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Abstract

A number of common laboratory rock mechanics tests are carried out in all geotechnical projects such as dams,

to determine parameters such as porosity, density, water absorption, sonic velocity, Brazilian tensile strength,

uniaxial compressive strength, and triaxial compressive strength. In this paper, data obtained from two dams in

Asmari Formation including Khersan 1 and Karun 4 - both located in Chahar-MahalVaBakhtiari Province, Iran

- have been subjected to a series of statistical analyses. Then, using Multivariate Linear Regression (MLR) and

Artificial Neural Networks values of UCS, E, C, and j were predicted using the input parametersincludingdepth,

compressionultrasonic velocity, porosity, density, and Brazilian tensile strength. The designed ANN in this

research was a feedforwardbackpropagation network which is powerful tool to solve prediction problems.

Designed network had two hidden layer (hidden layer 1: 18 neurons and hidden layer 2: 20 neurons). Via com-

paring designed MLR and ANN models, it was revealed that ANNs (R 2

j

UCS= 0.91, R = 0.87, R =0.78, R2 2 2
E C phi

= 0.61) are more efficient than MLR models (R2
UCS= 0.69, R = 0.69, R = 0.66, and R2 2 2

E C phi = 0.50) in predict-

ing strength and shear parameters of the intact rock. Also, to enhance the credibility of this study, some extra tests

were carried out to evaluate the efficiency of network designed for prediction of strength parameters. The results

obtained from this network were as: R 2UCS= 0.85, R2 = 0.81.E

Keywords: Artificial Neural networks (AAN), FeedforwardBackpropagation; Multivariate Linear Regression

(MLR); Asmari Formation; Uniaxial Compressive Strength (USC); Modulus of Elasticity (E); Cohesive Strength

(C); j (Internal Friction Angle)j
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1.     Introduction
Dams are among the most important geotechnical

structures constructed in the arid and semi-arid areas

such as Iran, where a significant number of dams are

during the last three decades. A noticeable number of

dams are in Asmari Formation, which belongs to

Oligocene to Miocene time. In many of geotechnical

projects uniaxial compressive strength (UCS), static

modulus of elasticity (E) of the intact rock material,

c, and j are required to be measured; however, it is

not always possible to obtain suitable specimens

from highly fractured and/or weathered rocks for this

purpose (Tiryaki 2008). 

For many years, the uniaxial compressive test has

been the main quantitative method to determine the

strength parameters of intact rock, i.e. uniaxial com-

pressive strength (UCS) and static modulus of elas-

ticity (E). This test results are directly applicable to

studies concerning underground and surface mining,

slope stability, drilling and blasting, and mechanical

rock excavation (Tiryaki 2008). UCS is regardeda-

mong the input parameters for rock mass characteri-

zation and classification. On the other hand, E is a

property of rock materials which measures how

closely they approximate to the ideal elastic material

(Farmer 1968; Jumikis 1979). These two parameters

are also important in determining the breakage

behavior of rocks under the action of rock cutting

picks in mechanical excavation (Tiryaki & Dikmen

2006). 

The procedure for Uniaxial Compressive Test has

been standardized by both theAmerican Society for

Testing and Materials (ASTM 1984) and the

International Society for Rock Mechanics (Brown

1981). Although the method is relatively simple, it is

time consuming and expensive; besides, it requires

well prepared rock cores. As a consequence, indirect

tests -such as Schmidt rebound number, point load

index, impact strength, and sound velocity - are often

applied to predict the UCS and E. These tests are eas-

ier to be carried out since they necessitate less or no

sample preparation and the testing equipment is less

complicated. Furthermore, they can be used easily in

the field. Therefore, it can be resulted that, compared

to the uniaxial compression test, indirect tests are sim-

pler, faster, and more economical (Kahraman 2001).

Within the last years, alarge number of equations

have been proposed to predict UCS and E from the

other parameters. Some of these relationships are

summarized in Table 1. 

The relationships between the rocks parameter are

not always linear and a plenty of factors control their

behavior. This complexity of behavior calls for using

a more sophisticated method. In the last few years,

Artificial Neural Networks (ANN) and fuzzylogic

have been used to establish predictive models for

UCS and E forrock engineering applications

(Sonmez et al. 2004). ANN models have also been

used in many other geotechnical and geological

applications (e.g., Landslide susceptibility mapping

(Khamehchiyan et al. 2011)). Some other applica-

tions of ANNs are summarized in Table 2.  

