
 

 

 

 

 

Inverse DEA Model with Fuzzy Data for Output Estimation 

 

Ali Mahmoodi Rad
1*

, Reza Dehghan
1
, Farhad Hosseinzadeh Lotfi

2
  

1
Department of Mathematics, Islamic Azad University,  

Masjedsoleiman Branch, Iran 

2Department of Mathematics, Islamic Azad University,  

Science & Research Branch, 

 Tehran, Iran 

*Correspondence E‐mail: Ali Mahmoodi Rad, alimahmoodirad@yahoo.com 

© 2012  Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran  

Online version is available on: www.ijo.iaurasht.ac.ir 

Abstract 

 In this paper, we show that inverse Data Envelopment Analysis (DEA) models can 

be used to estimate output with fuzzy data for a Decision Making Unit (DMU) 

when some or all inputs are increased and deficiency level of the unit remains 

unchanged. 

Keywords:  Data Envelopment Analysis, Multi-objective Programming, Inverse 

DEA  Model, Fuzzy Numbers 

 

1. Introduction 

Data envelopment analysis (DEA) is a non-parametric technique for measuring 

and evaluating the relative efficiencies of a set of entities, called decision making 

units (DMUs), with the common inputs and outputs.  Since the first introduction 

of the technique by Charnes et al.[1], known as the CCR model. Since the original 

publication, DEA has become a popular method for analyzing the efficiency of 

various organization units [1,3,4]. Interestingly, Charnes and cooper have also had 

a significant impact on the development of multiple objective linear programming 

(MOLP) through the development of goal programming. Al though Charnes and 

Cooper have played a significant role in the development of DEA and MOLP, 

researchers in these two camps have generally not paid much attention to research 

performed in the other camps (for more details see[5,6,10]).   Recently, Wei et al. 
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[9] proposed inverse DEA, to answer the questions as follows: if among a group 

of DMU s , we increase certain input to a particular unit and assume that the DMU 

maintains its current efficiency level with respect to other DMU s , how much 

should the outputs of the DMU increase, or if the outputs need to be increased to a 

certain level and the efficiency of the unit remains unchanged, how much more 

inputs should be provided to the unit? 

In recent years, fuzzy set theory has been proposed as a way to quantify imprecise 

and vague data in DEA models [11]. The DEA models with fuzzy data ( Fuzzy 

DEA Models ) can more realistically represent real-world problems than the 

conventional DEA models. Fuzzy set theory also allows linguistic data to be used 

directly within the DEA models. Fuzzy DEA models take the form of fuzzy linear 

programming models. 

The questions discussed in inverse DEA can be considered with fuzzy data, that 

is, assume that some data are fuzzy numbers and we increase some or all input 

levels of a given DMU and assume that the DMU maintains its current efficiency 

level, how much should the outputs of the DMU change? In this paper we 

consider arbitrary changing in input level with triangular fuzzy numbers and we 

proposed a fuzzy MOLP model for outputs estimations. 

The reminder of the paper organized as follows: In the following section, we 

review fuzzy sets and fuzzy number linear programming problem. We consider 

fuzzy DEA problem and its inverse DEA problem in section 3. In section 4, we 

proposed a fuzzy MOLP for outputs estimate. We consider of weak efficiency 

case In section 5. In section 6, we use an example to illustrate our computation 

method. Conclusions are given in section 7. 

2. Preliminaries 

 Since terms like fuzzy sets, fuzzy numbers from fuzzy set theory will be used in 

sequel; we shall consider a few necessary definitions. 

Definition 2.1 If X is a collection of objects denoted generically by x, then a fuzzy 

set in X is a set of ordered pairs: 

   XxxAxA 
~

,
~

 Where A
~

(x) is called the membership function which 

associates with each Xx  a number in [0,1] indicating to what degree x is a 

number. 

Definition 2.2 Let A
~

 be a fuzzy number, i.e.  A convex normalized fuzzy subset 

of the real line in the senses that: 

    .1
~

, 00  xARxa  

   0

~
xAb  Is a piecewise continuous function. 
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The  - level set of A
~

 is the     xAxA
~~

 where   [0, 1]. 

  Definition 2.3 A triangular fuzzy number denoted by 






 uAmAlAA ,,
~

 

Where    mAlA uA  and mAlA ,  and   
uA are real numbers. 

