

Optimization Iranian Journal of Optimization Volume 15, Issue 1, 2023, 7-14 Research Paper

Online version is available on: www.ijo.rasht.iau.ir

Numerical solution of integro-differential equations via pertubed-Gegenbauer, Jacobi polynomials and Galerkin method

Kazeem Isaa*, Tajudeen Aliu, Ruth Arokoola and Oluwatumininu Miach

^{1*} Department of Mathematics and Statistics Kwara State University, Malete, Kwara State, Nigeria

Revise Date: 01 March 2023 Accept Date: 11 November 2023	Abstract In this paper, we proposed perturbed Galerkin method for solving
	integro-diffrential equations via shifted Gegenbauer and shifted Jacobi
	polynomials as approximating polynomials. We use Galerkin method
	to transform the perturbed integro-differential equation to system of
	linear algebraic equations and obtained N + 1 linear equations with N +
	m + 2 unknowns. Moreover, with m+1 boundary conditions we
Keywords:	obtained N+m+2 algebraic equations which was then solved to obtain
Perturbation terms	the approximate solutions at various values of α and β depending on the
Orthogonal polynomials	orthogonal polynomials, that's shifted Gegenbauer or shifted Jacobi
Volterra equation	polynomials. The proposed method was implemented on some selected
Fredholm equation	problems in the literature to validate the effectiveness and the accuracy
	of the proposed method.

^{*}Correspondence E-mail: issa.kazeem@kwasu.edu.ng

INTRODUCTION

In the last decade, attention have been giving to integro-differential equations due to its application in Mathematical sciences especially in modeling (such as biological application and engineering), Mathematical finance and control theory. Most of the problems that arise in these areas are very difficult to solve analytically. Researchers have employed different approaches in finding the numerical solution to integro-differential equations using different numerical methods. Finite element method for solving non-linear integro-differential model was proposed in Jangveladze et al. (2011), Biazar & Salehi (2016) employed second kind shifted Chebyshev Galerkin method to solve integro-differential equations, Mohamed et al. (2014) reported Legendre-Galerkin method for solving Fredholm form of integrodifferential equations, Yalcinbas & Sezer (2000, 2006); Huang & Li (2009) employed Taylor polynomials to approximate the solution of high-order linear Volterra-Fredholm integro-differential equations, Tau method were employed in Hosseini & Shahmorad (2003a,b); Shahmorad (2005) to estimate the error of Fredholm-Volterra integro-differential equations. Bildik et al. (2010) compared the accuracy of Legendre and variational iteration method while Jimoh & Issa (2014) compared variational iteration method and homotopy's method for solving general linear Fredholm integro-differential equations, Khater et al. (2007) employed Legendre polynomials to solve while integro-differential equations Shahsavara (2010) investigate numerical solution of linear Volterra and Fredholm integro-differential equations using Haar wavelets. Convergence and stability of Galerkin's method was reported in Chen et al. (2015), Demir et al. (2021) proposed Pell-Lucas matrixcollocation method for solving Fredholm-type delay integro-differential equations with variable delays, Issa et al. (2019) employed perturbed Galerkin method to solve delay Fredholm and Volterra integrodifferential equations using first kind shifted Chebyshev polynomial as approximating polynomial, Golbabai & Seifollahi (2007) employed radial basis function networks in the numerical solution of linear integro-differential equations; Gumgum et al. (2018) investigated Lucas polynomial together with standard and Chebyshev-Lobatto collocation points to solve functional integro-differential equations involving variable delays, analytical properties and asymptotic behaviour of solutions for system of integrodiferential equations was reported in Smarda & Khan (2012), Issa, Biazar, et al. (2022) investigated

perturbed Galerkin method via fourth kind shifted Chebyshev polynomials. The main feature in this paper is to extend the work reported in Issa, Biazar, et al. (2022) by introducing shifted Gegenbauer and Jacobi polynomials as approximating polynomial $\Phi_N(u)$ for solving integro-differential equations, since its solution generalizes the results of some other orthogonal polynomials such as Legendre, shifted Chebyshev polynomials of certain kinds and many more.

