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he aim of this study was to determine the probability of

working days (PWD) for tillage operation using weather
data with Multiple Linear Regression (MLR) and Radial
Basis Function (RBF) artificial networks. In both models,
seven variables were considered as input parameters, namely
minimum, average and maximum temperature, relative hu-
midity, rainfall, wind speed, and evaporation on a daily basis.
The PWD was considered to be the output of the developed
models. Performance criteria were RMSE, MAPE, and R2.
Results showed that the R?-value was 0.78 and 0.99 for MLR
and RBF models, respectively. Both models had acceptable
performance, but the RBF model was more accurate than
the MLR model. The RMSE and MAPE values for the RBF
model were lower than those for the MLR model. Thus, the
RBF model was selected as the suitable model for predicting
PWD. Moreover, the results of these models were compared
to the prior soil moisture model. It was indicated that the
results of the studied models had a good agreement with
the results of the soil moisture model. However, the RBF
model had the highest R? (99%). In conclusion, the developed
RBF model could be used to predict the probability of
working days in terms of agricultural management policies.
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INTRODUCTION

Farm machinery management is one of the
most expensive parts of agricultural production
(Rotz & Harrigan, 2005). Management of this
cost can largely help the productivity of farms.
Weather is the most important factor in man-
ager decisions with a key role to play in cost
estimation. The effect of variability in weather
conditions has an effective role in timeliness
cost. Generally, agricultural operations, es-
pecially sowing, must be done in optimum
time to prevent yield losses at harvest time
and the resulting loss of profits. Accordingly,
the determination of PWD can be an effective
solution for this problem and the management
of timeliness costs. The main factors for de-
termining PWD include rainfall, air tempera-
ture, snow, air humidity, wind speed, and so
on (American Society of Agricultural Engineers,
2000). The importance of this issue interested
some researchers to focus on calculating PWD
for various agricultural operations. Different
ways have been used to determine the effective
factors in PWD for a given operation. There
were three main methods for this purposes:
first, predicting the number of working days
using weather parameters for weeds spraying
in sugarcane fields (Kamali et al., 2011) and
for harvesting paddy crop (Nesheli et al,
2012). Moreover, Saglam and Tobi (2011)
calculated tractor available workdays over
GAP area in Turkey based on rainfall, snowfall,
and average daily temperature. Another re-
search used weather data including rainfall,
temperature, relative humidity to determine
the suitable workdays in sugarcane harvesting
in Ahvaz, Iran (Omrani et al., 2011). In this
study, timeliness costs were calculated after
determining the number of working days.
The available working days for paddy har-
vesting operation by conventional and mech-
anized methods were estimated using weather
parameters including relative humidity, air
temperature, and rainfall (Kosari-Moghaddam
etal, 2016). This method was largely applied
to determine the working days except for
tillage operation because soil moisture is an
important factor in these operations. The

second method is the estimation of PWD for
tillage operation. In this method, PWD is de-
termined based on daily soil moisture models
and given criteria according to local conditions,
weather parameters, and operation type such
as harvesting switchgrass (Hwang, 2007),
tillage and planting operations (Kosari-
Moghaddam et al., 2015), tillage operation in
semi-arid areas (Simalenga & Have, 1992)
and the estimation of spring workdays (Selirio
& Brown, 1972). In another research, Baier
(1973) estimated field workdays in Canada
from the versatile soil moisture budget. This
study considered workday to be a day with
no snow cover and with estimated soil mois-
ture conditions in the upper three zones.
Here, soil moisture criteria were 90, 95 and
97.5 percent of field capacity for different
soil textures. Moreover, Witney et al. (1982)
developed a model to calculate soil moisture
content using soil water equations for Scotland,
and then the number of working days for
tillage was determined. Witney (1988) also
developed a soil moisture content model
based on the amount of water entrance and
exit from the soil profile. In this research, the
workability criteria were a moisture level of
less than soil plastic limit and a rainfall level
of less than 10 mm. Moreover, rainfall of less
than 1.4 mm was defined as the criterion of
working days for combine harvesting. Finally,
the third method for the determination of
PWD is based on various mathematical and
modeling methods. This method has con-
tributed the least to this subject. One of these
methods is the Markov chain model used to
determine field workdays (Hayhoe & Baier,
1974) and outdoor and machinery workdays
(Ataide et al., 2012). In this study, the model
developed by Baier (1973) was used for soil
moisture determination and workday criteria.

