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ABSTRACT

Pressuremeter is one of the most reliable in-situ tests in geotechnical engineering. Soil deformation
modulus has been related empirically to the pressuremeter modulus (E ) obtained from the pressure-
volume change curve from this test. In general, the pressuremeter test is time-consuming and costly that
requires experienced operators. Various parameters might also affect the test results. With these
limitations, it is necessary to introduce equations and models for indirect determination of the E .
Artificial neural network (ANN) is a very useful technique for modeling complex relationships between
input and output data sets. The ANN models often produce more accurate results compared with the linear
regression methods. The main purpose of this research is to introduce a new ANN model for prediction of
the EPM. The data used in this research is taken from 41 pressuremeter tests in soils of Tehran. In order to
estimate EPM, parameters such as grain size distribution, depth of test, and moisture content are
considered as input (independent) variables. The coefficient of determination (R 2 ) for the training,
validation, and test data sets were 0.736, 0.906, and 0.801, respectively. Acceptable correlations and errors
of network predictions in comparison with the actual values of EPM show the accuracy and efficiency of
the designed model. Sensitivity analysis revealed that the grain size distribution is the most effective
parameter among the variables on the E .
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1. Introduction

The soil deformation modulus is usually evaluated from the
in-situ and laboratory tests. In-situ tests are more reliable since
the initial natural conditions of the medium are preserved and less
disturbed to soil samples tested in the laboratory. The
pressuremeter is one of the most important in-situ tests for
determining the soil deformation modulus. The test has been
developed in both technical aspects and theoretical modifications.
Menard type pressuremeter equipment consists of two main parts:
the read-out unit, which rests on the ground surface, and the probe
that is inserted into the borehole. The pressuremeter is lowered
into the pre-bored hole and a uniform pressure is applied to the

borehole walls by means of an inflatable flexible membrane. The
pressure applied to the borehole walls is increased every 60 sec in
order to deform the borehole walls (Ozvan et al., 2017). The
pressure is held constant for 30 and 60 sec and the increase in
volume required maintaining constant pressure is recorded
(ASTM 2000; Baguelin et al., 1978; Clarke, 1995; Maier and
Wood, 1987; Azarafza et al., 2014).

The pressure‐volume curve obtained from this test is used to
determine the pressuremeter modulus (E ). This modulus is
calculated using the quasi‐linear part of this curve within an
interval defined by two specific pressure values: P0 which is
roughly equivalent to the horizontal earth pressure at rest and the
pressuremeter creep pressure Pf (Fawaz et al., 2014). The EPM
has been related empirically to the elastic modulus of the soil as
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EPM/E = α, (Menard, 1965), where α is termed by Menard as the 
rheological coefficient and has a value between 0 and 1. 

Using Pressuremeter is expensive and time-consuming, and it 
requires proficient technical personnel. With these limitations, it 
is necessary to introduce models for indirect determination of the 
EPM. In this regard, researchers have proposed various models 
and relationships for estimating EPM considering the soil 
properties and results of other tests (Ohya et al., 1982; Yagiz et 
al., 2008; Bozbey and Toghrol, 2010; Keyabbasi, 2012; Azarafza 
and Asghari-Kaljahi, 2016). 

Recently, intelligent methods such as the artificial neural 
network (ANN) have been widely applied for predicting such 
complex problems. For example, Adalag et al. (2013) introduced 
several ANN models for estimating EPM in clayey soils. Rashed et 
al. 2012 presented two models to predict of EPM based on linear 
genetic programming (LGP) and ANN methods. These authors 
used parameters such as grain size distribution and soil 
characteristics (liquid index, moisture content, and density) as the 
independent variables of their models. Although one of the 
advantages of the pressuremeter test is that it can be carried out in 
every soil and even in weak rocks, most of these models are for 
fine-grained clayey soils. Therefore, it is necessary to develop 
new relations to predict EPM of fine-grained and coarse-grained 
soils. The present study was conducted to introduce a new ANN 
model for estimating EPM in soils. 