In this paper we denote the set of all triangular fuzzy numbers by F (ℝ). 

Let A
~

= 






 uAmAlA ,, and B
~

= 






 uBmBlB ,,  both be triangular fuzzy 

numbers. Define: 

,,,
~

:,0 






 uxAmxAlxAAxRxx  ,,,~:,0 





 lxAmxAuxAaxRxx  

 ,,,
~~








  uBuAmBmAlBlABA   

.,,
~~







  lBuAmBmAuBlABA  

    To introduce a meaningful ordering of fuzzy numbers, we first extended 

operations min and max on real numbers, to corresponding operations on fuzzy 

numbers, MIN and MAX. For any two numbers A
~

and B
~

, we define 

                      

    

 )(
~

),(
~

minsup))(
~

,
~

(

~
,

~
minsup))(

~
,

~
(

),max(

),min(

yBxAzBAMAX

yBxAzBAMIN

yxz

yxz









  

For all    .7seeRz  

The (F (ℝ), MIN, MAX) can be expressed as the pair (F (ℝ), ) where   is 

a partial ordering is defined as: 

                               
BBAMAXiffBA

ABAMINiffBA





)
~

,
~

(
~~

~
)

~
,

~
(

~~

 

Definition 2.4 A fuzzy number )0(0),,(~  oruamalaa  means all its 

components mala , and ).0(0  orua  
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Theorem 2.1.  For any two triangular fuzzy numbers A
~

 = (A l , A m , A u ) and B
~

= 

(B l , B m , B u ) we have 

             .,,
~~ uBuAmBmAlBlAiffBA   

Theorem 2.2. For any two triangular fuzzy numbers ),,(~ uml    and 

),,(
~ uml    if    ~~

   then exists k > 1 such that .~~
 k  

Proof.  ~~
  If and only if  

                    
uuuu

mmmm

llll

kk

kk

kk







33

22

11

:1

:1

:1







 

If k = min {k 1 , k 2 , k 3 } then have .~~
 k  

A linear programming problem (LPP) is defined as: 

                                        Min    z = cx   

                                      S.t        Ax=b                                            (2.1)                     

                                                     x ≥0                                                    

Where c = ( 1c ,…, nc ), b = ( 1b , .)(..., ),
nmij

aA
m

b


  In problem (2.1)  all of 

the parameters are crisp[2]. Now, if in the LPP some coefficients of the problem 

in the objective function, technical coefficients, the right-hand side coefficients be 

the fuzzy numbers, then we say problem is a fuzzy number linear programming 

problem. Here, we consider the LPP with fuzzy number in technical and right-

hand side coefficients. A fuzzy number linear programming problem (FNLPP) 

defined as follows: 

           

.,....,2,10

,...,2,1
~~

.

max

1

1

njx

miBxA

ts

xcz

j

n

j

ijij

n

j

jj















               (2.2) 
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Where )~,~,~(
~ u

ij

m

ij

l

ijij aaaA  F (ℝ) and )
~

,
~

,
~

(
~ u

ij

m

ij

l

ijij bbbB    F(ℝ).  

 By theorem 2.1, problem (2.2) can be rewritten as 

         Max         



n

j

jj xcz
1

 

         S.t.         l

ij

n

j

l

ij bxa 
1

                    i=1,2,…,m 

                          m

ij

n

j

m

ij bxa 
1

                   i=1,2,…,m                              (2.3) 

                       u

ij

n

j

u

ij bxa 
1

                   i=1,2,…,m                                    

  However, since all numbers involved in problem (2.3) are crisp, then problem 

(2.3) is a linear programming problem. In this paper we say problem (2.3) is 

equivalent to problem (2.2). 

3.  Fuzzy DEA problem and its fuzzy inverse problem 

Consider n DMUs: DMU 1 …DMU n , with m inputs and s outputs. Inputs and 

outputs for DMU j  are jX
~

=  mjjj xxx ~,...~
2,1  and )~,...,~,~(

~
21 sjjjj yyyY   for 

 j =1, 2,..., n ,respectively, where mixij ,...,2,1,~   and sryrj ,...,2,1,~   are fuzzy 

Numbers.  All m

j RX 
~

and s

j RY 
~

, and also 0
~

jX and 0
~
jY  for 

 j = 1, 2,…, n. 

