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  INTRODUCTION 
 

Metals pollution is a health and environmental problem of 
great concern. According to the data reported by the 
Agency for Toxic Substances and Diseases Registry 
(ATSDR), five of the 20 most harmful substances on the 
planet are heavy metals: Arsenic, Lead, Mercury, Cad-
mium, Chromium (ATSDR, 2006). Exposure to these ele-
ments, particularly at chronic low dose levels, is still a ma-
jor public health concern. Epidemiological and experimen-
tal studies showing an association between exposure and 
cancer incidence in humans and animals and according to 
the United States Environmental Protection Agency (US 
EPA), and the International Agency for Research on Cancer 
(IARC), these metals are also classified as either “known” 
or “probable” human carcinogens. 

Metals are natural constituents of all ecosystems, moving 
between atmosphere, hydrosphere, lithosphere, and bio-
sphere (Bargagli, 2000). Potential sources of heavy metals 
exposure include natural sources (e.g., groundwater, metal 
ores), industrial processes, commercial products, folk 
remedies, and contaminated food and herbal products. Dur-
ing last decades, the concentration of heavy metals in air, 
water and soil is progressively increased, both in urban and 
extra-urban areas, due to their exponential use in industrial 
processes.  

Further, metal pollution represent a big hazard for the 
ecosystem and for human and animal health (Nagajyoti et 
al. 2010; Jaishankar et al. 2013). The known ability of these 
elements to bioaccumulate and reach the animal food chain 
is of concern. Metals can enter the bodies via food, drinking 
water and air. Entering our bodies they produce toxicity by 
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forming complexes with cellular compounds containing 
sulfur, oxygen, or nitrogen.  

Several studies have shown the ability of heavy metals to 
accumulate in plants and animals tissues (Medeiros et al. 
1988; Olson et al. 2000; Liu, 2003; Li et al. 2005; Maia et 
al. 2006). So, bioaccumulation of toxic metals can occur 
both in the body and in the food chain. Different reports 
have shown the presence of one or more toxic metals in 
fodder and feed used for livestock food ration (Caggiano et 
al. 2005; Maia et al. 2006). Moreover eco-toxicological 
studies have shown the direct correlation between presence 
of heavy metals in the food ration and accumulation in the 
tissues of sheep and cattle that had taken it (Sedki et al. 
2003). These elements are accumulated in living organisms 
when they are taken up, and stored faster than they are bro-
ken down (metabolized) or excreted (Pandey and Madhuri, 
2014). 

The main target of storage of these substances are repre-
sented by the liver and, in particular, by the kidneys. Thus, 
metals through bio-accumulation can enter in the food 
chain and animals products may represent a direct source of 
such contaminants to humans. 

Therefore, the aim of this mini-review is to illustrate the 
implications of heavy metals (mainly Lead, Chromium, and 
Cadmium) in inducing disease processes by oxidative stress 
and their toxicity management in animals.  
 
Heavy metals and their mechanism of toxicity 
The mechanisms of metal-induced toxicity continue to be 
of interest and has been extensively studied and reported by 
various workers. In spite some of them are essential micro-
nutrients playing pivotal role in mediating (balancing) bio-
logical functioning of cells in plants, humans and animals, 
metals may have their toxic effects via metabolic interfer-
ence on biochemical and physiological functions of living 
organisms (Pandey and Madhuri, 2014; Sharma et al. 
2014).  

They produce toxicity by forming complexes with sev-
eral cellular compounds and organelles such as cell mem-
brane, mitochondrial, lysosome, endoplasmic reticulum, 
nuclei, and some enzymes involved in metabolism, detoxi-
fication, and damage repair (Granchi et al. 1998; Wang and 
Shi, 2001; Pulido and Parrish, 2003; Tchounwou et al. 
2012; Ghasemi et al. 2014). Moreover various studies con-
firmed that prolonged exposure to metals could activate 
cellular signaling that result in dysregulation of cellular 
pathways and subsequent toxicity (Fitsanakis and Aschne, 
2005; Florea and Busselberg, 2006).  

