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  INTRODUCTION 
It is now generally accepted that broilers consume an 
amount of feed that is adequate to meet their energy de-
mands (NRC, 1994). Modern broiler chickens can reach 
their high genetic potential for growth, but this appears only 
after supplying ingredients to support their high energy 
requirements. Because of the limited capacity of the diges-
tive tract of broiler chickens (Svihus, 2014), the inclusion 
of fats as condense energy sources in the diets seems to be 
unavoidable. Animal or vegetable fats or their mixtures are 
common ingredients in broiler diets. It has been reported 
that there is a positive correlation between dietary fat un-
saturation degree and its absorption in chicken’s gastroin-
testinal tract and there is a possible synergistic effect be-
tween saturated and unsaturated fats in diet (Freeman, 
1984; Hulan et al. 1984; Ketels and DeGroote, 1989). Be-

sides its direct energy contribution, fat is also known to 
improve feed efficiency through an “extra caloric” effect 
(Vermeersch and Vanschoubroek, 1968). Specific fatty 
acids (FAs) such as n-3 polyunsaturated fatty acids (PU-
FAs) were reported to enhance performance in the growing 
chicks (Hellerstein et al. 1989; Cook et al. 1993; Korver 
and Klasing, 1997). The n-3 PUFAs, especially, eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), are 
well known for their favourable effects on human health 
(Kinsella et al. 1990; Knapp, 1991).  

Some strains of commercial birds like broiler chickens 
are at risk of fatness and their liver synthesises and secretes 
large amount of triglyceride (TG) and lipoproteins (Griffin 
et al. 1991). Consequently, the higher blood concentration 
of TG in broilers than layer hens will result in higher TG 
deposition in adipose tissue of broilers. Liver is the main 
site of lipoenesis in birds and it is suggested that hepatic TG 
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synthesis in broiler chickens is higher than the amount nec-
essary to meet energy requirements, since the mobilization 
of adipose tissue TG is less than its synthesis (Newman et 
al. 2002). 

According to Jump et al. (2005), the n-3 PUFAs act as 
feed-forward activators of fatty acid oxidation and feedback 
inhibitors to prevent the production of new FAs, including 
PUFA. This regulatory scheme not only reduces overall 
hepatic lipid content and very low density lipoproteins 
(VLDL) secretion, but also eliminates excessive very long-
chain PUFA that may promote oxidant stress or impair 
membrane integrity. Hence, both enhanced catabolism of 
TG-rich particles as well as reduced secretion of VLDL 
particles are mechanisms that contribute to the hypolipi-
demic effect of (n-3) PUFA (Schoonjans et al. 1996). This 
paper briefly reviews the major metabolic effects of n-3 
PUFAs.  

 
Fats in poultry diets 
There are many reports on the benefits of supplementing fat 
to chicken diets. Biely and March (1954) in one of the ear-
liest studies, showed that inclusion of tallow in poultry diets 
improved nutrient utilization and resulted in a superior 
growth rate. Besides its’ direct energy contributor role, fat 
is also known to improve feed efficiency through an “extra 
caloric” effect. This phenomenon has been reported in both 
chicks (Vermeersch and Vanschoubroek, 1968) and poults 
(Jensen et al. 1970). Improvement in chicken’s growth rate 
and carcass yield, which mainly is achieved by increasing 
breast yield and reducing abdominal fat deposition, is the 
main goal of broiler meat production industry (Zerehdaran 
et al. 2004). Young chicks are not able to digest and absorb 
dietary fat efficiently but this improves with age (Polin and 
Hussein, 1982). The age dependent variations in fat digesti-
bility are most obvious for more saturated fats containing 
high levels of C16:0 and C18:0 FAs. The superior fat di-
gestibility in older chickens is in part due to a higher bile 
salt synthesis and intestinal lipase activity (Krogdahl, 1985; 
Krogdahl and Sell, 1989). The average digestibility of PU-
FAs is more than 85% in the chickens (ages more than 10 2 
weeks) (Sklan et al. 1973; Noy and Sklan, 1995). 