The purpose of this study is to analyze the results

obtained by designingANN's andMLR models to pre-

dict UCS, E, C, and phi.The data used in this study

were gathered from the tests performed in two geot-

echnical projects, including dams of Khersan 1 and

Karun 4, as well as the data obtained from the tests

done by the author in TarbiatModares University of

Tehran, Iran. It is worth to mention that the most of

previous studies have just used ANNs to predict UCS

and E, while in this research C and j were investi-

gated as well as UCS and E. besides, a set of extra

tests were conducted by the researcher to evaluated

efficiency of the network and enhance credibility of

the study. 

2.     Geological setting
Dataset used in this research were taken from two

projects: Khersan Dam 1 and Karun Dam 4.

Theseprojects are both located in Asmari Formation

inZagros fold region. The geological evidence sug-

gests that Zagros region was a part of a passive con-

tinental margin, which subsequently underwent rift-
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(Katz et al. 2000) UCS=2.21*e (0.07 * R
N

) 0.96 Limestone and sandstone 24-73

Et=0.00013*RN
3.09 0.99

(D'Andrea et al. 1984) UCS = 15.3IS50 + 16.3 differentlithologies Load Point Index

(Broch and Franklin, 1972) UCS = 24IS50
(Bieniawski, 1975) UCS = 23IS50

(Hassani et al. 1980) UCS = 29IS50
(Goktan, 1988) UCS = 0.036Vp - 31.18 coal Ultrasonic

Velocity(Kahraman, 2001) UCS = 9.9Vp1.21 0.83 Serpentine

(Hobbs, 1964) UCS = 53ISI - 2509 differentlithologies Impact Strength

Test(Goktan, 1988) UCS = 0:095ISI - 3.667 differentlithologies

Abbreviations:
UCS: Uniaxial Compressive Strength (MPa); Et: tangent Young's modulus (GPa) at 50% of UCS;   : density
(gm/cm3); RL and RN: rebound values for L and N hammers; Is50: point load index (Is) when the sample diameter is
50 mm; Vp: Compressive wave ultrasound velocity (m/s); ISI: Impact Strength Index; r: Correlation coefficient

References Proposed Equation R Rock type RL Applied Test
(Aufmuth, 1973) UCS=0.33*(RL* )1.35 0.8 different lithologies 10 - 54

Schmidt Hammer

Et=4911.84*(RL* )1.06 0.75

Kahraman (1996) in

(Yilmaz and Sendir, 2002)
UCS=0.00045*(RN*  )2.46 0.96 different lithologies

Gokceoglu (1996) in

(Yilmaz and Sendir, 2002)
UCS=0.0001RN*3.27 0.84 Marl

(Xu et al., 1990) UCS=2.98*e (0.06 *R
L

) 0.95 Mica-schist 17 - 53

Et=1.77*e (0.07 * R
L

) 0.96

UCS=2.99*e (0.06 *R
L

) 0.91 Prasinite 21-64

Et=2.71*e (0.04 * R
L

) 0.91

UCS=2.98*e (0.063 * R
L

) 0.94 Serpentinite

Et=2.57*e (0.03 * R
L

) 0.88

UCS=3.78*e (0.05 * R
L

) 0.93 Gabbro

Et=1.75*e (0.05 * R
L

) 0.95

UCS=1.26*e (0.52 * R
L

*   ) 0.92 Mudstone

Et=0.07*e (0.31 * R
L

*   ) 0.89

(Deere and Miller, 1966) UCS=9.97*e (0.02 * R
L

*   ) 0.94 differentlithologies 23-59

Et=0.19*RL*   2 - 7.87 0.88

Table 1. the equations proposed for prediction of UCS and E from simpler tests

ρ
ρ
ρ

ρ

ρ
ρ
ρ

Table 2. various applications of Neural Networks in geotechnical engineering 

References Application
(Khamehchiyan et al. 2011) Landslide susceptibility mapping

(Finol et al., 2001) Predicting petrophysical rock parameters
(Fowell, 1970) Assessing the machineability of rocks

(Kahraman et al., 2006) Predicting sawability of the carbonate rocks
(Kalantary et al., 2009) Investigate the applicability of the correction factors in Su-NSPT

(?anakci and Pala, 2007) Prediction tensile strength of basalt 
(Tiryaki, 2008) Predicting the cuttability of rocks by drag tools

(Ahmad et al., 2007) Estimation of kinematic soil pile interaction response parameters
(G?mez and Kavzoglu, 2005) Assessment of landslide susceptibility

(Wang et al., 2007) Calculation of embankment settlement
(Moosavi et al., 2006) Modeling the cyclic swelling pressure of mudrock
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ing during the Permo-Triassic and collision during

the Late Tertiary (Stocklin  1974). Zagros fold-thrust

belt lies on the northeastern marginof the Arabian

plate and has been divided into NW-SEtrending

structural zones (imbricated and simply foldedbelt)

parallel to the plate margin separated by major fault-

zones such as the High Zagros and Mountain Front

Faults (Jafarzadeh and Hosseini- Barzi  2008). 