Multiple linear regression models have been
widely used to model various types of prob-
lems in the agricultural sector, such as evalu-
ation of regression techniques in tractor repair
and maintenance costs (Rohani et al., 2010),
energy audit of Iranian kiwifruit production
using intelligent systems (Soltanali et al,,
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2017), and dryland wheat yield prediction
using different regression models (Tatari et
al., 2009). Wiljes and Zaat (1968) also deter-
mined the number of weather-working hours
in combine harvesting in the Netherlands
using multiple linear regression in terms of
the number of dry days and mean daily rainfall
for every half-monthly period. Table 1 shows
some related studies on the determination
of PWD in the agricultural sector by using
different techniques.

Artificial Neural Network (ANN) is another
method that has been used in recent studies
for the prediction of various parameters in
agricultural fields, such as intelligent modeling
of material separation in combine harvester's
thrasher by an ANN model (Mirzazadeh et
al., 2012), a neural network approach for in-
directly estimating farm tractor engine per-
formance (Bietresato et al., 2015), and com-
bined application of an artificial neural net-
work and life cycle assessment in lentil farming
in Iran (Elhami et al., 2017). Rostami et al.
(2017) applied an ANN model to predict the

Table 1

yield, COz emissions, and energy for basil
production in Iran. Moreover, an ANN model
was used to forecast Iran's rice import trend
(Pakravan etal., 2011). To the best knowledge
of the authors, no study has employed this
method to predict PWD in the agricultural
sector. So, the present research collected a
comprehensive, invaluable set of all available
data pertaining to the probability of working
days for tillage operation. These data include
a wide range of all parameters influencing
PWD. After the review of numerous studies,
the following objectives were set for the pres-
ent work:

1- developing RBF and MLR models using
weather variables influencing PWD,

2- using statistical criteria like means com-
parison, variance, and statistical distribution
to assess and compare the models,

3- conducting sensitivity analysis and se-
lecting the best input set based on 15 scenarios
for the model,

4- Comparing models with another soil
moisture model conducted in this area.

The Related Studies on the Determination of the Probability of Working Days in the Agricultural Sector

Type of operation Case study

Model inputs Reference

Combine harvesting Netherlands

Multiple linear regression model

Wiljes & Zaat, 1968

Cultivation and seeding Canada Soil moisture content Selirio & Brown, 1972
Field-work Canada Snowfall and soil moisture content Hayhoe & Baier, 1974
Tillage Scotland Soil moisture content Witney et al., 1982
Tillage Tanzania Soil moisture content Simale;lggé& Have,
Switchgrass harvest USA Rainfall, snowfall, soil moisture content Hwang, 2007
Field operation by tractor Turkey Rainfall, temperature, snowfall Saglam & Tobi, 2011
Weeds spraying of sugarcane Iran Rainfall, temperature, wind speed, relative humidity =~ Kamali etal., 2011
Sugarcane harvest Iran Rainfall, temperature, relative humidity, evaporation Omrani etal., 2011
Paddy harvest Iran Rainfall, relative humidity Nesheli et al., 2012
g}ﬂ;deigriﬁrig;gg{;tion of ma- Brazil Rainfall, soil moisture content Ataide etal,, 2012
Tillage and sowing Iran Rainfall, soil moisture content Kosari-;\lfl-,oég(})litsidam et
Paddy harvest Iran Rainfall, relative humidity Kosari-all\l/l”ozggellgdam et
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METHODOLOGY

Study site and variables

The present study was conducted at the Re-
search Station of the Agricultural Department
of Ferdowsi University, Mashhad, Iran
(36°15'N/59°36'E) between September and
February in eight years (2002-2010). The
weather data including daily minimum, max-
imum and average air temperature, wind
speed, rainfall and relative humidity were
collected from the meteorological stations in

Mashhad. The FAO-Penman formula was also
used to determine daily evapotranspiration
(Allen et al., 1998). The number of working
days were also gathered from a farm in Mash-
had during 2002 and 2010. Generally, the av-
erage total rainfall and mean annual temper-
ature were about 250 mm and 14.3°C in
Mashhad. Seven independent variables were
investigated to predict PWD as the dependent
variable for the tillage operation in fall and
winter. The variables are shown in Table 2.