One of the mechanisms associated with heavy metal tox-
icity is mediated primarily via the generation of free radical 
species in various tissues and activation of mainly redox-
sensitive transcription factors (Faix et al. 2005; Gasemi et 

al. 2014), which are in turn toxicant and implicated in the 
pathophysiology of many diseases (Mittler, 2002).  

The oxidative stress mediated toxicity of heavy metals 
involves damage primarily to liver (hepatotoxicity), central 
nervous system (neurotoxicity), DNA (genotoxicity), and 
kidney (nephrotoxicity) in animals and humans (Florea and 
Busselberg, 2006; Ghasemi et al. 2014). It is also known 
that some heavy metals play a carcinogenic, mutagenic and 
teratogenic action (Jaishankar et al. 2014).  

Among the heavy metals lead, cadmium, and chromium 
may are found in all environmental compartments, and have 
a variety of applications in human and animal activities. In 
fact these elements are ubiquitous in air and water and are 
pollutants that continue to threaten the quality of public 
health around the world. Their exposure cause a broad 
range of adverse health effects in humans and animals and 
they are known to induce multiple organ damage in intesti-
nal tract as well as skeletal, central nervous, and reproduc-
tive systems (Martin and Griswold, 2009). Their toxic ef-
fects are produced by metabolic interference and oxidative 
damage and consequent beginning of disease processes 
(Leonard et al. 2004; Flora et al. 2008). 

Lead is considered to be one of the oldest and major en-
vironmental toxin studied and has been incriminated as a 
cause of accidental poisoning in both human and domestic 
animals more than any other substance (Casas and Sordo 
2006; Florea and Busselberg, 2006; Flora et al. 2012; 
Gidlow, 2015). 

Moreover, Lead exposure has been found to increase risk 
of numerous conditions that may lead to adverse effects on 
nervous system function, including hypertension, impaired 
renal and thyroid function, vitamin D deficiency, and pre-
term birth (Markowitz, 2000; CDC, 2005; Florea and Bus-
selberg, 2006; ATSDR, 2007; Mason et al. 2014). Younger 
are especially at greater risk because they have higher intes-
tinal Pb absorption and more vulnerable nervous systems 
which are still under development (Ziegler et al. 1978; 
Lidsky and Schneider, 2003; Ahamed and Siddiqui, 2007). 
Neurons in general have a high metabolic rate, which 
makes them more susceptible to different heavy metals 
producing changes in neuronal function and may lead to 
secondary alterations in neuronal anatomy (Nava-Ruiz and 
Mendez-Armeda; 2013).  

The neurotoxicity of lead has been well established 
through numerous studies but the cellular processes of lead 
neurotoxicity remain unknown, thus, oxidative stress plays 
a primary role in lead-induced neurotoxicity (Reddy et al. 
2002; Lidsky and Schneider, 2003; Marchetti, 2003; Florea 
and Busselberg, 2006; Ahamed and Siddiqui, 2007; Mason 
et al. 2014).  

Cadmium may enter into the animal production process 
accompanied with some feed ingredients. According to 
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current knowledge, cadmiun is not added as feed additives 
for animal growth, but is often present in mineral supple-
ments such as phosphates, zinc sulfate and zinc-oxide as an 
impurity. In veterinary medicine cadmium salts are used in 
the formulation of anthelmintics, acaricides and antiseptics. 

The Cadmium toxicity is associated with pulmonary 
(Lauwerys et al. 1974), renal (Hong et al. 2004), hepatic 
(Koyu et al. 2006), skeletal (Murata et al. 1970), reproduc-
tive (Rehm and Waalkes, 1988) and cardiovascular dys-
functions (Tellez-Plaza et al. 2008). This non-essential 
metal is also classified as a group I human carcinogen by 
the International Agency for Research on Cancer (IARC, 
1993). 