 

2. Materials and Methods 

2.1. Data Collection 
The data used in this research were taken from41 Menard 

pressuremeter tests for fine-grained and coarse-grained soils in 13 
geotechnical projects performed in Tehran, Iran (Figure 1). 
Geologically, Tehran is a city in which sandy and gravelly coarse-
grained soils exist in the north part of the city while they are 
transitionally changed to fine-grained clayey soils in its south 
part. Table 1 presents the soil type and projects from which the 
data were supplied. As can be noticed, all soil classes exist in 
these projects. The range of data variation is given in Table 2. It is 
noteworthy that all tests were performed with the same apparatus 
(Menard, GC model, APAGEO, 2016) and Standard (ASTM 
2000).  

The grain size distribution and mechanical properties of the 
soils were determined in the laboratory by performing a series of 
tests on disturbed and undisturbed samples. As mentioned earlier, 
depth of test, the moisture content and the percentage of various 
types of soils were used as independent variables. The graph of a 
pressure versus volume change of the pressuremeter test is shown 
in Figure 2 for one of these tests. 

 
2.2. Methodology 

ANN is a computational approach inspired by the basic 
functionsof neural architecture of the biological systems and 
mainly the human brain. Nowadays, ANN can be applied to 
problems that cannot be easily solved with an algorithm or very 

complex to describe. ANN formulates a mathematical model for a 
system in which no clear relationship is available between the 
inputs and outputs (Kiran and Lal, 2016). Over the last decade, 
Artificial Intelligence has been applied successfully implemented 
in many problems in geotechnical engineering (Tarwaneh, 2017; 
Azarafza et al., 2018). Bendana et al. (2008) described ANN as 
“massively parallel distributed processor” that can store 
information taken from a data set that is supplied out of the 
network. The ANN system consists of at least three layers. The 
first layer has the input parameters, while the last layer contains 
the output. Between these two layers, there are one or more 
hidden layers, which are for delineating and learning the patterns 
governing the network’s data. The development of an ANN 
model requires the determination of model inputs and outputs, 
division, and pre-processing of the available data, the 
determination of appropriate network architecture, stopping, and 
model validations. 

There are two main types of neural networks; supervised and 
unsupervised networks. In supervised learning, neural networks 
are trained to reach from a particular input to a specific target 
until the network output matches the target (Hannan et al., 2010). 
In the present study, we used generalized regression neural 
networks (GRNN) as one of the supervised neural networks 
algorithms. One of the main advantages of GRNN networks is 
their high-speed learning (Specht, 2010). 

 
2.3. Assessing the accuracy of the model 

To assess the performance of the intelligent methods, four 
suggested criteria were used in this research (Behnia et al., 2013; 
Ahangari et al., 2015). Eqs. 1 to 4 expresses absolute error (AE), 
mean absolute error (MAE), root mean square error (RMSE), and 
coefficient of determination (R2), respectively. 
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where α and p are the predicted and actual values of EPM, 
respectively; AE is the mean predicted and actual values, 
respectively; and n is the number of data sets. When the values of 
RMSE and MAE are minimum and the value of R2 was close to 1, 
it can be stated that the model designed shows a strong correlation 
between the output and target parameters. 
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Figure. 1. Location of the studied projects

Table 1 Specifications of the projects analyzed in this study

Region number 1 2 4 10 13 16 17 20 22
Number of projects 1 1 1 3 1 2 1 2 1
Soil type* GW GC SC-GC CL-ML GW-GC CL SC & CL CL GP-GC
GW: Well-graded Gravel, GP: Poorly-graded Gravel, GC: Clayey Gravel, SC: Clayey Sand, GM: Silty Gravel, CL: Low plasticity Clay

Figure. 2. The pressuremeter curve: pressure versus probe volume change

Table 2 Ranges of soil parameters

3. Results and discussion

Based on the available data, 85% and 15%of data sets were
assigned randomly for training and validation (train step) and test
step, respectively. To design the optimal model, 310architectures
were tried and, finally, the network with three hidden layers was
selected as the best network (Figure3). The specifications of the
five best networks and their corresponding error graphs with the
number of iterations are presented in Table 3 and Figure4,
respectively. Limited memory quasi-Newton algorithm was used
for training the model. After 3500 iterations, the network training
was terminated. In this step, the importance of each input variable
with the output variable is evaluated and, as shown in Figure5, it
was found that the percentage of gravel is the significance. The
results of the training step are presented in Table 4. The
regression and comparative graphs of actual and predicted values
of E for training data sets are displayed in Figures 6 and 7,
respectively. The coefficients of determination (R ) for the
training and validation data were 0.736 and 0.906, respectively.

