منطبق بر شکستگیهای نوع R، شکستگیهای با روند 086 در محدوده، منطبق بر شکستگیهای نوع T. Bartlet, W. L., Friedman, M. & Logan, J. M., 1981, "Experimental folding and faulting of rocks under confining pressure", *Part IX, Wrench faults in limmestone layers, Tectonophysics, Vol. 79: 255-277.*

Ford, M., de Veslud, Le C. & Bourgeois, O., 2007, "Kinematic and geometric analysis of fault-related folds in a rift setting: The Dannemarie basin, Upper Rhine Graben, France", *Journal of Structural Geology, Vol. 29* (11): 1811-1830.

Leyshon, P. R. & Lisle, R. J., 1996, "Stereographic projection techniques in structural geology", *Cambridge University Press*, 104 pp.

Marshak, M. & Mitra, G., 1988, "Basic methods of structural geology", *Prentice Hall, Englewood Cliffs, New Jersey, 446 pp.*

Price, N. J. & Cosgrove, J. W., 1994, "Analysis of geological structures", *Cambridge University Press*, 502 pp.

Ramsay, J. G. & Huber, M., 1987, "The techniques of modern structural geology", *Folds and Fractures, Academic Press, London, Vol. 2: 307 pp.*

Stampfli, G. & Borel, G. D., 2002, "A plate tectonic model for the Palaeozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones", *Earth Planet. Sci. Lett.*, *Vol. 196: 17–33*.

Stöcklin, J., 1968, "Structural history and tectonics of Iran", American Association of Petroleum Geologists Bulletin, Vol.52 (7):1229-1258.

Sylvester, A. G., 1988, "Strik slip fault", GSA Bull., 100 pp.

Tchalenko, J. S. & Ambraseys, N., 1970, "Structural analysis of the Dasht-e-Bayaz (Iran) earthquake fractures", *Geol.Soc.Am.Bull., Vol.* 81: 41-60.

Tchalenko, J. S., 1970, "Similarities between shear zones of different magnitudes", *Geological Society of American Bulletin, Vol. 31: 1625-1640.*

William, R., 2003, "Geometric analysis of fold development in over thrust Terranes", *Journal of Structural Geology, Vol. 9 (2) 207-219.*

Woodcock, N. H. & Schubert, C., 1994, "Continental strike–slip tectonics, in Honcock, P. L. (Ed), Conitental tectonic", *Pergamon Press, Oxford: 251-263.*

شکستگیهای با روند 103 در محدوده، منطبق بر شکستگیهای نوع R،

شکستگیهای با روند 121 در محدوده منطبق بر شکستگیهای نـوع D.

و شکستگیهای با روند 139 در محدوده منطبق بـر شکسـتگیهـای نوع P میباشد.

بهطور کلی از مباحث فوق میتوان چنین نتیجه گرفت که تنشهای وارده بر منطقه مورد مطالعه کاملاً تحت تأثیر تکتونیک منطقه میباشد. طبق مطالعات انجام شده اینگونه بهنظر میرسد که بر اثر حرکت راستگرد گسل میامی ساختارهای ایجاد شده در محدوده مورد مطالعه ایجاد گردیده است.

مراجع

باقری، ف.، سعیدی، ع. و بوذری، س.، ۱۳۸۷، "تحلیل هندسی و جنبشی نیمه باختری گسل میامی"، *فصلنامه علوم زمین، سال ۱۸ (۲۹):* ۲۲-۲۳.

پهلوانی، آ.، پور کرمانی، م.، ۱۳۸۷، "تفسیر هندسی مدل ساختاری گل مانند مثبت و منفی"، فصلنامه زمین شناسی کاربردی دانشگاه آزاد اسلامی واحد زاهدان، سال ٤ (۲): ۹۲–۹۰.

پورکرمانی، م.، میرزینلی یزدی، س. ح. و کارخیران، ۱.، ۱۳۸۵، "تحلیل ساختاری معدن سنگ آهک چغارت"، فصلنامه زمین شناسی کاربردی، سال ۲ (۲): ۲۲–٤٤.

حاجی حسینلو، ح.، ۱۳۸۷، "تحلیل ساختاری و ریز ساختاری پهنه برشی اقلید"، مجله علوم پایه دانشگاه آزاد اسلامی، سال ۱۸ (۲۹): ۲۲-۱۳.

میرزینلی یزدی، س. ح.، ۱۳۹۰، "تعیین جهت گیری تنش در زون افیولیتی سبزوار"، رساله دکتری، دانشگاه آزاد واحد علوم و تحقیقات تهران، ۱۹۵ ص.

میرزینلی یزدی، س. ح.، پورکرمانی، م. و کارخیران، ا.، ۱۳۸۵، "تحلیل شکستگی های معدن سنگ آهن سه چاهون"، مجله علوم پایه دانشگاه آزاد اسلامی، سال ۱۲ (۲۱): ۷۶–۲۳.

نیک نژاد، س.، یساقی، ع. و محجل، م.، ۱۳۸۲، "تحلیل هندسی و جنبشی گسلهای راندگی منطقه کندوان، البرز مرکزی"، *هفتمین* همایش انجمن زمین شناسی ایران، اصفهان، ۲۵۲-۲۰۹.

وحیدی نیا، م. و آریایی، ع. ا.، ۱۳۷۸، "تعیین سن افیولیت ملانژ ناحیه سبزوار بر اساس داده های فسیل شناسی و مقایسه آن با داده های رادیومتری"، سومین همایش انجمن زمین شناسی ایران، انجمن زمین شناسی ایران، شیراز، ۲۸۲-۱۸۶.

یساقی، ع.، محجل، م. و عباسی، ع.، ۱۳۸۱، "تحلیل هندسی-جنبشی و استرین گسلها و چینهای مرتبط در منطقه لانیز، جنوب البرز مرکزی"، ششمین همایش انجمن زمین شناسی ایران، کرمان، ۲۷۹-۲۸٤.