Studies on cadmium bound to metallothionein are also of 
interest because cadmium-metallothionein complexes may 
have different toxic profiles and are found in relatively high 
levels in organ meats (e.g., liver and kidney) (ATSDR, 
2012). 

Although a number of different routes by which lead and 
cadmium induced toxicity have been reported, the basic 
mechanisms can be synthesized as the interactions between 
cadmium/lead and essential metals (Ahamed and Siddiqui, 
2007; Vesey, 2010), such as zinc and selenium, and the 
oxidative stress consequent to Lead/Cadmium exposure 
(Farmand et al. 2005; Liu et al. 2009; Zhai et al. 2015). 
Lead and Cadmium are able to bind and to interact with 
many of the same enzymes as these metals but does not 
properly function as a cofactor, thus interfering with the 
enzyme’s ability to catalyze its normal reaction(s) (Sharma 
et al. 2014). To some extent these two mechanisms are still 
interrelated because lead/cadmium are now known to in-
duce metabolic disorder and production of ROS and reac-
tive nitrogen species (RNS) and hence these heavy metal 
exhibits ability to generate adverse effects in the oxidative 
and antioxidative systems (Oteiza et al. 1995; Brenneisen et 
al. 2005). 

Chromium is considered an essential metals with poten-
tial for toxicity (Goyer, 2001). This metal exists in a series 
of oxidation states with a valence from +2 to +6 (Jacobs 
and Testa, 2005; Tchounwou et al. 2012); the most impor-
tant stable states are 0 (elemental metal), +3 (trivalent), and 
+6 (hexavalent) (Patlolla et al. 2009a). Trivalent (Cr[III]) 
and hexavalent (Cr[VI]) compounds are the most com-
monly occurring forms and are thought to be the most bio-
logically significant (Zhitkovich, 2005), both being toxic to 
animals, humans and plants (Mohanty and Kumar Patra; 
2013). Chromium (III) is an essential dietary mineral in low 
doses.   

Chromium is used as a growth promoter in various ani-
mal species (turkeys, ruminants) and is also used for the 
improvement of the reproductive efficiency. The trivalent 
form of chromium is considered essential (micronutrient) 

for the normal glucose and lipid metabolism (Codd et al. 
2001). It is thought to be a cofactor for insulin action as a 
component of the “glucose tolerance factor” (Goyer, 2001). 

The contribution of organic chromium in nutrition is well 
known, for example in bovine farms, where the diet sup-
plementation improved the efficiency of insulin effects and 
increasing the animals performances. Also, chromium (III) 
bound to DNA in vitro, thus enhancing RNA synthesis. 

Chromium supplementation in diets of “travel-stressed 
cattle” significantly decreased serum cortisol and increased 
serum immunoglobulin (Goyer, 2001). 

The Food and Nutrition Board of the United States Acad-
emy of Sciences has established a safe and adequate daily 
intake for chromium in adults of 50-200 micrograms per 
day (ATSDR, 2012). 

The toxicity of chromium compounds is largely depend-
ent on oxidation state and on the ligand (Bagchi et al. 2002; 
Valko et al. 2005; Tchounwou et al. 2012). After entering 
the body Cr(III) binds directly to transferrin, an iron-
transporting protein in the plasma. In contrast, after absorp-
tion chromium(VI) is rapidly taken up by erythrocytes, 
crosses cell membranes, and is reduced to chromium(III) 
inside the cell. Furthermore the absorption of Cr VI is 3-5 
times higher than that of chromium(III) in rats and humans 
(Goyer, 2001). 

Regardless of the source, chromium(III) is widely dis-
tributed in the body and accounts for most of the chromium 
in plasma or tissues. The greatest uptake of chromium(III) 
as a protein complex is via bone marrow, lungs, lymph 
nodes, spleen, kidney, and liver, the highest being in the 
lungs (Bagchi et al. 2002). 