Asmari Formation, which is one of the best-known

carbonatereservoirs in the world - was deposited in

the Oligocene-Miocene shallow marine environment

of the Zagros foreland basin (Alavi 2004).

Lithologically, the Asmari Formationconsists of 314

m of limestones, dolomitic limestones, and argilla-
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Figure 1. location of studied dams (indicated by blacksquares)



ceous limestones. In the southof Dezful embayment,

its lithology changes into a mixedsiliciclastic-carbon-

ate deposit consisting of carbonate bedswith several

intervals of sandstone, sandy limestone andshale.

This facies provides the Ahwaz Sandstone Memberin

some oil fields such as Ahwaz, Marun and Mansuri

(Motiei 1993). 

The studied area is located within the Izeh Zone

which is a part of Zagros fold. Khersan 1 dam is

located in 50 26 37 E and 31 30 10 N (Khersan 1) and

can be accessed by Isfahan-Boroujen-Lordgan and

then Lordgan-Monj-GhaleMadraseh roads; while

Karun 4 is within the 50 28 00 E and 31 35 59 N and

can be accessed by Isfahan-Boroujen-Lordgan and

then LordganIzeh-roads. The location of these two

dams is shown in (Fig. 1)

3. Data analysis
As previously mentioned, the main share of data used

in this studywere gathered from the tests carried out

on limestone cores extracted from two geotechnical

projects (i.e., Khersan1 and Karun 4 -  performed in

Asmari Formation (in LordeganCity, Iran). The tests

were carried out in the laboratories of MahabQods

Engineering Consultancy Company as well Tarbiat

Modares University of Tehran, Iran.For allextracted

cores (120) the tests including determination of ultra-

sonic wave velocity, special density (Gs), water

absorption percentage (w%), Brazilian Tensile

Strength (T), uniaxial compressive strength, and tri-

axial compressive strength tests were performed.

Table 2 introduces the basic descriptive statistics for

the performed tests. 

After descriptive statistical analysis, the original data

were subjected to bivariate correlation to find out the

relationships between UCS, E, C, and j and other

intact rock properties.These relationships are shown

in (Fig. 2 and 3) and Table 4. 

In the next step, to discover the distribution manner

of the data set, a boxplot graph was created. As the
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Depth Vp Gs Water absorption Brazilian Tensile

Strength 

UCS E C Phi

Depth 1.00

Vp -0.45 1.00

Gs 0.36 -0.61 1.00

Water absorption 0.33 -0.29 0.53 1.00

Brazilian Tensile Strength 0.32 -0.51 0.41 0.38 1.00

UCS 0.32 0.42 0.51 - 0.50 0.55 1.00

E 0.30 0.24 0.38 - 0.68 0.56 0.77 1.00

C 0.45 0.58 0.61 0.44 0.69 0.59 0.49 1.00

Phi - 0.13 -0.51 -0.48 - 0.20 -0.30 0.13 0.20 -0.53 1.00

Table 4. bivariate relationships between rock's intact strength parameters with its other parameters

Vp(m/s) Gs Water absorption

(%)

Brazilian Tensile

Strength (MPa)

UCS (MPa) E (GPa) C (MPa) Phi

Min 3578 2.26 0.2 2.0 20.0 3.9 8.0 18.7

Max 6380 2.85 15.2 14.0 175.0 43.0 45.0 46.0

Average 5003 2.57 8.2 5.6 78.2 18.6 24.60 36.7

Median 5131 2.59 8.4 4.8 77.1 17.7 23.96 39.4

Standard Deviation 756 0.13 3.5 2.7 36.4 10.1 8.42 7.2

Variance 571368 0.02 12.0 7.4 1327.5 102.5 76.65 52.4

Table 3. Basic descriptive statistics for the original data set
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Figure 2. Relationship between C and j with the other parameters of the intact rock
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Figure 3. Relationship between C and j with the other parameters of the intact rock
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obtained data had different scales (for instance Vp
data range were between 3578 and 6380, while

Gsdata varied between 2.26 and 2.85), they were nor-

malized using the (1) to limit their values between 0

and 1. 