Table 2

Variable Names and Symbols
Variable name Symbol Variable name Symbol
Thax X1 Rainfall X5
Timin X2 Wind speed Xs
Tyve X3 Evaporation X7
Relative humidity X4 Probability of working days yi

Multiple linear regression (MLR) model

MLR is a statistical analysis method used
for determining the effect of some independent
variables on a dependent variable in order
to evaluate the linear dependency of the vari-
ables. This model, which describes the rela-
tionship between the unknown variable (y)
based on known variables (x) , parameters,
and random noise , is expressed in the fol-
lowing form (Fang & Lahdelma, 2016):

yi=pXi+ei (D

where is the predicted value, Xi=(1,x;,
Xz,..,X7) is a vector of explanatory variables,
B=(Bo,f1,...Br )" is the vector of the coefficient
and is a random error term for ith observa-
tion.

We estimate parameters f by least square
sense (LSQ), which minimizes the square sum
of the error. Parameters 5=(fo, B1, BB 1)-..,
Pners) )T are variables that minimize the square
sum of errors variables:

(2)

which can be written in matrix form:
By substituting € in the objective function, we
have an unconstraint optimization problem:

(3)
(4)

(5)

Forming the derivative and setting it to zero
gives the solution as:

In this study, the elements of this regression
model included seven independent variables
(x1, x2, ..., x7 ) and one dependent variable (y).
Four different models (i.e. linear, interaction,
quadratic and pure-quadratic models) were
evaluated to find the best model whose general
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form is as below:

(7)

where is the dependent variable (PWD),
Po, Bi, Bii, Bij are constant coefficient, linear co-
efficient, quadratic coefficient and interaction
coefficient, respectively, is the number of
studied and optimized factors, and x; x;,xi X;
,x¢ are independent variables, interaction and
quadratic terms, respectively (Pishgar-Komleh
etal, 2012).

Radial basis function (RBF) artificial neural
network

RBF is a forward-feed network included
three layers: input, hidden and output layers
(Figure 1). The output of RBF is defined as
(Ardabili et al., 2016):

(8)

where h” (x,t)is the radial basis vector of
the RBF network and W(t) is the vector of
weights, and h_i is defined as Gaussian function
as following:

(9)

where b and c are the base width and centric
vectors, respectively. Also, m is the number
of hidden layers neuron. The input layer neu-
rons have propagation task of input layer
features to the next layer. In the hidden layer,
a kernel function associates each neuron of
the hidden layer. The output layer is the sum-
mation of the hidden layer responses for re-
spective inputs (Wen et al., 2012).

Figure 1. The RBF network structure

Initial data processing and finding optimum
neurons and spread parameter

In this study, 13 algorithms existing in MAT-
LAB were evaluated and the bayesian regu-
larization back-propagation was selected as
the best algorithm. The input data were nor-
malized in the range [-1 1] to improve effi-

ciency. In order to find the best performance
of the RBF network, 15 scenarios were eval-
uated considering the combination of various
independent variables (Table 3). Then, each
scenario was investigated in networks with
a combination of neuron numbers and spread
parameters.
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Table 3
Parameter Requirements of Each Scenario
Scenario No. Symbol Inputs of Network
1 S1 Min. temp., Max. temp, Ave. temp., RH, Rain, Wind Sp., Evap.
2 S2 Min. temp., Max. temp, Ave. temp., RH, Rain, Wind Sp.
3 S3 Min. temp., Max. temp, Ave. temp., RH, Rain, Evap.
4 S4 Min. temp., Max. temp, Ave. temp., RH, Wind Sp., Evap.
5 S5 Min. temp., Max. temp, Ave. temp., Rain, Wind Sp., Evap.
6 S6 Min. temp., Max. temp, RH, Rain, Wind Sp., Evap.
7 S7 Min. temp., Ave. temp., RH, Rain, Wind Sp., Evap.
8 S8 Max. temp, Ave. temp., RH, Rain, Wind Sp., Evap.
9 S9 Ave. temp., RH, Rain, Wind Sp., Evap.
10 S10 Min. temp., RH, Rain, Wind Sp., Evap.
11 S11 Min. temp., Max. temp., RH, Rain, Evap.
12 S12 Max. temp., Ave. temp., RH, Rain, Evap.
13 S13 Min. temp., Max. temp., RH, Rain, Evap.
14 S14 Min. temp., Ave. temp., RH, Evap.
15 S15 Min. temp., Rain, Evap.