Consider the following output oriented CCR model where inputs and outputs are 

triangular fuzzy numbers: 

                     Max     z 

                     S.t        oj

n

j

j XX
~~

1




                                         (3.1) 

                                 oj

n

j

j YzY
~~

1




  

By theorem 2.1, problem (3.1) reduces to the following: 

                         Max     z 



 

 

Iranian Journal of Optimization, Vol 4, Issue 2, spring  2012                                    341 

                         S.t         
l

io

n

j

l

ijj xx 
1

               i=1,2,…,m  

                                  
m

io

n

j

m

ijj xx 
1

              i=1,2,…m                       

                                      
u

io

n

j

u

ijj xx 
1

               i=1,2,…m                    (3.2)     

                                      
l

ro

n

j

l

rjj yy 
1

                r=1,2,…,s                       

                                      
m

ro

n

j

m

rjj yy 
1

              r=1,2,…,s     

                                      
u

ro

n

j

u

rjj yy 
1

              r=1,2,…,s     

                                       0j                              j=1,2,…,n.                          

The problem (3.2) is an output oriented CCR model where inputs and outputs are 

real numbers. 

Suppose that for DMU
o

z
o

,  is the optimal value of (3.1) ( 
o

z  1) and inputs of 

DMUo  are increased from ,
~~~~

oooo XXtoX  where the vector 0
~

 oX and 

0
~

 oX  (i.e. at least one component increases). We need to estimate the 

corresponding output level 
~

 when the efficiency index DMU o  remains 

unchanged, where T

s )
~

,...,
~

(
~

1   and  )
~

,,
~

(
~ u

i
m
i

l
ii

  F (ℝ) 

for  i=1,2,…,s. 

For convenience, suppose DMU 1n  represents DMU o  after changing the 

inputs and outputs. Hence, to measure the efficiency of the DMU 1n  , we use the 

following model:  

                                     Max       z 

                                       S.t.      oonj

n

j

j X  ~~~
1

1

 



                            (3.3) 
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                                                  
~~~

1

1

zY nj

n

j

j  



     

                                                  0j           j=1,2,…,n,n+1.             

Where .0
~

,0
~

,
~~~  ooooo XXXX  

4. The related fuzzy MOLP 

To find output maximum, such that efficiency index is remains unchanged, we 

consider the following fuzzy MOLP: 

                       Max         (
s

~
,...,

~
,

~
21

) 

                       S.t.          . oj

n

j

j X  ~~

1




                            

                                         
~~

1

oj

n

j

j zY 


                              (4.1) 

                                          
oY

~~
   

                                          0j           j=1,2,…,n. 

Where o~ is defined as before and 
o

z is given as the optimal value of problem 

(3.1). 

Definition 4.1 Let )
~

,
~

(   a feasible solution of problem (4.1). If there is no 

feasible solution ),
~

(   of (3.3) such that ,
~~
   then we call )

~
,

~
(  a weak 

Pareto solution of problem (4.1). 

Theorem 4.1. Let 






  ,
~

 be a weak Pareto solution of problem (4.1) and 
o

z  be 

the optimal value of problem (3.1). Then 
o

z is the optimal value of the following 

problem: 

                             Max      z 

                              S.t.      oj

n

j

j X  ~~

1



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                                         
~~

1

zY j

n

j

j 


                                           (4.2) 

                                        0j           j=1,2,…,n. 

    Proof.  Because problem (4.2) has an optimal value, suppose )','( 
o

z  is an 

optimal solution of the problem. As ),
~

(  is a weak Pareto solution of (4.1), it 

satisfies the conditions: 

.                                       oj

n

j

j X  ~~

1




                            

                                       
~~

1

oj

n

j

j zY 


                               

                                       oY
~~

   

                                       0j           j=1,2,…,n. 

Because ),( 
o

z  is a feasible solution (4.2), we have   

,':0'.' 
o

z
o

zthen
o

z
o

zIf
o

z
o

z  we would have                             

1
1

~
)

~~
(

~~~
)(

~'~' 
o

z

o
zo

z
o

z
o

z
o

z
j

Y
n

j
j








Wher

e      
~~~

1

oz


       and    .