Normal data = (1)

Where, 

A1: Unormalized value

Amin: The minimum value for a given parameter

Amax: The maximum value for a given parameter

After normalization of the dataset, using the boxplot

function a plot shown in Figure 4was created (MAT-

LAB  2008). From (Fig. 4), it can be implied thatthe

outlier data are shown just in T (Brazilian tensile

strength). Besides, the median in the boxes are almost

(but not exactly) in the middle of box. So, MLR

could offer a somehow good model to predict UCS

and E. 

4.     Study method 
Most of the problems in geology involve complex

and interacting forces, which are impossible to iso-

late and study individually (Davis 1973). For this rea-

son,MLR analysis was applied for the generalized

model in this study because they allow us to consid-

er changes in several properties simultaneously

(Zorlu et al. 2008). 

In statistics, the linear regression models are often in

the following form:

y= b0 + b1x1 + b2x2 + b3x1x2+ b4x1
2+ b5x2

2 + 

Where, a response variable y is modeled as a combi-

nation of constant, linear, interaction, and quadratic

terms formed from two predictor variables x1 and x2.

Uncontrolled factors and experimental errors are

modeled by. Given data on x1, x2, and y, regression

estimates the model parameters bj (j = 1, ..., 5).

More general linear regression models represent the

relationship between a continuous response y and a

continuous or categorical predictor x in the form:

y = + b1f1(x) + … + + bpxp(x) + 

The response is modeled as a linear combination of

(not necessarily linear) functions of the predictor,

plus a random error. The expressions fj(x) (j = 1, ...,

p) are the terms of the model. The bj (j = 1, ..., p) are

the coefficients. Errors are assumed to be uncorrelat-

ed and distributed with mean 0 and constant (but

unknown) variance (MATLAB 2008).

Another technique to predict the objective output

parameters of this study is to use artificial neural net-

works. An artificial neural network is a massively

parallel-distributed processor that has a natural

propensity for storing experiential knowledge and

making it available for use (Aleksander and Morton

1990). Neural networks are composed of simple ele-

ments operating in parallel inspired by biological

nervous systems. As in nature, the connections

between elements largely determine the network

function. A neural network can be trained to perform

a particular function by adjusting the values of the

connections (weights) between elements.

ANNs basically simulate the behavior of the human

brain. Because of its similarity to the human brain,

even an ANN quite simple and small in size has some

powerful characteristics in knowledge and informa-

tion when compared to the human brain. Therefore an

ANN can be a powerful tool for engineering applica-

tions (Ragip 2004).

Typically, neural networks are adjusted, or trained, so

that a particular input leads to a specific target output.

Fig.5 illustrates such a situation. There, the network
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Figure 4. Boxplot of the normalized data set



is adjusted, based on a comparison of the output and

the target, until the network output matches the tar-

get. Typically, many such input/target pairs are need-

ed to train a network(Howard and Mark 2000).

McCulloch and Pitts were the first who presented a

formalized model of ANNs their network formed the

basis for almost all later models (McCulloch and Pitts

1943). In the 1960s, Rosenblattdeveloped a simple-

formalized model of a biological neuron based on the

McCulloch-Pitts neurons, called perception.

Rosenblatt's perceptions consist of ''sensory'' units

connected to a single layer of McCulloch-Pitts neu-

rons. In 1986, Rumelhart et alderived a learning algo-

rithm for perception networks with hidden units.

Their learning algorithm is called back-propagation

and is now the most widely used learning algorithm

(Rumelhart et al. 1986).

To the time, a wide variety of ANNs have been

reported in the literature. Each type of ANN has an

advantage in different tasks. Neural networks have

been trained to perform complex functions in various

fields, including pattern recognition, identification,

classification, speech, vision, and control systems

(Howard and Mark 2000).

4.1.     Artificial neural networks structure 

Fig. 6 illustrates a single ANN unit known as neuron.

Here the input vector p is represented by the solid

dark vertical bar atthe left. The dimensions of p are

shown below the symbol p in the figureas R×1. Thus,

p is a vector of Rinput elements. These inputs post

multiply the single row R columnmatrix W. A con-

stant 1 enters the neuron as an input and ismultiplied

by a scalar bias b. The net input to the transfer func-

tion f is n - the sum of the bias b and the product Wp.

This sum is passed to thetransfer function f to get the

neuron's output a, which in this case is ascalar.

Having more than one neuron would cause the net-

work outputto be a vector.

A layer of a network is defined in the (Fig. 6). The

layerincludes the combination of the weights, the-

multiplication and summingoperation (here realized

as a vector product Wp), the bias b, and thetransfer

function f (Howard and Mark 2000). 