Poultry like most other animals have an absolute dietary 
requirement for linoleic and α-linolenic acids. Dietary defi-
ciency in EFAs can cause lower growth and harmful effects 
on membrane biology, nervous system, bone formation, 
visual function and reproduction (Watkins, 1995; Calder, 
1997). The NRC (1994) recommends a minimum of 1% of 
linoleic acid in chicken diets, but there is no recommenda-
tion for lenolenic acid requirements of chicken. The PUFAs 
linoleic (C18:2) and linolenic (C18:3) acids have a higher 
digestibility than saturated stearic acid (C18:0) (Sklan, 
1976). In growing chickens, the reported digestibility of 

soybean oil, lard and tallow are 96%, 92% and 67%, re-
spectively (Sklan, 1976). It is well known that because of a 
synergism effect between saturated and unsaturated fats, 
mixed dietary fats could result in an improved digestibility 
of saturated fats in chicken (Doreau and Chilliard, 1997), 
which in turn could lead to better utilization of metabo-
lisable energy of the mixed fats in poultry. 
 

Metabolic effects of fatty acids  
Frequently, FAs effects on cellular homeostasis are medi-
ated through their metabolites. After uptake by cell, an acyl 
CoA synthetase enzyme rapidly converts the FAs to fatty 
acyl coenzyme A (CoA) thioesters (Coleman et al. 2002). 
This step is necessary to the further pathways of FAs me-
tabolism, including elongation and desaturation, complex 
lipid synthesis, ß-oxidation, and producing prostaglandins, 
thromboxanes, and leukotrienes as the secondary signaling 
intermediates, which can in turn make possible alterations 
in synthesis of cellular second messengers such as inositol 
triphosphate and cyclicAMP (cAMP) (Harini and Ntambi, 
2006). The altered FAs through different reactions such as 
elongation, desaturation, oxidation or peroxidation, enter 
into phospholipids and complex lipids such as ceramides 
and sphingolipids, or involve in eicosanoid synthesis 
(Madsen et al. 2005). The acyl CoA synthetase reaction and 
the different pathways of cellular FAs are quite fast so the 
free fatty acid content within the cell is usually maintained 
at very low levels. Therefore the metabolic effects of FAs 
in cells may be mediated, not only by means of free FAs, 
but also through fatty acyl CoAs and second messengers 
(Harini and Ntambi, 2006). The importance of dietary pol-
yunsaturated FAs from the n-3 and n-6 series and their in-
teractions with carbohydrate and lipid metabolism has re-
ceived much attention. FAs motivate gluconeogenesis and 
glucose output of liver (Patsouris, 2006). High dietary PU-
FAs enrich hepatic plasma and microsomal membranes 
with long-chain PUFAs. This enrichment consequently 
changes hormone binding to cell-surface receptors and in-
fluences signaling mechanisms, which sequentially modify 
carbohydrate and lipid (Benatti et al. 2004). Over the past 
25 years, several authors have verified that dietary n-3 and 
n-6 PUFAs decrease hepatic lipogenesis, while saturated 
and monounsaturated FAs have no inhibitory effects (Blake 
and Clarke, 1990). Furthermore, it seems that the lipogenic 
effects of n-3 and n-6 FAs are liver specific, and can not 
affect the adipose and lung lipogenic rates (Clarke and 
Jump, 1993). This fat reducing effect of PUFAs is due to 
suppressed synthesis of n-9 FAs family. The dietary PUFAs 
inhibit fatty acid biosynthesis, and consequently decrease 
the available substrates for Δ9 desaturase (Enser and Rob-
erts, 1982), thus less n-9 FAs will be available to incorpo-
rate into plasma membranes.  
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PUFAs also decrease the activities of microsomal en-
zymes involved in fatty acid desaturation and TG synthesis 
(Christianse et al. 1991). These mechanisms cause a reduc-
tion of substrate availability for TG synthesis and a shift of 

FAs into the mitochondria and peroxisomal -oxidative 
pathways (Flatmark et al. 1988). This is important consid-
ering that n-3 and n-6 PUFA are not metabolically inter-
convertable and have different physiological roles. It is 
demonstrated that 18:2 n-6 fatty acid deficiency adversely 
affects growth, reproduction and skin function in mammals 
(Burr, 1942; Holman, 1968; Hansen and Jensen, 1985). The 
18:3n-3 fatty acid has a key role to maintaining normal 
growth and skin function (Burr, 1942; Fu and Sinclair, 
2000). 