This paper is organized as follows. In section 2, we review some notable orthogonal polynomials like Legendre polynomial $P_j(u)$ in 2.1.1, shifted Chebyshev polynomials in 2.1.2, shifted Gegenbauer polynomial $C_i^{(\beta)}(u)$ in 2.1.3 and in section 2.1.4, we present shifted Jacobi polynomial $C_n^{(\alpha,\beta)}(u)$ 2.1.4. We present the formulation of the scheme for the proposed method in section 3, numerical examples are presented in section 4 with concluding remarks given in section 5.

PRELIMINARIES

Some notable orthogonal polynomials

Some of the notable orthogonal polynomials $\psi(t)$ are defined here:

 $\psi(t)$ is an orthogonal polynomial with respect to the weight function $\omega(t)$ in an interval

[a, b] with the inner product of $\psi(t)$ given as:

$$\langle \psi_m(t), \psi_n(t) \rangle = \int_a^b \omega(t) \psi_m(t) \psi_n(t) dt$$

$$= \begin{cases} 0, & m \neq n \\ \lambda_n, & m = n \end{cases}$$
(1)

Some of these orthogonal polynomials $\psi_m(t)$ m(t) are: Legendre polynomials

Legendre polynomial is an orthogonal polynomial $P_m(u)$ defined in an interval [-1, 1] with weight function $\omega(u)$ and recurrence relation:

$$P_{k+1}(u) = \frac{2k+1}{k+1} u P_k(u) - \frac{k}{k+1} P_{k-1}(u), \ k \ge 1, \quad (2)$$

With $P_0(x) = 1, \ P_1(u) = u.$

Chebyshev polynomials

Chebyshev polynomials are of different kinds, the prominent ones are given here with their respective weight functions $\omega(u)$ in the interval [-1, 1] as:

$$\Psi_{m} = \begin{cases}
T_{m}(u) = \cos(mn), & \omega(m) = \frac{1}{\sqrt{1 - u^{2}}} \\
U_{m}(u) = \frac{\sin(m+1)}{\sin(u)}, & \omega(m) = \sqrt{1 - u^{2}} \\
V_{m}(u) = \frac{\cos(m + \frac{1}{2})u}{\cos(\frac{u}{2})}, & \omega(m) = \sqrt{\frac{1 + u}{1 - u}} \\
W_{m}(u) = \frac{\sin(m + \frac{1}{2})u}{\sin(\frac{u}{2})}, & \omega(m) = \sqrt{\frac{1 - u}{1 + u}}
\end{cases}$$
(3)

The inner product for the third and fourth kinds Chebyshev polynomials in the interval [-1, 1] are defined as:

$$\langle \psi_m(t), \psi_n(t) \rangle = \langle V_m(u), V_n(u) \rangle$$

$$= \int_{-1}^1 \sqrt{\frac{1+u}{1-u}} V_m(u) V_n(u) du$$

$$= \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}$$

$$\langle \psi_m(t), \psi_n(t) \rangle = \langle W_m(u), W_n(u) \rangle$$

$$= \int_{-1}^1 \sqrt{\frac{1-u}{1+u}} W_m(u) W_n(u) du$$

$$= \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}$$

$$\langle \pi, & m = n \end{cases}$$

$$(4)$$

See Mason & Handscomb (2003) for details. Shifted Gegenbauer polynomials

Gegenbauer polynomials $C_i^{(\beta)}(u)$ defined in the interval [-1, 1] with respect to weight function

$$\omega(u) = \left(1 - u^2\right)^{\left(\beta - \frac{1}{2}\right)} \text{ can be determined using}$$
$$C_i^{(\beta)}(u) =$$

$$\sum_{j=0}^{i} \frac{(-1)^{j} \Gamma(2\beta + 2i - j) \Gamma\left(\beta + \frac{1}{2}\right)}{(i - j)! \Gamma\left(2\beta\right) \Gamma\left(j + 1\right) \Gamma\left(i - j + \beta + \frac{1}{2}\right)} u^{i - j}$$
(5)