The initial weights of ANN strongly influence the
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Figure 6. Mathematic model of a single ANN neuron

Figure 5. A schematic of a neural network system



Razifard, Khamechian and Naseri:Application of Artificial Neural Networks (ANN)to Predict Geomechanical...

convergence of the BP learning rule, although

(Gomez et al. 2002) donot believe this. Usually the

weights are initialized at small random values.

(Looney 1997) suggested values [-0.1, +0.1]or [-0.5,

+0.5] while some other researchers proposed values

[-0.25,+0.25] (Kavzoglu 2001). Another important

parameter influencing the convergence of the model

is the learning rate. In fact, there is not a general

guideline for selecting a suitable learning rate, and in

most of the cases, it is selected experimentally for

each particular problem through trial and error

approach (Khamehchiyan et al. 2011).

5.     Results
In this paper, outputs of uniaxial compressive test

(UCS and E) and triaxial compressive test (C and j)

were predicted using MLR and ANNs. For this goal,

4 linear regression as well as two ANNs were

designed. The obtained results are as follows:

5.1. The results obtained by MLR models 

In this research, using the SPSS18 software, 4 MLR

models were developed to predict UCS, E, C, and j.

The best MLR model to predict these parameters was

backward method in which the parameters are elimi-

nated one by one until reaching to an equation in

which the parameters have the lowest significance

value (0.0). 

The results obtained by this process are summarized

in Table 5. The final outputs of this method were

equations (2), (3), (4), and (5) which predict UCS, E,

C, and j respectively:

UCS = 100.8 + 0.066 D - 0.015 Vp + 3.6 w + 3.91T

R2 = 0.69                                                                            (2)

E = 83.1+ 0.021 D - 0.009 Vp - 10.64 Gs + 0.08 w + 0.92T

R2 = 0.69 (3)

C = -7.2 + 0.005 Vp - 0.99 w + 0.93T

R2 = 0.66  (4)

j = 168.2 + 0.005Vp - 43.9Gs - 0.79w - 0.56T

R2 = 0.50                                                                  (5)

Where, 

D: Depth (m), Vp: Compressive wavelength velocity

(m/s), Gs: Special gravity, w: Water absorption (%),

T: Brazilian tensile strength (MPa), UCS: Uniaxial

compressive strength (MPa), E: elastic modulus of

Young (GPa), C: cohesive strength, and j: internal

friction angle.

5.2. The results obtained by ANN

To predict outputs of uniaxial and triaaxial compres-

Journal of Geotechnical Geology, Vol.12(2016), No.1 74

Figure 7. A diagrams of the designed ANNs to predict UCS, E, C, and j



sive tests two ANNs were designed and several types

of ANN (e.g., Multilayer Perceptron, Modular Neural

Network, Generalized Feedforward, and Multilayer

EeedforwardBackpropagation) were tested to predict

UCS and E. since the multilayer feed-forward net-

work is the most commonly used network architec-

ture with the back propagation algorithm (Demuth et

al. 2006) and the results obtained from this networks
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Table 5.the result obtained from MLR
Predicted Parameter Model Unstandardized Coefficients Sig. R2

B Std. Error

UCS

1

(Constant) 101.85 7.54 0.00

0.69

Depth (m) 0.07 0.00 0.00
Vp (m/s) -0.02 0.00 0.00

Gs -0.35 2.53 0.89

Water absorption (%) 3.60 0.08 0.00
Tensile Strength (MPa) 3.92 0.09 0.00

2 (Constant) 100.85 2.36 0.00 0.69 
Depth (m) 0.07 0.00 0.00
Vp (m/s) -0.02 0.00 0.00

Water absorption (%) 3.60 0.08 0.00
Tensile Strength (MPa) 3.92 0.09 0.00

E 1.00 (Constant) 83.10 2.22 0.00 0.69
Depth (m) 0.02 0.00 0.00
Vp (m/s) -0.01 0.00 0.00

Gs -10.64 0.74 0.00

Water absorption (%) 0.08 0.02 0.00
Tensile Strength (MPa) 0.92 0.03 0.00

C 1 (Constant) -20.73 17.91 0.25 0.66
Depth (m) 0.004 0.01 0.65
Vp (m/s) 0.005 0.00 0.00

Gs 5.91 7.67 0.44
Water Absorption (%) -0.90 0.25 0.00

Brazilian Tensile Strength (MPa) 0.92 0.19 0.00
2 (Constant) -20.92 17.83 0.24 0.66