Performance evaluation criteria

In this study, both the MLR and RBF models
were evaluated using Root Mean Square Error
(RMSE), Total Sum of Square Error (TSSE),
Mean Absolute Percentage Error (MAPE), and
coefficient of determination (R?), which are
shown in Equations 10-13.

(10)

(11)

(12)

(13)

where yi, ", y~ are observed value, model
output, and average observed value for ith
observation, y, y' are also average observed
and predicted values, and m is the number of
observations, respectively.

Finally, the statistical characteristics including
average, maximum, minimum, skewness, kur-

tosis, and the sum of each independent and
dependent variables and each model were
calculated. In addition, the differences between
model results were evaluated. All calculations
and programming were done in MATLAB
(R20164a, 9.0.0.341360).

Results and Discussion

The results of statistical analysis of inde-
pendent and dependent variables are shown
in Table 4. According to Table 4, the average
PWD for the studied area and operations was
about 88 percent varying between 51 and
100 percent based on different weather con-
ditions. Moreover, the average rainfall in the
studied period was about 14 mm and the
total rainfall was 557.10 mm.

MLR model
Model selection

The results of evaluating four regression
models including linear, interaction, quadratic
and pure-quadratic models based on four
performance criteria (i.e. RMES, TSSE, MAPE,
R?) are presented in Table 5. They showed
that the quadratic model had the best per-
formance among all models.
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Table 4

Statistical Analysis of the Studied Variables
Descriptive statistics x: (*C) x:(°C) x3(°C) x+(%) xs(mm) xs(Km/h) x;(mm) y
Mean 17.15 4.30 10.51 52.93 13.59 6.66 2.64 87.66
Variance 82.20 45.14 63.72 348.62 190.39 4.89 3.53 136.53
Std. deviation 9.07 6.72 7.98 18.67 13.80 2.21 1.88 11.68
Min -1.85 -13.28 -7.30 21.80 0.00 3.30 0.50 51.00
Max 31.06 15.23 23.30 80.10 47.74 12.20 6.90 100.00
Skewness 0.11 -0.07 0.11 -0.28 0.87 0.80 0.82 -1.26
Kurtosis -1.27 -0.57 -1.11 -1.38 -0.17 0.26 -0.80 1.69
Sum 703.15 176.52 43090 2170.00 557.10 273.20 108.30 35953.98
Table 5

The Results of Different Regression Models
Model RMSE (%) TSSE (%?) MAPE (%) R?
Linear 9.70 3857.17 9.39 0.30
2F1 5.10 1065.69 4.18 0.80
Quadratic 3.55 517.78 3.17 0.90
Pure-quadratic 6.92 1964.29 5.95 0.62

*Bold numbers show the performance criteria for the best developed MLR model

After the appropriated model was selected,
the best coefficients of the models were de-
termined using stepwise and minimum P-
value of coefficients methods. The results of
analysis variance and estimated coefficients
of the selected model are shown in Tables 6
and 7. According to Table 6, the dependent

variable (PWD) was significantly (p<0.01)
related to all independent variables, except
x7 to which it was related significantly at the
p<0.10 level. The intercept of the model was
also significant at p<0.05 level. R? for the
final model was estimated at 0.78, which is
not very high but acceptable.