The recurrence relation is given as:

$$C_{i}^{(\beta)}(u) = \frac{1}{i} \begin{bmatrix} 2(i+\beta-1)uC_{i-1}^{(\beta)}(u) \\ -(i+2\beta-2)C_{i-2}^{(\beta)}(u) \end{bmatrix}, \ i \ge 2,$$
(6)

where $C_0^{(\beta)}(u) = 1$, $C_1^{(\beta)}(u) = 2\beta u$. This recurrence relation can be transform to another interval [a, b] by introducing the variable $\lambda = \frac{2u - (a+b)}{b-a}$. Hence, the shifted Gegenbauer polynomial in term of u is obtained as:

$$C_{i}^{(\beta)}*(u) = \frac{1}{i} \begin{bmatrix} 2(i+\beta-1)\left(\frac{2u-(a+b)}{b-a}\right)C_{i-1}^{(\beta)}(u) \\ -(i+2\beta-2)C_{i-2}^{(\beta)}(u) \end{bmatrix}, \quad (7) \text{ where}$$

$$i \ge 2,$$

$$C_{0}^{(\beta)}(u) = 1, \quad C_{1}^{(\beta)}(u) = 2\beta\left(\frac{2u-(a+b)}{b-a}\right).$$

The analytic form of the shifted Gegenbauer polynomial $C_i^{(\beta)} * (\lambda)$ is given as:

$$C_{i}^{(\beta)*}(\lambda) = \sum_{j=0}^{i} \frac{(-1)^{j} \Gamma(2\beta + 2i - j) \Gamma\left(\beta + \frac{1}{2}\right)}{(i - j)! \Gamma\left(2\beta\right) \Gamma\left(j + 1\right) \Gamma\left(i - j + \beta + \frac{1}{2}\right)} \lambda^{i - j}$$
(8)

The orthogonality condition is

$$\begin{cases}
C_m^{(\beta)} * (u), C_n^{(\beta)} * (u) \\
= \int_0^1 (u - u^2)^{(\alpha - \frac{1}{2})} C_m^{(\beta)} * (u) C_n^{(\beta)} * (u) du \qquad (9) \\
= \begin{cases}
0, & \text{for } m \neq n \\
\frac{\pi 2^{1-4\alpha} \Gamma(n+2\alpha)}{n! [\Gamma(\alpha)]^2 (n+\alpha)}, & \text{for } m = n
\end{cases}$$

see Issa, Yisa, & Biazar (2022); Izadkhah & Saberi-Nadja_ (2015) for details. **Jacobi polynomials**

The well-known Jacobi polynomials $P_n^{(\alpha,\beta)}(u)$, n = 0, 1, ..., with parameters $\alpha, \beta > -1$ and weight function $\omega(u) = (1-u)^{\alpha} (1+u)^{\beta}$. The explicit form of Jacobi polynomials that was used in Szego (1975) takes the form:

$$P_n^{(\alpha,\beta)}(u) = \frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)}$$
(10)
$$\times \sum_{m=0}^n \frac{n!\Gamma(\alpha+\beta+m+n+1)}{(n-m)!m!\Gamma(\alpha+m+1)} \left(\frac{u-1}{2}\right)^m$$
(10)
where $P_0^{(\alpha,\beta)}(u) = 1,$
 $P_1^{(\alpha,\beta)}(u) = (\alpha+1) + (\alpha+\beta+2) \left(\frac{u-1}{2}\right).$ When $\alpha = \beta = 0$, then its reduces to Legendre polynomials,

while choosing $\alpha = \beta = \frac{1}{2}$, gives Chebyshev polynomials of first kind and also when $\alpha = \beta = 1$,

gives Gegenbauer polynomials of the form, that's 3

$$P_n^{(1,1)}(u) = C_n^2(u)$$
 and so on.

FORMULATION OF THE SCHEME FOR PERTURBED GALERKIN METHOD

Consider integro-differential equations of the form:

$$\sum_{j=0}^{m} P_{j}(u) \frac{d^{j}}{du^{j}} \Phi(u) + f(u)$$

$$+ \lambda_{1} \int_{0}^{b} v_{1}(u,t) \Phi(u) du + \lambda_{2} \int_{0}^{b} v_{2}(u,t) \Phi(u) du$$
(11)

subject to the initial condition:

$$\Phi^{j}(a) = \rho_{j}, j = 0, 1, \dots, (m-1)$$
(12)

where $\Phi(u)$ is an unknown function. $P_i(u), f(u), v_1(u,t)$ and $v_2(u,t)$ are known functions, *m* is the order of Eq. (11), λ_1, λ_2 are real numbers and u is the independent variable defined in the interval

[a, b] except stated otherwise.