Highly unsaturated long chain FAs (LC-PUFAs) such as 
20:4 n-6, 20:5 n-3 and 22:6 n-3 which are derivatives of 
18:2 n-6 and 18:3 n-3, are also physiologically consider-
able. In humans, brain, retina and other neural tissues con-
tain large amounts of 22:6 n-3 and this fatty acid is required 
for normal cognitive and visual development mainly in fetal 
and infants (Hornstra et al. 1995). The energy and fat bal-
ance of animals can be manipulated by changing the dietary 
polyunsaturated to saturated fatty acid (P/S) ratio, in par-
ticular by the addition of the LC-PUFA’s (Field et al. 1990; 
Luo et al. 1996; Couet et al. 1997).  

The n-6 PUFA subtypes also inhibit the activity of en-
zymes associated with hepatic lipogenesis. Allmann and 
Gibson (1965) first reported in mice, that within two days 
of inclusion of just 2% linoleic acid (18:2 n-6) to a high-
carbohydrate, fat-free diet, the rate of liver fatty acid syn-
thesis and the activities of FAS, glucose-6- phosphate de-
hydrogenase and malic enzyme were reduced by 70%. On 
the contrary, dietary palmitic (16:0) or oleic (18:1 n-9) ac-
ids did not change hepatic FA synthesis (Clarke and Jump, 
1994). The observation that dietary soybean oil reduced 
liver fat deposit is in agreement with the inhibitory activity 
reported for the n-6 PUFA family on enzymes of hepatic 
lipogenesis (Royan et al. 2013).  

 

n-3 PUFAs 
The n-3 PUFAs, especially EPA and DHA, are well known 
for their favorable effects on human health (Kinsella et al. 
1990; Knapp, 1991). It seems that in human rations and 
most animal feeds there is an unbalanced fatty acid compo-
sition, so that the content of n-3 and n-6 FAs has been de-
creased and increased, respectively. One approach to re-
store this balance is by supplementing food with fish origi-
nated fats, which are rich in long chain n-3 PUFAs (Bezard 
et al. 1994; Tuncer et al. 1987; Manilla et al. 1999; Lopez 
Ferrer et al. 2001).  

Fish oils contain high levels of 20:5 n-3 and 22:6 n-3 and 
are effective to prevent coronary heart disease (Dyerberg et 

al. 1975; Stansby, 1990). Previous reports indicate that 
chickens and rats fed diets enriched with fish oil had nor-
mal mortality rate, growth rate and feed conversion ratio 
(Phetteplace and Watkins, 1990; Nash et al. 1995).  

In another report, fish oil reduced the catabolic response 
induced by immune stimulation and it can be speculated 
that part of the better performance observed in chickens fed 
fish oil containing diets was caused by the improved spe-
cific immunity (Chin et al. 1994). But, there are some con-
trasting reports too. Hulan et al. (1988) found that dietary 
fish oil reduced feed intake and body weight and increased 
feed conversion ratio in broilers, and attributed this unfa-
vorable effect to a lower palatability of fish oil containing 
diets. In cultured hepatocytes, EPA (20:5 n-3) decreased the 
activity of acyl-CoA; 1, 2-diacylglycerol O-acyltransferase, 
the enzyme that catalyses the last step of TG synthesis 
(Rustan et al. 1988). These FAs reduce hepatic lipogenesis 
by down-regulation fatty acid synthase, spot 14 and stea-
royl-CoA desaturase gene expression in liver (Jump et al. 
1994). Fish oils also decrease the risk of atherosclerotic 
plaque formation and colon and breast cancer (Bougnoux et 
al. 1994; Caygill et al. 1995). Fish oils have also been re-
ported to influence the activity of enzymes involved in he-
patic TG synthesis. TG Mikkelsen et al. (1993) showed that 
the greater the degree of unstauration of the fatty acid the 
more fatty acid synthesis was inhibited; DHA (22:6 n-3) 
being more potent than EPA (20:5 n-3) or arachidonic (20:4 
n-6).  