Vp (m/s) 0.005 0.00 0.00

Gs 6.12 7.62 0.42

Water Absorption (%) -0.92 0.24 0.00
Brazilian Tensile Strength (MPa) 0.91 0.19 0.00

3 (Constant) -7.20 5.05 0.16 0.66
Vp (m/s) 0.005 0.00 0.00

Water Absorption (%) -0.99 0.23 0.00
Brazilian Tensile Strength (MPa) 0.93 0.19 0.00

1 (Constant) 168.70 24.27 0.00 0.51
Depth (m) 0.01 0.01 0.38

Vp (m/s) 0.00 0.00 0.05
Gs -44.52 10.39 0.00

Water Absorption (%) -0.74 0.33 0.03
Brazilian Tensile Strength (MPa) -0.54 0.26 0.04

2 (Constant) 168.20 24.23 0.00 0.50
Vp (m/s) 0.005 0.00 0.06

Gs -43.97 10.35 0.00
Water Absorption (%) -0.79 0.33 0.02

Brazilian Tensile Strength (MPa) -0.56 0.25 0.03
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yielded higher R2's, a backpropagation ANN archi-

tecture was used in this investigation. Two hidden

layers were used for both designed networks, where

20 neurons in the first and 18 neurons in the second

layer were for the first network (one which predicted

UCS and E) and 18 neurons in first layer and 16 neu-

rons in second layer for the second network (one

which predicted C and j). The initial investigations

illustrated that when more hidden layers or fewer

nodes in a single hidden layer are used, the network

would not converge in the case there are a limited

number of data. However, when more nodes in the

hidden layer are utilized, the network will not be able

to produce reasonably accurate predictions in the

testing phase in spite of a highly improved conver-

gence rate in the learning phase (Tiryaki 2008). The

general view of the well-converging ANNs architec-

ture is shown in (Fig. 7). Three bias neurons were

also connected to the hidden and output layers. Each

has a constant value of 1. 

In this study, the applied transfer functions were: log-

sigmoid (logsig), tangent-sigmoid (tnasig), and linear

(purelin) functions (Fig. 8). 

5.2.1. Input and output data

In this study, 120 data sets were used. For input layer

5 parameters including depth (D), compressive ultra-

sonic velocity (Vp), special gravity (Gs), water

absorption percent (w), and Brazilian tensile strength

(T). Since two artificial neural networks were devel-

oped in this study to predict strength and shear param-

eters of the intact rock, there should be 4 output

parameters including uniaxial compressive strength

(UCS), elasticity modulus of Young (E), C, and j to

predict. The input dataset used in this study have dif-

ferent quantitative, so a normalization of data was

required before presenting the input patterns to the

ANN. In this paper, as previously mentioned, a linear

normalization expression (1) was used to normalize

the data to the values between 0 and 1.

5.2.2. Training of the ANN

The network can be trained for function approximation

(nonlinear regression), pattern association, or pattern

classification. The training process requires a set of

examples of proper network behavior - network inputs

p and target outputs t. During training the weights and

biases of the network are iteratively adjusted to mini-

mize the network performance function net. perform-

Fcn. The default performance function for feedforward

networks is mean square error (MSE) - the average

squared error between the network outputs a and the

target outputs t which can be estimated by (6). 

MSE= (6)

Where tk and ak are target and obtained outputs,

respectively. 

Fig.9 shows one of the MSE versus epochs (the num-

Journal of Geotechnical Geology, Vol.12(2016), No.1 76

Figure 8. linear and log-sigmoid Transfer functions

Figure 9. Network errors for two-hidden-neuron neu-
ral network
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ber of iterations) diagram.  

By default of MATLAB toolbox, 85 percent of

datasets are used as training and validation data.

Thus, in this 100 dataset were used to train the net-

work. The training and learning function used in this

research were GDX (Gradient descent with momen-

tum and adaptive learning rule backpropagation) and

GDM (Gradient Descent with Momentum), respec-

tively. Also, the learning rate was kept at 0.3 through-

out the network training. 

5.2.3. Testing designed ANN

5.2.3.1. Using the test data set 

After the ANN was trained in the 100 training cases,

it was tested to see how well it would predict UCS

and E. In order to test the trained ANN, the remain-

ing 20 data sets were used to simulate the network

behavior. The final result showed that R2 values are

0.91 and 0.87 for UCS and E, in network 1 and 0.78

and 0.61 for C and j in the network 2 respectively.

Fig. 10 to 13 compare the real values of UCS,E, C,

and j versus the predicted ones.