Suppose $\Phi_N(u)$ is an approximant of degree N to the function $\Phi(u)$, then we write

$$\Phi_N(u) = \sum_{i=0}^N \delta_i \varphi \left(\frac{2u - (a+b)}{b-a} \right).$$
(13)

where δ_{I} are unknowns to be determined and $\varphi_i(u), i = 0, 1, \dots, N$ are orthogonal polynomials (which is either Gegenbauer or Jacobi polynomials). Perturbing Eq. (11), we obtain

$$\sum_{j=0}^{m} P_{j}(u) \frac{d^{j}}{du^{j}} \Phi(u) + f(u) + \lambda_{1} \int_{a}^{b} v_{1}(u,t) \Phi(u) du$$

$$+ \lambda_{2} \int_{a}^{b} v_{2}(u,t) \Phi(u) du + \Gamma_{N}(u)$$
Multiplying Eq. (14) by

Multiplying

 φ_k

$$\frac{2u - (a+b)}{b-a}$$
, $k = m, m+1, M+m+1$ and

(14)

by

integrate the resulting equation with respect to the independent variable, in the intervals [a, b], we obtain:

$$\begin{split} \int_{a}^{b} \left[\sum_{j=0}^{m} P_{j}(u) \sum_{i=0}^{N} \left(\frac{2}{b-a} \right)^{j} \delta_{i} \frac{d^{j}}{du^{j}} \varphi_{i} \left(\frac{2u-(a+b)}{b-a} \right) \right. \\ \left. -\lambda_{1} \int_{a}^{b} v_{1}(u,t) \sum_{i=0}^{N} \delta_{i} \varphi_{i} \left(\frac{2u-(a+b)}{b-a} \right) du \end{split} \tag{15} \\ \left. -\lambda_{2} \int_{a}^{u} v_{2}(u,t) \sum_{i=0}^{N} \delta_{i} \varphi_{i} \left(\frac{2u-(a+b)}{b-a} \right) du - \Gamma_{N}(u) \right] \\ \left. \varphi_{k} \left(\frac{2u-(a+b)}{b-a} \right) du \\ \left. = \int_{a}^{b} \left[f(u) \varphi_{k} \left(\frac{2u-(a+b)}{b-a} \right) \right] du, k = m, m+1, \dots, N+m+1, \\ \text{where} \end{split}$$

$$\Gamma_{N}(u) = \sum_{r=0}^{m} \tau_{r+1} \varphi_{N-m+r+1} \left(\frac{2u - (a+b)}{b-a} \right), \tag{16}$$

N is the degree of approximation. Eq. (15) in matrix form becomes $\chi \alpha = G$, (17)

The remaining equations are obtained using the attached conditions (12), that is

$$\frac{d^{j}}{du^{j}} \Phi_{N}(u) = \sum_{i=0}^{N} \left(\frac{2}{b-a} \right)^{j} \frac{d^{j}}{du^{j}} \varphi \left(\frac{2u - (a+b)}{b-a} \right) \Big|_{u=a}$$

= $\rho_{j}, j = 0, 1, m-1.$ (18)

From Eqs. (15) and (18), we obtain the values of the unknowns δ_i , i = 0, 1, ..., N, then substitute in Eq. (13) to obtain the approximate solution of degree N.

NUMERICAL EXAMPLES

In this section, we implement the proposed method (PM) on selected problems from the literature and compare the results with existing results by computing absolute maximum error ξ_N , where the

$$\xi_{N} = \max_{0 \le i \le 100} \left| \Phi(u_{i}) - \Phi_{N}(u_{i}) \right|, \ u_{i} = a + ih$$
(19)

Example 1

Consider the following delay Volterra integrodifferential equation Issa et al. (2019)

$$\Phi'(u) - \Phi(u-1) + 4\Phi(u) + 3\int_{u-1}^{u} \Phi(t)dt$$
(20)

 $=2\exp(1-u), u \ge 0$

with initial condition $\Phi(0) = 1$, and the exact solution $\Phi(u) = \exp(-u)$.