~~~
1  




oz
 

So )',
~

(
1
  would be a feasible solution of problem (4.1), which is impossible 

because  ),
~

(   is a weak Pareto solution of (4.1). So, we must have 
o

z
o

z   

i.e. oz is the optimal value of (4.2).  

Theorem 4.2. Let ),
~

(   be feasible solution of problem (4.1). If the optimal 

value of problem (4.2) is 
o

z , then ),
~

(   must be a weak Pareto solution (4.1). 
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Proof. If this theorem were not true then there would exist another feasible 

solution of (4.1), *)*,
~

(  , such that 
o

zAs.*
~

  1, 

                                    

.,...,2,10*

(*)
~

*
~~*

~~*

1

1

nj
j

o
z

o
z

j
Y

n

j

oj
X

n

j

j

j





















 

From Eq. (*) and theorem 2.2, k > 1 such that 

                                        
~

)(
~~

1

*
o

kzk
o

z
j

Y
n

j
j




  

So, the optimal value of (4.2) is at least 
o

kz where ,
o

z
o

kz   which  is against 

assumption that z o  is the optimal value of (4.2).  

Consider the following problem: 

                                Max    z 

                                 S.t      on

n

j

jj X  ~~~
1

1

 



  

                                           on

n

j

jj zY 
~~~

1

1

 



                                   (4.3)                      

                                           .1,,...,2,10  nnj
j

                                                                                                   

Theorem 4.3.    Assume
o

Y
~~

 . If the optimal value of problem (4.3) is z
o

 > 1, 

then the optimal value of (4.2) is also z
o

; conversely, if the optimal value of 

problem (4.2) is z
o

> 1, so is the optimal value of (4.3). 

Proof. First we assume that the optimal solution of (4.3) is (
oo

z , ) and z
o

 >1.  

Consider the equivalent problem of (4.3): 

                Max z 
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                   S.t    l

io

l

ion

l

ij

n

j

j x   



 1

1

         i=1,2,…,m  

                        m

io

m

ion

m

ij

n

j

j x   



 1

1

          i=1,2,…,m     

                            u

io

u

ion

u

ij

n

j

j x   



 1

1

            i=1,2,…,m                         (4.4) 

                          ll

n

l

rj

n

j

j zy   



 1

1

          r=1,2,…,s   

                          
mm

n

m

rj

n

j

j zy   



 1

1

          r=1,2,…,s   

                          uu

n

u

rj

n

j

j zy   



 1

1

             r=1,2,…,s     

                          0j                                           j=1,2,…,n                                                                                                                    

 We consider the dual problem of (4.3): 

  Min     



m

i

i

u

ioi

m

ioi

l

io vu
1

)(   

        S.t                                        

njhygyfyxvxux
m

i

s

r

r

u

rjr

m

rjr

l

rji

u

iji

m

iji

l

ij ,...,2,10)(
1 1

 
 

                                        





s

r

r

u

r

m

r

l hgf
1

1)(                                         (4.5)                                                                                   

(**)0)()(
11

 


s

r

r

u

r

m

r

l

i

u

ioi

m

io

m

i

i

l

io hgfvu                                                 

,,...,2,1,0,, mivu iii  srhgf rrr ,...,2,10,,   

   Suppose  

                                        ),...,,,...,,,...,( 111

o

m

oo

m

oo

m

o vvuu    

And   

                                         ),...,,,...,,,...,( 111

o

s

oo

s

oo

s

o hhggff  
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Are  an optimal solutions  of (4.4).  So  1)(
1




o

o

i

u

io

o

i

m

io

m

i

o

i

l

io zvu  , and we 

have 

1)(
1




o

o

i

u

io

o

i

m

io

m

i

o

i

l

io zvu  = 



s

r

o

r

uo

r

mo

r

l hgf
1

)(            

According to the complementary slackness condition for LP problem, in any 

optimal solution of (4.3), the variable ¸λ 1n  which corresponds to the constraint 

(**) in the dual problem (4.5), must be λ 1n = 0. But when ¸ λ 1n = 0, problem (4.3) 

just becomes (4.2). So, problem (4.2) has same optimal value z o . 

Conversely, if the optimal value of problem (4.2) is z o  > 1, consider the 

equivalent problem of (4.2): 

Max z 

                   S.t    l

io

l

ij

n

j

j x  
1

              i=1,2,…,m  

                       
m

io

m

ij

n

j

j x  
1

              i=1,2,…,m     

                          
u

io

u

ij

n

j

j x  
1

                i=1,2,…,m                         (4.6) 

                           
ll

rj

n

j

j zy  
1

              r=1,2,…,s   

                          
mm

rj

n

j

j zy  
1

              r=1,2,…,s   

                          
uu

rj

n

j

j zy  
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Write the dual problem of (4.6) 

Min     



m

i

i

u

ioi

m

ioi

l

io vu
1

)(   



 

 

Iranian Journal of Optimization, Vol 4, Issue 2, spring  2012                                    347 

        S.t                                        

njhygyfyxvxux
m

i

s

r

r

u

rjr

m

rjr

l

rji

u

iji

m

iji

l

ij ,...,2,10)(
1 1

 
 

                                        





s

r

r

u

r

m

r

l hgf
1

1)(                                         (4.7)                                                                                                                                  

,,...,2,1,0,, mivu iii  srhgf rrr ,...,2,10,,   

 Also has an optimal value z o . 

The only difference between (4.5) and (4.6) is that (4.5) contains one more 

constraint, i.e. constraint (**). 

But we can show that for any optimal solution 

  ),...,,,...,,,...,( ''

1

''

1

''

1 mmm vvuu   And  ),...,,,...,,,...,( ''

1

''

1

''

1 sss hhggff  of problem (4.5), 

this constraint must holds as strict inequality. 
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 Then the optimal value of (4.5) is   



m

i

i

u

ioi

m

ioi

l

io vu
1

''' 1)(  . 

And hence the optimal value of (4.7) would be 1 which contradicts the 

assumption. So, this additional constraint must be unbinding at any optimal 

solution and hence problem (4.5) is equivalent to (4.7) which implies that z o   is 

also optimal value of problems (4.3) and (4.5).  

Theorem 4.4. Suppose that the optimal value of problem (3.1) is z o  > 1, and the 

inputs for this DMU are going to increase 

from 0
~

,0
~

(
~~~~