When chickens were fed n-3 PUFA’s derived from fish 
oil, plasma TG concentrations were reduced (Akiba et al. 
1995). The n-3 PUFAs act as feed derived promoters of 
fatty acid oxidation and feedback inhibitors to synthesis of 
new FAs, including PUFA (Jump et al. 2005). This regula-
tory mechanism not only decreases overall liver lipid con-
tent and VLDL secretion, but also reduces excessive very 
LC-PUFAs that may cause oxidant stress or impair mem-
brane integrity (Jump et al. 2005). Therefore, the higher 
degradation of TG-rich particles as well as a lower secre-
tion of VLDL particles is responsible for the hypolipidemic 
effect of free FAs (Schoonjans et al. 1996). The effect of n-
3 rich fats especially fish oil on serum TG reduction has 
been previously reported in chicks (Akiba et al. 1995). In 
the study of Phetteplace and Watkins (1989) the chickens 
fed menhaden oil had lower plasma TGslevels compared 
with values for those fed chicken fat; they concluded that a 
decrease in TGs (TG) synthesis by the liver could result in 
lower amounts of TG in the VLDL + LDL fraction. Daggy 
et al. (1987) and Royan et al. (2013) found that experimen-
tal birds fed fish oil exhibited decreased VLDL production. 
According to Jump et al. (2005), the n-3 PUFAs act as 
feed-forward activators of fatty acid oxidation and feedback 
inhibitors to prevent the production of new FAs, including 

253-245, )2(5) 5201(Animal Science Applied  ofIranian Journal   247 



Polyunsaturated Fatty Acids and Chicken Metabolism 
  
  

PUFA. This regulatory scheme not only reduces overall 
hepatic lipid content and VLDL secretion, but also elimi-
nates excessive very LC-PUFA that may promote oxidant 
stress or impair membrane integrity. Hence, both enhanced 
catabolism of TG-rich particles as well as reduced secretion 
of VLDL particles are mechanisms that contribute to the 
hypolipidemic effect of n-3.  

 
Eicosanoids 
The essential FAs, linoleic acid (18:2 n-6) and linolenic 
acid (18:3 n-3) and their longer chain polyunsaturated de-
rivatives are precursors for the synthesis of the eicosanoids, 
which have a regulatory role in many physiological proc-
esses (Smith and Marnett, 1991). Eicosanoids are short 
half-life biologically active agents, which are not stored in 
the cells, but their synthesis and release in response to a 
variety of hormones or cytokines is rather fast (within 5-60 
s) (Madsen et al. 2005). The stored n-6 and n-3 FAs in 
phospholipid fractions of cell membranes and in glycerides 
and phospholipids of lipid bodies are released by phosphol-
ipase A2 and further converted to eicosanoids (Schmitz and 
Ecker, 2008).  

Arachidonic acid is the primary metabolite of linoleic ac-
id, which is generated by the action of Δ-6 and Δ-5 desatu-
rase and elongase enzymes. Arachidonic acid is a major 
part of cell membranes, although phospholipase A2 mobi-
lize and convert it to eicosanoids, such as thromboxane A2, 
prostacyclin, and leukotriene B4. Arachidonic acid derived 
eicosanoids are typically pro-active (arrhythmic, platelate 
activator and inflammatory stimulatory effects) whereas 
EPA derived such as 3-series-prostaglandins (PGI3, PGE3 
and TXA3), and the 5-series leukotrienes have inhibitory 
roles. An increase in EPA intake and, thus a lower AA/EPA 
ratio in dietary lipids, cause the synthesis of anti-
inflammatory (PGE3), or even less inflammatory com-
pounds and thromboxanes with reduced pro-aggregatory 
and vasoconstrictive properties (Schmitz and Ecker, 2008). 
The key enzymes, cyclooxygenase (COX), lipoxygenase 
(LOX) and P450 epoxygenases normally use arachidonic 
acid released from phospholipids and convert it to eico-
sanoids (Madsen et al. 2005). 