The properties of the final designed ANNs are sum-

marized in Table 6 and Table 7. 

5.2.3.2. Using the input data set produced by the

author

To enhance credibility of this study and find out

whether the designed network can predict the UCS

and E from other data sets, 17 cores were subjected

to laboratory tests in laboratory of TarbiatModares

University. It must be mentioned, due to lack of

enough cores and low accuracy of network 2, this

process was just applied for testing network 1. Tests

including determination of ultrasonic wave velocity

(Vp), special density (Gs), water absorption percent-

age (w), Brazilian Tensile Strength (T), and Uniaxial

Compressive Strength were performed on the cores.

Then obtained inputs - Depth, Vp, Gs, w, and T - were

introduced to the designed network (Table 6) using

the sim function in MATLAB to simulated the values

of UCS and E. The results obtained from the network

and the real values of UCS and E had the R2 values

of 0.85 and 0.81, respectively. Fig. 14 compares real
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Figure 10. Predicted values of UCS versus Real values

Figure 11. Predicted values of E versus Real values
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Figure 12. Predicted values of C versus Real values

Figure 13. Predicted values of j versus Real values

Network Type Feed Forward Backpropagation ANN
Number of hidden layers 2 layers Layer 1: 18 neurons

Layer 2: 20 neurons
Learning rate 0.3

Training function GDX (Gradient descent with momentum and adaptive learning rate backpropagation)
Learning function GDM (Gradient descent with momentum weight and bias)
Number of epochs 253

Minimum Square Error (MSE) 0.025
Transfer function Hidden layer 1 Log-sigmoid (logsig)

Hidden layer 2 Log-sigmoid
Output layer Linear (purelin)

Table 6. Summary of the designed ANN for prediction of UCS and E

Network Type Feed Forward Backpropagation ANN

Number of hidden layers 2 layers Layer 1: 18 neurons

Layer 2: 16 neurons

Learning rate 0.1

Training function GDX (Gradient descent with momentum and adaptive learning rate backpropagation)

Learning function GDM (Gradient descent with momentum weight and bias)

Number of epochs 147

Minimum Square Error (MSE) 0.045

Transfer function Hidden layer 1 Log-sigmoid (logsig)

Hidden layer 2 tan-sigmoid

Output layer Linear (purelin)

Table 7. Summary of the designed ANN for prediction of C and jj
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values of UCS and E with those obtained predicted

by the network. Also, data obtained from the labora-

tory tests are shown in Table 8. 

6.     Summary, conclusions, and suggestions
for further studies
In this research, outputs of uniaxial compressive test

(UCS and E) and triaxial compressive test (c and j)

were predicted using ANNs and MLR modeling. The

study revealed that the applied ANN is a more pow-

erful tool and can predict needed parameters with

higher accuracy. According to the studies conducted

by (Meulenkamp and Alvarez Grima 1999),

(Geokceoglu and Zorlu 2004), (Tiryaki 2008), and

(Singha et al. 2001; Zorlu et al. 2008), it can be

claimed the network designed in this research were

efficient to predict UCS and E from the more simple

parameters. However, according to the available

database in this study, there was not any study on

application of ANN's to predict C and j.

Nevertheless, it seems that the result obtained by

both ANN's and MLR are not accurate enough. To

enhance the accuracy of the results obtained from the

ANN designed for triaxial test, it is suggested to use

microscopic techniques to obtain textural parameters

such as packing density (PD),grain area ratio (GAR),

form factor (FF) of the grain, mean grain size

(dmean), strong cement over matrix index (SMCI),

strong cement over total cement (SCTC), and strong

over weak contact (SOWC) may enhance the values

Figure 14. Comparison between real and predicted values of UCS and E using the laboratory data

Table 8. data set used to test the ANN obtained from laboratory tests

Sample No. Depth (m) Vp(km/s) w (%) Gs T (MPa) UCS (MPa) E (GPa)
BH01A-01 79 4.68 2.02 2.51 8.5 77.6 23
BH01A-04 35 5.94 0.42 2.71 7.2 73.6 17.9
BH01A-08 49 4.92 0.57 2.49 5.2 69.6 8.4
BH05-02 38 4.27 0.32 2.48 9.5 57.2 23 
BH05-03 184 4.52 1.11 2.5 9.1 49.4 7.9
BH05-04 190 5.23 2.3 2.69 6.9 66 6.7
BH05-05 173 6.15 1.19 2.72 5.7 46.8 9.3
BH05-06 47 5.42 0.31 2.62 6.5 54.6 19.8
BH07-01 49 4.21 2.05 2.44 3.7 28.3 5.9 
BH07-02 96 6.08 0.55 2.69 3.4 17.7 19
BH07-03 180 5.08 0.57 2.42 3.9 24.8 10
KD01-01 128 5.21 0.21 2.51 9.1 88.3 10.6
KD01-02 155 6.1 0.36 2.71 9.9 115.4 13.3 
KD01-03 349 5.51 0.61 2.45 7 85.7 21.9 
KD01-04 30 5.73 0.32 2.68 9.7 96.1 17.1 
KD01-05 238 4.98 0.73 2.48 12.9 101.3 29.5 
KD26-03 102 4.22 0.47 2.47 5.1 81.6 29.3 
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of R2 obtained for ANN designed for both triaxial