 ooooo XXXXtooX  ). Let  ,
~

( ) be a weak Pareto 

solution of problem of (4.1), then the optimal solution of (4.3) is still z o . 

Conversely, Let  ,
~

( ) be a feasible solution of problem (4.1). If the optimal 

value problem (4.3) is z
o

, then  ,
~

( ) must be a weak Pareto solution of (4.1).  
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Proof. Assume  ,
~

( ) is a Pareto solution of (4.1). By theorem 4.1, z o is the 

optimal value of (4.2). As z
o

 > 1 and ,
~~

o
Y  by theorem 4.3, zo  is also the 

optimal value of (4.3).  

Conversely, if the optimal value of (4.3), is z o , then by theorem 4.3, z o is also the 

optimal value of (4.2). Using theorem 4.2, we know that ( ),
~
 ) is a weak Pareto 

solution of (4.1).  

To identify some of Pareto solution of (4.1), we convert it to a single-objective 

programming problem by assuming  p i > 0 as the weight of i-th output  

i = 1,…,s.  Therefore we will have:  

 

Max         )(
~
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r
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r

r pp  


 

         S.t.          oj

n

j

j X  ~~

1




                            

                        
~~

1

oj

n

j

j zY 


                                                          (4.8) 

                        
oY

~~
   

                        0j                                           j=1,2,…,n. 

We know any optimal solution of (4.8) must be a weak Pareto of problem (4.1). 

Corollary 1. Suppose the efficiency index of DMU o   under model (3.1) is  

z o  > 1, and inputs are increased from  
oX

~
 to 

ooo XX
~~~   ( 0

~
 oX , 

0
~

 oX ).  Let ),
~

(   be an optimal solution of problem (4.8). Then, when the 

outputs of DMU
o

 are increased to 
~

 the efficiency index for the DMU is still 

z o . 

5. Weak efficiency case 

We now turn to the case for z o = 1. Consider the following LP problem 

                 Max        z  
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                                          (5.1) 

                                  oj
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j YzY
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1




  

                                   0j                                         j=1,2,…,n. 

Where 
ooo XX

~~~    and  0
~

 oX  , 0
~

 oX .  Let its optimal value be z*.  If 

we denote the feasible regions of problem (3.1) and (5.1) by S 0 and S 1  

respectively, we have: S 0
  S 1 . Therefore,   z*  z o  = 1. 

