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Abstract

In this paper, we apply Picard’s Iteration Method followed by Adomian
Decomposition Method to solve a nonlinear Singular Cauchy Problem of
Euler-Poisson- Darboux Equation. The solution of the problem is much
simplified and shorter to arriving at the solution as compared to the
technique applied by Carroll and Showalter (1976)in the solution of
Singular Cauchy Problem.
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1.ntroduction

The Singular Cauchy Problem

2
8_121+56_u:Au; in0J ™ x(x,0)
ot° t ot

u(x,0)=f(x);u(x,0)=00n0"x{t=0}

D)

has been studied since the time of Euler(1770).

Some classical results obtained are summarized as follows:
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(1). If k=m-1, the solution as given by Arsgeirsson(1936) is

u(xt) :_Iza. [ (x+at)da, )
27"
where  a=o+a,++a,;, o,= is the surface area of the
r(m/2)

m —dimensional unit sphere.

(i). If k >m-1, the solution obtained by Weinstein (1952) is

u(x,t)= wk*l m J.za » I (X+at)(1—a2)(k+m)/2da

©)

where da =dode, - -de

m
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(iii). If k<m-1 but not k #-1,-3,-5,---; Weinstein (1954) improving on his
results of (1952) obtained the solution

1-t 0 " k+2n-1, (k+2n
u(xt)=t (5) [t ul )(X,t)] 4)

where n is a positive integer chosen such that k+2n>m-1 and u? s given

by (2) or (3) with f replaced by f/(k+1)(k+2)---(k+2n-1).

The solution of the singular Cauchy problem is unique for k>0 whereas for
k <0 it is not unique as indicated in the work of Weinstein (1952).

Carroll and Showalter (1976) dealt primarily with the Cauchy problem for
singular and degenerate equation of the form

A(t)u, +B(t)u +C(t)u=g (5)

where u() is a function of t, taking values in a separated locally convex space

E, while A(t),B(t), and C(t) are families of linear or nonlinear differential

type operators acting in E, some of which become zero or infinite at t =0. They
considered appropriate initial data u(0) and u,(0) at t=0, and ga suitable E-

valued function.
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2.The Adomian Decomposition Method to Singular Cauchy Problem

The purpose of this paper is to apply Adomian Decomposition method to solve
the problem (6).

2
6_121+56_u_Au u;in "x(x,0)
ot t ot

u(x,0)=f(x);u(x,0)=00n0"x{t=0}

(6)

where p>0, k—a parameter and f (x) is smooth with compact support.

On taking the Fourier transform of (6) with respect to x = (%, X,,**+ X, );

d2U k do 0.

e |(§| =0’ in0"x(&,0) @)

u(s.0)= () :(6,0)=00n0"x{t=0]
Then i( d—Uj Efa=a

d
or

T 2 —=p. _l—ti ki

LT +|E[ T=0"; L=t dt(t dtj (8)
Then @+l af = o) L= [ [ ¢ [t ©)

Solving the homogeneous part of (8) by Picards iteration method with T, = f_(g);

0. = [ [0 -|ef m, ot

So that we get
£t t? 6 t°
=— — U,=— — ==\ f. :
T ¢ gy T G DR
Therefore

. I G S G - S |
ast)= {1 Gl kD) 2 k(kenezya Y k(k+1)-.-(k+n—1)'ﬁ+"}

On takingk =2m+1, we get
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T(&t)=T(£)-2m(m+1)- (&) " 3, (&)

_trmey3 Y (ﬁf] o 1

m+n+1)

(10)

The nonlinear part is done by the Adomian Decomposition Method,
Adomian(1994), where

1| d" S
ph:_{ HN(ZA'EH ; =01 @y
n'l dA i 0

are Adomian polynomials with A a parameter introduced by convenience. Then
Adomian suggests the inductive scheme:

U=F0=A0=A, (12)

Thus from (9), we have

[

U (t)= f; A, (T, (s).T,(s),-~0,(s))ds,n=0,1,2,
(13)

So we have

Using (13), we determine few terms of the Adomian series:
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0 ()= 77 (6)
6 (0)=[p(p-1) T (&) T2 (2)] L

Thus for nonlinear part, we have

1= ()4 (&)t (6) 5+ [P(-D T ()4 T ()]
+[p(2 p?—1) T (&) + p*(p-1) f“‘p-l(g)]%+... (14)
Using the equations (10) and (14); we write
a(&t)=a(&t)+a, (&) (15)

Therefore
u(x,t)=f 0 (& 1)+ f 0, (&1) (16)
where T, (&,t) and T, (&,t) are given in equations (10) and (14) respectively.

For simplicity we let f(x)=¢ the delta-Dirac function. Then, f(&)=1. The
second term on right hand sides of (15) becomes

_ t? t® t*
a(t)=1+t+ e p(2p—1)-§+ p(6p2—7p+2)-m+0(t5)

) (17)

[1-(p-)t]*”

Then

1 ~ 5
[1-(p-]"" [1-(p-2]

u, (&)= ,-L-déx
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The first term in (15) then will be

U,(g,t)=1“(m+1)i(_l)n(§;/t_J T = 2r(m+1)(&48) "3, (&46)

= n! m+n-+1)

and

u (x,t)=

e [LfJ 3o (&vt)dg T (m+1)

nn

= e {(g_;/f}m -%Lﬁcos(gﬁ\/’fsinedﬁ)}df-F(m+1) (18)

Now (18) is not easy to calculate directly since T (&,t) is not an L function.

Here we shall consider the use of a cutoff function e“%"/2: & >0 (Folland1976) so
that we have

0 (&)= Pa (),

Clearly T’ (&)—0T(&),.uniformly ase —0, so that u,(x,t) will be the limit in
the topology of tempered distributions ofu;, the inverse Fourier transform of

0. Moreover, T’ (&)e Ll(D ”), so we can calculate its inverse Fourier
transform as an ordinary integral.

3.Conclusion

On comparison of solution of homogeneous part the equation (2)-(3) with that
used by Carroll (1951), this is far much simpler for we do not involve
transformations which are not easy to identify. Thus Adomian decomposition
method offers quite a simpler means of solving nonlinear differential equations.
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