Studies have implicated the toxicity of chromium in renal 
impairment, skin blisters, anemia, haemolysis, tissue 
edema, liver dysfunction, neuronal cell injury, depletion of 
antioxidant enzymes (superoxide dismutase (SOD), glu-
tathione peroxidase (GPx), and glutathione (GSH)) and 
DNA damage. Because of its mutagenic properties, chro-
mium(VI) is categorized as a group 1 human carcinogen by 
the International Agency for the Research on Cancer 
(Dayan and Paine, 2001). 
 
Oxidative stress 
Heavy metal toxicity is mediated primarily by interference 
with metabolic intracellular activity and with generation of 
injurious free radical species in various tissues. Imbalance 
in the production and removal of reactive oxygen species 
(ROS) is the main mechanism of metals induced oxidative 
stress (Mathew et al. 2011; Patra et al. 2011; Nita and 
Grzybowski, 2016; Batool et al. 2017). Oxidative stress is a 
situation when ROS concentration is transiently or chroni-
cally enhanced, disturbing cellular metabolism and its regu-
lation and damaging cellular constituents. Moreover, the 
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metals disrupt cellular and antioxidant defense, and free 
radicals may be involved in particular pathways due to the 
specificity of especially designed sensor molecules and 
signal transducers (Winterbourn, 2008).  

The enhanced ROS concentration produce an unstable 
cellular environment (oxidative stress) causing massive 
cellular injury and extensive damage to the lipids, proteins, 
and biological macromolecules.  

Generation of oxidative stress has been considered as a 
major pathway of lead, cadmium and chromium(III) in-
duced toxicity, resulting in tissue damage, DNA damage, 
lipid peroxidation, oxidation of sulfhydryl groups of pro-
teins, depletion of protein, altered gene expression and 
apoptosis and a broad spectrum of degenerative disease 
including neurodegeneration. 

For example, the neurotoxicity associated with lead poi-
soning is linked to production of ROS which caused in-
crease or decrease in the levels of lipid peroxidation or an-
tioxidant defense mechanisms in the brain of experimental 
animals, and the effects were concentration dependent (Yiin 
and Lin, 1995; Adegbesan and Adenuga, 2007; Sanders et 
al. 2009; Sharma et al. 2014).  

The mechanisms of lead-induced oxidative stress primar-
ily include damage to cell membrane and DNA as well as 
the enzymatic (catalase, SOD, GPx, and glucose-6-
phosphate dehydrogenase (G6PD)) and pool of non-
enzymatic antioxidant molecules such as thiols including 
GSH of animals and human systems (Valko et al. 2005; 
Flora et al. 2008). 

Oxidative stress has therefore been proposed as a major 
mechanism behind cadmium toxicity (Ghasemi et al. 2014). 
Cadmium-induced injuries including DNA damage, lipid 
peroxidation, enzyme inhibition, cytotoxicity and 
mutagenesis (Jaishankar et al. 2014). ROS increasing has 
been implicated in chronic cadmium nephrotoxicity (Shaikh 
et al. 1999; Liu et al. 2009), immunotoxicity (Zhang et al. 
2000) and carcinogenesis (Waalkes, 2003). 

Tandon et al. (2003) reported a higher level of 
malondialdehyde (MDA), an important marker of lipid per-
oxidation, in blood, liver and brain in cadmium intoxicated 
rats. In another study, Xiao et al. (2002) shown that in the 
kidneys of rats this process causes increased lipid peroxida-
tion and tissue damage.  

At last the studies have shown that also the chromium 
toxicity is mainly associated with generation of highly reac-
tive oxydant species and with cross linking mechanism 
which leads to multiform DNA damages, e.g., strand break-
age, DNA–protein cross-links, DNA–DNA cross-links, Cr–
DNA adducts and base modifications in cells (Bagchi et al. 
2002; Arakawa et al. 2012; Ghasemi et al. 2014). Thus, 
chromium is a ROS promoting agent, resulting in DNA 
damage that leads to apoptosis and carcinogenicity. To clar-

ify how ROS induce cellular response and signal transduc-
tion is quite important for understanding of the mechanisms 
of metal-induced carcinogenesis. Certainly, many research-
ers have implicated the involvement of ROS signaling in 
metal-induced carcinogenesis and cell death over the last 
decade (Ghasemi et al. 2014). 