Theorem 5.1. Suppose that the optimal value of problem (3.1) for DMU o  is  

z o  = 1 and the inputs for this DMU are increased from 
oX

~
 to 

ooo XX
~~~   

( 0
~

 oX , 0
~

 oX ). Then, when the outputs of DMU o are increased from 

,
~

*
~

oo YztoY  where z* is the optimal value of problem (5.1), the optimal value 

of problem (5.1) which corresponds of the new DMU )
~

,~( *

oo Yz   is still z o . 

Proof. When the inputs and outputs of DMU o  become 

)0
~

,0
~

(
~~~  oooo XXXX  and ,

~
* oYz  the efficiency index of DMU 

equals the optimal value of the problem below: 

                      Max         z 
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j X  ~~~
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                                             (5.2) 
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j

jj YzzYzY  



   

                         0j                  j=1,2,…,n. 

Let the optimal value of problem (5.2) be ẑ .  What we need to prove is that ẑ = 1. 

If  ẑ = 1, then  ẑ > 1. We write of the equivalent of problem (5.2): 

      Max           z 
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 We write the dual of problem (5.3) 
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Suppose   )ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ( 111 mmm vvuu   and   )ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ( 111 sss hhggff  are its 

optimal solution. By duality result, we know that  

                                1)ˆˆ
1

ˆ( 
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
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u
ioi

m
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i
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                      (*3) 

So, from the constraints (*1), (*2) and (*3) we have: 
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the complementary slackness theorem, at each optimal solution of (5.2), 

.0
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ˆ 
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  This means ẑ  is also the optimal value of the problem 
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And therefore, the optimal value of the problem 

                                              Max        z 

                              S.t.      oj

n
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j X  ~~
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jj YzzY
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                                          0j                              j=1,2,…,n. 

Is z*z. But the above problem with replacing the z*z by z is just problem (5.1), so, 

the optimal value of problem (5.1) would be z*z, and we have ẑ > 1, then z* ẑ  > 

z*, which contradicts that maximum value of (5.1) is z*.  

6. Numerical example 

We consider of three DMU with three inputs and two outputs. The data of inputs 

and outputs are shown in the following table. 
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DMU S  1I  2I  3I  1O  2O  

DMU1 

DMU2 

DMU3 

(1,3,4) 

(3,5,10) 

(8,10,24) 

(2,5,8) 

(4,7,11) 

(5,11,19) 

(1,4,7) 

(8,11,14) 

(4,11,19) 

(3,4,9) 

(1,8,20) 

(3,8,14) 

(10,18,20) 

(3,11,16) 

(5,11,21) 

 

By evaluating DMU
3

  using output-oriented of model (3.1), we have  

z O  = 1.1818. We now increase the inputs of DMU3 from  

3

~
X = ((8, 10, 24), (5, 11, 18), (4, 11, 19))     to              

     3
~  (11, 15, 34), (8, 16, 28), (7, 16, 29) then by solving the model (4.8) with 

(p 1  = p 2  = 1), we will have  

3

~
  ((8.1231, 10.8308, 24.392), (27.0770, 48.7385, 54.1539)). 

In this case, the efficiency of )
~

,~( 33   and )
~

,
~

( 33 YX  is equal. 

Also, by evaluating DMU 2  using of model (3.1), we have z o  = 1, we now 

increase the inputs of DMU 2  from X
~

2 = ))14,11,8(),11,7,4(),10,5,3((   to  

2
~ = ((5, 12, 19), (6, 14, 20), (10, 18, 23)), then by solving the model (15), 

we will have z* = 1.4667 and  22

~~
* Yz ((1.4667, 11.7334, 29.3334), (4.4, 

16.1334, 23.4667)) In this case, the efficiency of )
2

~
,

2
~(   and )

2
~

,
2

~
( YX  is 

equal, and both is z o  = 1. 

7. Conclusion 

In this paper we discuss these problem: In the presence of fuzzy data, how should 

we control the change in input level of a given DMU such that the efficiency 

index of the DMU is preserved. To solve the problem we proposed a fuzzy MOLP 

model. We provide the necessary and sufficient conditions for the input changes 

under the same efficiency index. 
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