Table 6

Analysis of Variance for the Selected Regression Model
Source DF SS MS Fval Source DF SS MS Fval
Model 16 4295.31 268.46 495™ X26 1 84.63 84.63 1.56™
X2 1 13.37 13.37 0.25™ X34 1 64.08 64.08 1.18™
X3 1 559.58 559.58 10.31™ X35 1 66.60 66.60 1.23™
X4 1 221.76  221.76 4.09™ X36 1 564.07 564.07 10.39™
X5 1 806.93 80693 14.87™ X67 1 4.37 4.37 0.08™
Xs 1 82.40 82.40 1.52™ X5 1 482.17  482.17 8.88™
X7 1 5.18 5.18 0.10" X6 1 853.25 853.25 15.72™
X14 1 47.60 47.60 0.88™ Error 24 1302.45  54.27
X16 1 16991 16991 3.13™ Total 40 5597.76
X25 1 269.41  269.41 496™

*P<0.1, **P<0.05, ***P<0.01
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Table 7

Estimated Coefficients of the Selected Regression Model

Source Estimate SE t-stat P-value Source Estimate SE t-stat  P-value
intercept -189.84 72.66 -2.61 0.02 X25 -0.74 0.26 -2.84 0.01
X2 -33.72 10.69 -3.15 0 X26 6.38 2.05 3.12 0

X3 34.86 10.5 3.32 0 X34 0.51 0.18 2.82 0.01
X4 3.81 1.01 3.77 0 X35 0.68 0.23 2.92 0.01
X5 -7 1.52 -4.6 0 X36 -10.96 3.3 -3.32 0

X6 31.59 10.38 3.04 0.01 X67 5.01 1.67 3 0.01
X7 -27.9 14.87 -1.88 0.07 X5 0.06 0.01 4.55 0
X14 -0.47 0.15 -3.06 0.01 X6 -2.03 0.51 -3.97 0

X16 4.11 1.38 2.98 0.01

Y~1+X2+X3+X4+X5+X6+X7+X1 X4+X1 X6+X2 X5+X2 X6+X3 X4+X3 X5+X3 X6+X6 X7+X5 +X6

Diagnostics of the model adequacy

The model adequacy was evaluated to de-
termine the performance of the model and
whether the model would give poor or mis-
leading results (Maran et al., 2013). The vali-
dation of the regression model was related
to the validation of the assumptions of re-
gression analysis. As depicted in Figure 2,

we could be highly confident to the regression
model for predicting PWD because the dis-
tribution of the studentized errors was very
similar to normal distribution (Figure 2(a)
and 2(c)), the variances of errors were ap-
proximately equal to the fitted values (Figure
2(b)), and the errors of the model were not
auto-correlated (Figure 2(d)).

Figure 2. Diagnostics plots for the model adequacy

RBF model
Model selection

In order to estimate the best architecture of
the RBF network, we evaluated the network

using 15 scenarios with different combinations
of inputs. The optimum number of neurons
and the spread parameter was determined.
Table 8 shows the selected scenario and the
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optimum number of neurons and spread pa-
rameters. The scenarios were ranked according
to their performance in prediction based on
three criteria including RMSE, MAPE, and R?.
As Table 8 shows, however, all scenarios had
good performance and high R? value (99%)
except S15. Scenario 5 was selected as the
best due to its fewer input parameters. The

inputs of this scenario included the minimum,
maximum and average daily temperature,
rainfall, wind speed, and evaporation. This
scenario had the best performance on 19 neu-
rons and a value of 0.1 for the spread parameter.
Fig. 3 shows the performance of this scenario
for various numbers of neurons and spread
parameters for both train and test sets.

Table 8
Overall Results of the RBF Networks under Different Scenarios
Train Test
Rank Scenario Hiddensize Spread RMSE MAPE R? RMSE MAPE R?
(%) (%) (%) (%)