PM
2

Figure. 3. Optimal ANN model Architecture with three hidden layers

Parameter Value Min Max Mean
Depth (m) Independent 4 29.5 15.9
Moisture (%) 4.6 22.8 15.3
Fine (%) 6.5 99 63.18
Gravel (%) 12.07 51.6 31.83
E (kg/cm ) Dependent 195 835 425.82PM
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Figure. 4. Error graph of top five designed networks

Figure. 5. Results of input importance analysis

Table 3 Characteristics of the five best architectures in the neural network
method

Architecture Input/ Output Error Train Error R
activation FX FX (kg/cm2 )

2

[4-10-1] Logistic/ Sum of
Logistic Squares

6.984 0.985
[4-4-4-1] 11.262 0.906
[4-10-2-4-1] 18.799 0.907
[4-6-3-4-1] 17.113 0.911
[4-10-3-4-1] 14.731 0.993

Table 4 Results and error values of ANN model for training and
validation datasets

Data R MAE RMSE2

Train 0.736 62.672 79.699
Validation 0.906 38.352 59.413

Table 5 Results and error values of ANN model for training, testing, and
all data sets

Data R MAE RMSE2

Test 0.801 65.668 74.858
All 0.783 59.551 76.351

Figure. 6. Relationship between the actual (target) versus predicted
modulus for the training data (R2 =0.736)

Figure. 7. The comparison of the actual E with predicted valuesPM

Figure. 8. Relationship between the actual (target) versus predicted
modulus for testing data (R2 =0.801)

Table 6 Comparison of predictions from ANN model and the actual EM for test data sets

Depth (m) Fine (%) Moisture (%) Gravel (%) E (kg/cm ) AEM
2

Target Output
27.5 37.5 14.8 26.4 763.6 722.1834 41.41659
8 79 18 0.2 219.8 284.766 64.96599
22.5 64.3 19.5 1.2 466 336.4795 129.5205
7.5 81.5 22.8 4.2 251 269.2486 18.24858
23.5 87 14.9 2.6 441 530.9009 89.90093
5 85.6 17.8 0.8 233 282.9588 49.9588
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Figure. 9. Relationship between the actual (target) versus predicted modulus for all data sets (R2 =0.783)

Figure. 10. The comparison of the actual EM with predicted values (for testing data)

After the training step, the final test data were used to test the
designed model. The results of the test step are presented in Table
5. According to the obtained results; the ANN model designed in
this study gives acceptable predictions. The details of network
predictions for test step are shown in Table 6. The regression
graphs of test and all data are displayed in Figures 8 and 9.
Moreover, a comparative graph of the actual values of EM and
the predicted values is illustrated in Figure10.

4. Conclusion

The complexity of evaluating the factors effective on
pressuremeter results, the difficulties of performing this test, and
the high testing costs, this study was conducted to present a new
model to predict the pressuremeter modulus (EPM) of soils
indirectly using artificial neural network (ANN) method. Soils
samples had a variation range from coarse-grained to low-
plasticity clay and thus the proposed model can cover a large
range of changes in the EPM.

The designed model was trained by the limited memory quasi-
Newton method and then was validated using a number of test
data. In general, the results of this study can be outlined as
follows:

· The results for all stages of training and the test confirm
a statistically significant and acceptable relationship
between input variables and EPM. Comparing the
predicted pressuremeter modulus with their actual
values indicates that the errors are erratic and they are
affected by the data. Therefore, it is not possible to
present a specific pattern to detect data with larger error
values.

· In the design phase, 310 network architectures are
investigated and it was figured out that a network with
three hidden layers has better performance in
comparison to one and two layers networks.

· The sensitivity analysis of the ANN model revealed that
the gravel and fine percentage of soils are the most
effective parameter on the pressuremeter modulus
among the input variables. Although the results are
reliable only for data of the present research, the ANN
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method can be generalized and evaluated for new data
sets considering its high accuracy and efficiency.
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