and uniaxial tests (Jeng et al. 2004; Tamrakar et al.

2007). In general, the results obtained by this

research can be summarized as:

1-Bivariate correlation analysis showed that

Brazilian tensile strength (R2 = 0.45), water absorp-

tion ratio (R2 = - 0.59), Brazilian tensile strength (R2

= 0.49), and special gravity (R2 = -0.38)arerespec-

tively the mostreliable parameters to estimate UCS,

E, C, and j for the limestones used in this study. 

2-The designed MLR models predicted UCS, E, C,

and j with R2 of 0.69, 0.69, 0.66, and 0.50.

3- The designed ANN's predicted UCS, E, C, and j

with R2 of 0.91, 0.87, 0.78, and 0.61. 

4-Designed ANN was more successful for prediction

of UCS in contrast to the other output parameters.  

5-Using the test data set (those obtained from labora-

tory tests in TarbiatModares University), designed

ANN predicted UCS and E with R2 of 0.85 and 0.81.

6-Designed ANN models were more successful than

MLR models to predict outputs of triaxial test (C and

phi) and uniaxial test (UCS and E) using the men-

tioned input parameters. 

Acknowledgment
Appendix

A-Definition and determination of petrographic

parameters

A.1.     Packing density

The packing density (PD), as defined by (Kahn

1956), is the ratio of the sum of the grain length

encountered along a traverse across a thin section to

the total length of the traverse, and PD can be

expressed as eq.(7):

PD= (7)

here gi is the grain intercept length of the ith grain in

the traverse as defined in Figure 15a; t is the total

length of the traverse (equ.(8)).

A.2.     Grain area ratio

GAR= Ag/At (8)

ere Ag is the total area of all grains within a reference

area and At is the total area enclosed by the reference

area boundary.

A.3.     Grain contact

The GC, as defined by (Dobereiner and De Freitas

1986), is the ratio to its own total length of the length

of contact a grain has with its neighbors and can be

determined as eq.(9):

GC= (9)

Where Ln = length of contact with other grain and L

is the total length of boundary of a particular grain.

A.4.     Form factor

Form factor can be defined as eq.(10):

FF= (10) 

Where A is the area of a grain and L is the length of

grain boundary. The values of FF range from close to

0, for very elongated or rough objects, to 1 for a per-

fect circle. 

A.5.     Mean grain size (dmean)

Mean grain size (dmean) is defined as the average

value of the diameters of all grains in a reference

area, which represents the mean grain size.

A.5.     cement over matrix index (SCMI)

SCMI that representsratio of total strong cement over

matrix in sandstone wascalculated as eq.(11)

(Tamrakar et al. 2007):

SCMI=
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Figure 15. Schematic illustration of the definitions of
packing density and grain contact ((Jeng et al. 2004))
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A.6. Strong cement over total cement (SCTC)

SCTC can be defined as eq.(12):

SCTC= (12)

A.7. Strong over weak contact (SOWC)

Strong over weak contact (SOWC) represents how

well the grains are interlocked and cemented and cal-

culated using eq.(13):

SOWC=    

Where the parameters are shown in (Fig. 16):
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×100 (%)  
([S_u+(G-C)])

([Ta+Lo+(G-V )+(G-M)])  
(13)

Figure 16. Schematic diagrams showing contacts of grains in sandstones: (a) Contact types defined by (Taylor,
1950)and definition of consolidationfactor, Pcc(Bell, 1978), (b) contact nature. TL; traverse length;g; grain, C;
cement, Mx; matrix and V; void. (c) Definition of packing density, Pd and packing proximity, Pp (Kahn, 1956).

L; length of eachgrain along the traverse line and G; number of grain-to-grain contact.

×100 (%)((%Calsitic Cement+%Siliceous Cement))
(%Total Cement)
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