1 S5 19 0.1 2.6E-9  1.2E-9 0.99 1.5E-9 1.3E-9 0.99
2 S1 9 2 1.9E-7  1.34E-7 0.99 6.8E-8  5.6E-14 0.99
3 S2 19 2 5.6E-4  5.3E-4 0.99 5.1E-4  4.9E-4 0.99
4 S4 19 2 0.009 0.008 0.99 0.010 0.010 0.99
5 S3 7 3 0.014 0.010 0.99 0.008 0.006 0.99
6 S6 19 3 0.013 0.011 0.99 0.013 0.012 0.99
7 S7 21 2 0.022 0.019 0.99 0.018 0.018 0.99
8 S10 21 2 0.049 0.039 0.99 0.053 0.048 0.99
9 S9 15 5 0.057 0.058 0.99 0.038 0.034 0.99
10 S8 7 4 0.072 0.054 0.99 0.076 0.068 0.99
11 S11 21 2 0.095 0.096 0.99 0.081 0.081 0.99
12 S14 11 2 0.099 0.073 0.99 0.139 0.108 0.99
13 S12 11 5 0.301 0.279 0.99 0.255 0.222 0.99
14 S13 21 2 0.467 0.455 0.99 0.699 0.620 0.99
15 S15 19 1 1.150 0.418 0.98 2477 1.107 0.98

*Bold numbers show the scenario characteristics and performance criteria for the best scenario

Sensitivity analysis of the RBF model

The outputs of the best RBF model and
sensitivity analysis are shown in Table 9. The
RBF model had a total efficiency of 99%. Sen-
sitivity analysis indicated that the performance
of the RBF model exhibited the highest sen-
sitivity when rainfall (xs) and wind speed
(x6) were excluded. The exclusion of these
parameters from the model inputs resulted
in 55% and 41% reduction in R? in the total
phase and a significant increase in RMSE and
MAPE in all three phases, respectively.

Generalization capability of the model

In this study, we analyzed the generalization
capability of the RBF model using the varia-
tions in the number of train sets from 90
percent of total data to 80, 70, 60, 50, 40 and
30 percent of total data. The results of this
analysis are presented in Table 10. According
to these results, the selected RBF model had
a good generalization capability and could
keep its high performance in all data sets.
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Figure 3. Diagrams of R2 vs. hidden sizes at different levels of spread for Scenario 5

a. Train set, b. Test set

Table 9
The Results of the Sensitivity Analysis of the Selected Scenario
Train Test Total

RMSE(%) MAPE(%) R?  RMSE(%) MAPE(%) R?*  RMSE(%) MAPE(%)  R?
All 2.64E-9 1.26E-9 0999 1.50E-9 1.31E-9 0999 2.46E-9 1.27E-9  0.999
All exf(ll“di“g 0390 0318 0999 0176 0129 0999 0359  0.281  0.999
All ex)c(lz“di“g 3.73E-8 2.90E-8 0999 251E-8 251E-9 0999 3.53E-8 2.82E-8 0.999
A“exf(ls,“dmg 136E-8 1.99E-8 0999 1.68E-8 1.19E-8 0999 143E-8 127E-8  0.999
All exf(g*di“g 9320 7373 0609 8416 8455  0.014 9.150  7.852  0.550
All ex§16“di“g 9.608 8198 0537 12875 8198 0081 10325 8274 0412
All ex)c(l;di“g 491E-9 4.35E-9 0999  6.18E-9 597E-9 0999  5.18E-9 4.66E-9 0.999
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Table 10

The Results of the Evaluation of the Selected Scenario Generalization Capability

TS Train phase Test Phase

RMSE(%) MAPE(%) TSSE(%?) R? RMSE(%) MAPE(%) TSSE(%?) R?
90 1.92E-7 1.21E-7 1.37E-12 0.999 8.13E-8  7.34E-8  2.64E-14 0.999
80 2.64E-9 1.26E-9  2.30E-16 0.999 1.50E-9 1.31E-9  1.81E-17 0.999
70 0.759 0.610 16.72 0.996 0.649 0.442 5.065 0.996
60 6.43E-7 5.60E-7  1.03E-11 0.999 6.43E-7  4.68E-7 6.61E-12 0.999
50 2.12E-7 1.54E-7  9.45E-13 0.999 1.15E-7 1.03E-7  2.69E-13 0.999
40 1.20E-6 1.00E-6  2.37E-11 0.999 1.00E-6  8.64E-7 2.51E-11 0.999
30 0.455 0.332 2.485 0.997 0.597 0.461 10.36 0.997

Comparison of the results of models

The results of the models were compared
with actual data and with the results of
another study that had used the same weather
data for the estimation of PWD based on soil
moisture model (Kosari-Moghaddam et al,,
2016).