Generation of highly reactive oxygen species aftermath 
or during exposure to lead, cadmium and chromium may 
result in systematic mobilization and depletion of the cell 
intrinsic antioxidant defenses and formation of reactive 
oxygen intermediates (Patra et al. 2011). The oxidative 
injuries induced by metals can be counteracted by use of 
antioxidants such as chelators, vitamin E and C, herbal 
medicine, and through increasing the antioxidants level. 

Recent strategies of treatment, consisting in dietary sup-
plementation with antioxidants, suggest that these sub-
stances may play an important role in reducing some haz-
ards of heavy metals toxicity (Ercal et al. 2001; Bashandi 
2012). Evidences suggested that supplementation of anti-
oxidant may play significant protective effects through re-
balancing the impaired prooxidant/antioxidant ratio and so 
reducing metals toxicity. 
 
Concluding remarks 
Heavy metal toxicity has proven to be a problem of great 
concern and there are several health risks associated with it. 
Reported sources of heavy metals in the environment in-
clude geogenic, industrial, agricultural, pharmaceutical, 
domestic effluents, and atmospheric sources (He et al. 
2005; Tchounwou et al. 2012). While some metals are es-
sential, others are highly toxic, even in very small amounts.  
Intake of metals occurs by ingestion of food and water and 
by inhaling contaminated air. Some metals get accumulated 
in the body and in the food chain, exhibiting a chronic tox-
icity. They may act as a pseudo element of the body while 
at certain concentration they may interfere with cellular 
signaling and metabolic processes. The toxicity could be 
more pronounced in specific tissues and at the cellular 
level, different organelles and (membrane) proteins are tar-
geted and several pathways could be involved, depending 
on the metal component. 

Transition metals are known to influence the oxidative 
status of biological macromolecules. So these elements act 
their toxicities inducing intracellular dysfunction and tissue 
damage through generation of an imbalance between the 
prooxidant elements and the antioxidants (reducing ele-
ments) in the body (Faix et al. 2005; Valko et al. 2005; 
Jomova and Valko, 2011; Belyaeva et al. 2012; Bahavar et 
al. 2013; Sharma et al. 2014; Gasemi et al. 2014). More-
over, many researchers have demonstrated that reactive 
oxygen species production and oxidative stress play a key 
role in the toxicity and carcinogenicity of metals such as 
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lead (Tchounwou et al. 2004; Yedjou and Tchounwou, 
2008), cadmium (Tchounwou et al. 2001), and chromium 
(Patlolla et al. 2009a; Patlolla et al. 2009b). Because of 
their high degree of toxicity, these elements rank among the 
priority metals that are of great public health significance. 

Normally living organisms are well equipped with anti-
oxidants that directly or indirectly protect cells against the 
adverse effects of xenobiotics, carcinogens and toxic radi-
cals. Data suggest that antioxidant supplementation may 
play an important role in abating the oxidative damage and 
the pathotoxicity of metals (Patrick, 2003; Ranjbar et al. 
2008; Ghasemi et al. 2014). Currently, chelation treatment 
is considered the best known therapy against metals toxic-
ity, and include the use of chelating agents, metallothionein, 
and antioxidant therapy with melatonin, vitamin E, vitamin 
C, N-acetylcystein and herbal medicine (Valko et al. 2006; 
Kostova and Balkansky, 2013; Tavakol et al. 2015).  
 

  CONCLUSION 
However, the effectiveness of antioxidant treatments is re-
lated to the type of heavy metal and its chemical form, as 
well as on the understanding of the underlying mechanisms 
of their toxicity. In this regard, elucidating the cellular and 
molecular mechanism by which metals causes oxidative 
injuries is needed for health risks assessment of human and 
animal exposure to toxic metals. 
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