It is worth mentioning that some abnormal conditions 
such as inflammation, hypertension, asthma, and some 
types of cancer result from dysregulation of the eicosanoid 
pathway (Harris et al. 2002). The n-3 PUFAs with a similar 
structure to arachidonic acid may replace it in phospholip-
ids.  

Some n-3 PUFAs and specially DHA, are able to inhibit 
cyclooxygenases (and possibly lipoxygenases). Thus, a diet 
rich in n-3 PUFAs (specifically EPA and DHA) can in this 
manner influence eicosanoid biosynthesis (Serhan et al. 
2002). 

Effects of dietary fat on gene expression 
Dietary FAs are able to regulate gene expression in a hor-
monal-independent approach. Nutrient mediated regulation 
of gene expression has important effects on metabolism, 
cellular differentiation, growth, development and health 
(Jump and Clarke, 1999). It has been suggested that dietary 
n-3 and n-6 PUFA’s change liver FA synthesis and other 
lipogenic enzymes by regulating mRNA synthesis (Clarke 
et al. 1990). The FAs decrease lipogenesis by suppressing 
gene expression in liver, including that of FA synthase, 
spot14 and stearoyl-CoA desaturase (Jump et al. 1994). The 
n-3 and n-6 PUFA’s also regulate the gene expression in 
adipose tissue, so that some studies have shown adipocyte-
specific gene regulation by linolenic acid (18:3 n-3). A high 
dietary n-6 PUFA reduces the stearoyl-CoA desaturase 1 
mRNA activity in rodent adipose tissue (Jones et al. 1996). 
Dietary PUFAs which inhibit lipogenesis are transported 
through plasma membrane and then bind to the cytosolic 
fatty acid binding protein (FABP). The FABP transport the 
18-carbon FAs to the Δ6-desaturase and then carries FA 
products to the nucleus, where cytosolic FABP is trans-
ferred to a specific nuclear FABP (Benjamin and Friedrich, 
2009). The inhibitory effect of dietary fats on lipogenesis, 
depends on the quantity and quality of the FA constituents. 
To inhibit the expression of lipogenesis related genes, a 
dietary FA should have a minimum of 18 carbons and at 
least 2 conjugated double bonds placed at the 9 and 12 posi-
tions (Clarke and Clarke, 1982; Clarke and Jump, 1993). 
Therefore, PUFA of the n-9 family are not able to suppress 
FA synthesis (Clarke and Jump, 1993). PUFAs may regu-
late gene expression through three manners: (a) releasing of 
the PUFA-regulated signal, (b) by PUFA-mediated regula-
tion of the transacting factors, and (c) through interaction 
between trans-acting factor(s) and the target genes (Clarke 
and Jump, 1994). 