Statistical characteristics for MLR and RBF
The results of evaluating the statistical char-

Table 11

acteristics of both MLR, RBF and soil moisture
models versus actual values are shown in
Table 11. This table presents that although
the values of all parameters for both models
did not significantly differ from the actual
data, except for the skewness in the soil mois-
ture model, these values were approximately
equal to the actual ones in the RBF model,
implying the good performance of this model.

Statistical Properties of the Actual and Predicted Variables for the MLR, RBE and Soil Moisture Models

Statistical properties

- RMSE MAPE
Mean. Var. Stal.lda.‘rd Min. Max. Kurtosis Skew Sum
deviation ness
Actual 87.66 13994 11.83 51.00 100.00 4.34 -1.21  3593.97 - -
MLR  87.50™ 102.89 10.14™ 50.60 100.00 545  .1227 358751 5.53 5.12
RBF-S5 87.65 139.94 10.83™ 51.00 100.00 434  -1.21" 3593.74 0.00 0.00
rrf(‘)rgél 91.39" 181.90 13.65* 37.93 100.00 558 -2.17" 374712 1617  14.15

ook

" significant at 10%, ™ significant at 5%,

The results of means comparison t-test
The means comparison t-test was used to
evaluate the results of the MLR, RBF, and soil
moisture models (Figure 4). This table shows
that there was no significant difference be-
tween the results of all models and actual

significant at 1%, ™ not significant

data. Moreover, the PWD predictions for all
models and the actual data are shown in
Figure 5. According to this figure, although
all models predicted PWD between 70 and
100 percent, the soil moisture and MLR
models predicted greater and smaller PWD
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values, respectively. Ahaneku and Onwualu
(2007) developed a simulation model to pre-
dict suitable workdays for tillage operation
in Nigeria based on soil moisture content.
The results showed that the correlation co-
efficients between the observed and predicted
data were 0.93 for both sandy loam and clay
soils. Moreover, Babeir et al. (1986) determined
the available field operation time for machinery
based on weather and soil moisture conditions.
They reported that the correlation coefficient
of the observed and predicted soil tractability
value was 0.95. The results of such models
can be implemented as an input of the farm

management simulation models to determine
the costs of machinery operations. De Toro
and Hansson (2004) calculated the daily soil
workability based on a soil moisture model
for plowing, secondary tillage, and sowing
operations. These results were used as the
input of a simulation model for the assessment
of timeliness costs in Sweden. In another re-
search, Savin et al. (2014) developed a profit
maximization algorithm and general LP model
for harvesting operation in which the loss of
yield due to uncertain weather events were
considered.

Figure 4. The comparison of three different models for determining the PWD
values for tillage operation in Mashhad based on t-test

and actual data

Figure 5. The comparison of the predicted PWD values for three models
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CONCLUSION

The probability of working days is one of
the most important parameters in agricultural
machinery management, especially for the
estimation of timeliness costs. This parameter
is influenced by weather data such as daily
temperature, rainfall, relative humidity, wind
speed and so on which could be varied ac-
cording to farm operation types. There are
different ways to estimate PWD and we men-
tioned three main methods used in most re-
search on this topic. In this research, we used
the Multiple Linear Regression (MLR) and
Radial Basis Function (RBF) network to esti-
mate PWD for tillage operation in Mashhad,
Iran. The performance criteria were RMSE,
TSSE, MAPE, and R2. The results showed that
R?were 0.78 and 0.99 for MLR and RBF mod-
els, respectively. The RBF model had a more
acceptable performance and considered to
be the best model. The results of RBF model
implied that the scenario that included the
maximum, minimum and average daily tem-
perature, rainfall, wind speed and evaporation
as input variables with 19 neurons and the
value of 0.1 for the spread parameter exhibited
the best performance among 15 suggested
scenarios. Finally, the comparisons between
actual and predicted data of all MLR, RBF
and soil moisture models presented that there
were no significant differences between them.
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