 
Effects of PUFAs on regulation of transcription factors 
Transcription factors belong to nuclear receptor (NR) fam-
ily. NRs are defined as ligand-activated transcription fac-
tors which directly and indirectly regulate a number of 
genes of lipid metabolism and inflammatory signaling. The 
members of NRs family have comparable structural organi-
zation spite the wide variation in ligand specificity 
(Schmitz and Ecker, 2008). NRs act as sensors for FAs and 
cholesterol-derived metabolites and in this manner mediate 
the effect of nutrients on gene expression (Harini and 
Ntambi, 2006). NRs capability to regulate transcription is 
mediated via binding their conserved DNA-binding do-
mains to DNA-response elements which contain conserved 
hexameric sequences with the ability to arrange in various 
bipartite configurations, including inverted and direct re-
peats (Khorasanizadeh and Rastinejad, 2001).  
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Changing in membrane composition or synthesis of sec-
ondary signaling intermediates are not the exclusively regu-
latory mechanisms of PUFAs on gene expression. Gott-
licher et al. (1992) discovered a nuclear receptor with the 
ability of binding to FAs which attributed to a direct in-
volvement of PUFAs on gene regulation. This mechanism 
may explain the rapid effects of PUFAs on gene transcrip-
tion (Jump et al. 1994). PUFAs also have an effect on nu-
clear mechanisms that alter the expression of various genes 
encoding enzymes such as FAS (Blake and Clarke, 1990; 
Clarke et al. 1990), malic enzyme (Katsurada et al. 1987; 
Schwartz and Abraham, 1983), delta 9 desaturase (Ntambi, 
1991; Tebbey and Buttke, 1992), acetyl-CoA carboxylase 
(Katsurada et al. 1990), and the S14 protein (Blake and 
Clarke, 1990; Clarke et al. 1990) that are involved in lipid 
metabolism. Inclusion of safflower oil or corn oil in diet 
reduced the synthesis of hepatic FAS by 80%, while hydro-
genated coconut or cottonseed oil had no inhibitory effect 
(Schwartz and Abraham, 1982). A six day period of feeding 
young growing rats with 10% dietary safflower oil sup-
pressed mRNAs encoding of FAS and S14 up to 30 and 
50%, respectively compared with the values found with a 
fat-free, high-glucose diet (Clarke and Jump, 1994). 

Two mechanisms may be involved in this suppression of 
enzyme synthesis: (a) interference with the expression rate 
of mRNA and/or (b) a decrease in the quantity of mRNA 
encoding the enzyme (Clarke and Jump, 1994). Dietary 
PUFAs control the synthesis of hepatic FAS and S14 main-
ly by decreasing the amount of mRNA encoding these pro-
teins. PUFAs could control the phosphorylation state of a 
specific nuclear protein that operates the expression of 
genes encoding the lipogenic proteins (Blake and Clarke, 
1990). 

A fundamental hypothesis about the FA effects on gene 
expression has been that FAs enter cells and regulate the 
activity or amount of transcription factors (Jump et al. 
2005). FABP and acyl CoA binding protein (ACBP) are 
involved in transportation of Non-esterified fatty acids 
(NEFAs) and fatty acyl CoA (FACoA) to intracellular 
compartments for metabolism or to the nucleus to cooperate 
with transcription factors (Hertzel and Bernlohr, 2000). The 
acyl CoA can be oxidized or after esterification can enter 
complex lipids such as TGs, phospholipids, or diacylglyc-
erols. These complex lipids can also supply the cellular FA 
needs as necessary. On the other hand, FACoAs can pro-
duce prostaglandins, leukotrienes and thromboxanes. These 
secondary metabolites as well as complex lipids such as 
diacylglycerol, can raise cellular levels of secondary mes-
sengers such as cyclic AMP (cAMP), inositol triphosphate 
(IP3), and calcium. Both the secondary messengers and 
their lipid precursors can affect gene expression. On the 
other hand, free FAs and fatty acyl CoAs are able to act 

directly at the nuclear level. In the nucleus, signaling medi-
ated by FAs or their metabolites can cause alteration in nu-
clear receptor activation (Harini and Ntambi. 2006). 

NEFAs are transported into the cell through transporters 
(fatty acid transport protein (FATP) or fatty acid transporter 
CD36 (FAT) or diffusion and are rapidly converted to 
FACoA by FATP or FACoA synthetases (Coleman et al. 
2002; Jump et al. 2005). PUFAs of both n-3 and n-6 fami-
lies control transcription of lipogenic genes (such as FA 
synthase, L-pyruvate kinase and stearoyl-CoA desaturase-
1) via reducing of sterol regulatory element binding pro-
tein-1c (SREBP-1c) nuclear activity, through proteolysis, or 
changing SREBP-1c mRNA transcription (Schmitz and 
Ecker, 2008). This observation is important because com-
petitive inhibition of PUFAs decrease oxysterols binding to 
liver X receptor (LXR), leading to a decreased SREBP-1c 
expression (Coleman and Lee, 2004).  
 

Effects of PUFAs on PPARs expression 
There are many transcription factors recognized as probable 
targets for fatty acid regulation, including SREBP-1c, 

LXR, hepatic nuclear factors (HNF-4 and γ), retinoid X 

receptor (RXR) and peroxisome proliferator-activated 

receptors (PPAR, δ, γ1, and γ2) (Bordoni et al. 2006). 
Most PUFAs (Forman et al. 1997; Yu et al. 1995; Kliewer 
et al. 1997) except erucic acid (Keller et al. 1993; Kliewer 
et al. 1997) are able to activate the members of the PPAR 
family (Yu et al. 1995; Kliewer et al. 1997). Study of the 
configuration of PPAR binding domains has demonstrated 
that the nuclear receptor suitably binds to different confor-
mations of FAs (Nolte et al. 1998). Several reports clearly 
showed that the 5' flanking regions of genes encoding car-
nitine palmitoyltransferase, mitochondrial hydroxymethyl-
glutaryl CoA synthase, fatty acyl CoA synthetase, acyl-
CoA oxidase and mitochondrial UCPs all have DNA identi-
fication sequences for PPAR (Mascaro et al. 1998; Rodri-
guez et al. 1994; Varanasi et al. 1996; Aubert et al. 1997).  

The PPARs have a binding affinity order as PUFA > 
MUFA > SFA (Kliewer et al. 1997). The n-3 PUFAs can 
stimulate PPARs by direct binding or via binding their 
cyclooxygenase and lipoxygenase metabolites. The phar-
macological properties of the synthetic PPAR ligands con-
firm the idea that some effects of MUFAs and PUFAs may 
be mediated through the PPARs (Patsouris, 2006). The 
EPA and DHA have been identified as potent agonists and 
result in high PPARα expression (Desvergne and Wahli, 
1999). There are several reports that dietary fat level and 
composition are able to affect PPARγ activity (Sato et al. 
2004). In a report in humans, infusion of a TG mixture for 5 
hours noticeably increasesd PPARγ mRNA expression in 
subcutaneous adipose tissue (Nisoli, et al. 2000). In ani-
mals, Vidal-Puig et al. (1996) reported that PPARγ expres-
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sion increased in adipose tissue of mice fed high fat diets. 
In pigs, dietary safflower oil caused a 4-fold increase in 
PPARγ gene expression in adipose tissue (Spurlock et al. 
2000).  

It is reported that chicken PPARγ gene is moderately al-
tered by dietary FAs. Sato et al. (2004) showed that PPARγ 
gene in chickens fed linoleic acid was up-regulated more 
than those fed oleic acid and that diet containing cholesterol 
did not affect PPARγ expression. These findings indicate 
nutritional modulation of chicken PPARγ mRNA expres-
sion might be manifested in a similar manner to mammals. 
Moreover, it seems that there is a feedback mechanism 
whereby changes in the levels of FAs in serum induce ca-
tabolism or storage of FAs through up-regulation of 

PPAR or PPARγ, respectively (Kliewer et al. 1997). In 
Chambrier et al. (2002) report in human adipocytes, EPA 
highly up-regulated PPARγ1 mRNA expression without 
any effect on levels, PPARγ2. Linolenic acid, DHA and n-6 
PUFAs did not affect PPARγ1 or PPARγ2 expression. 
 

  CONCLUSION  
This article briefly reviewed the most important aspects of 
PUFAs in poultry nutrition and metabolism. The higher 
digestibility of unsaturated fats, as well as their well known 
health promoting effects on human, has been increased the 
importance of these valuable ingredients in poulty diets. 
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