Replacing $\Phi(u)$ in Eq. (20) with the corresponding approximate solution $\Phi_N(u)$ and add perturbation terms $\Gamma_N(u)$, we obtain

$$\Phi'_{N}(u) - \Phi_{N}(u-1) + 4\Phi_{N}(u) +3\int_{u-1}^{u} \Phi_{N}(t)dt = 2\exp(1-u)$$
(21)
$$+\sum_{n}^{m} \tau_{r+1} \varphi_{N-m+r+1} \left(\frac{2u - (a+b)}{b-a}\right).$$

Multiply Eq. (21) by

$$\varphi_k\left(\frac{2u-(a+b)}{b-a}\right), \ k=1, \ 2, \dots N+2$$

then integrate the resulting equation over [a, b], we get:

$$\int_{a}^{b} \left[\Phi'_{N}(u) - \Phi_{N}(u-1) + 4\Phi_{N}(u) + 3\int_{u-1}^{u} \Phi_{N}(t)dt \right] \\ \times \varphi_{k} \left(\frac{2u - (a+b)}{b-a} \right) du \\ = \int_{a}^{b} \left[2\exp(1-u) + \sum_{r=0}^{m} \tau_{r+1} \varphi_{N-m+r+1} \left(\frac{2u - (a+b)}{b-a} \right) \right] \\ \times \varphi_{k} \left(\frac{2u - (a+b)}{b-a} \right) du$$
(22)

Solving Eq. (22) together with the initial condition (expressing in terms of shifted Gegenbauer polynomial or Jacobi polynomial), that's firstly, in terms of shifted Gegenbauer polynomial, we have:

$$\Phi(0) = 1 \Longrightarrow \sum_{r=0}^{N} \frac{\left(-1\right)^{r} \Gamma\left(r+2\beta\right)}{r! \Gamma\left(2\beta\right)} \delta_{r} = 1$$
(23)

To obtain the approximate solution N (u) of degree N. Table 1 and 2 shows the maximum errors at different values of N relative to the existing results in the literature. Figure 1a display the exact solution and its corresponding approximate solutions at various values of N while the errors graphs is display in Fig. 1. Fig. 2 is the comparison of the errors.

Table 1: Gegenbauer approximation: Maximum absolute errors for Example 1 at various values of N

N	• •	$\beta = 1$	$\beta = 2$		$\beta = 3$	Issa et al. (2019)
4	5	5.69×10^{-4}	4.18×10^{-4}	1	4.78×10^{-4}	6.96×10^{-4}
8	8	3.07×10^{-7}	7.98×10^{-7}	1	7.89×10^{-7}	8.19×10^{-7}
12	1	$.28 \times 10^{-9}$	1.27×10^{-9}	1	1.26×10^{-9}	1.30×10^{-9}
Table 2: J	acobi appro	ximation: Maxim	um absolute	errors for	Example 1 at var	rious values of N
	Ν	$P^{(\frac{1}{2},\frac{1}{2})}(u)$	Р	$(\frac{3}{2},\frac{3}{2})(u)$	$P^{(\frac{5}{2},\frac{5}{2})}(u)$)
	4	5.69×10^{-4}	4.1	18×10^{-4}	4.78×10	-4
	8	8.07×10^{-7}	7.9	98×10^{-7}	7.89×10	-7
	12	1.28×10^{-9}	1.2	27×10^{-9}	1.26×10	-9
	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0 0.1	exact approxim	ate at n=4 with α =1 ate at n=8 with α =1 ate at n=8 with α =1 ate at n=4 with α =2 ate at n=4 with α =2 ate at n=8 with α =2 ate at n=8 with α =3 ate at n=8 with α =3 ate at n=12 w	10 ⁻² 10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁸ 10 ⁻⁸ 10 ⁻⁸ 10 ⁻¹⁰ 10 ⁻¹² 10 ⁻¹² 0.1 0.2 0.3	Of a normal set of the set o	9 1

Fig. 1. Example 1: Approximate solutions (left-side) and its corresponding absolute errors (right-side) **Example 2** with exact solution $\Phi(u) = u \cos(u)$.

Consider the Volterra integro-differential equation in Issa & Salehi (2017); Biazar & Salehi (2016); Wazwaz (2011); Issa, Biazar, et al. (2022):

$$\Phi'(u) - \int_{0} \Phi(t) dt = 1 - 2u \sin(u), \ 0 \le u \le 1, \Phi(0) = 0.$$

Comparison of the maximum absolute errors at various values of N relative to the existing ones in the literature is shown in Table 3. We have the exact solution and its corresponding approximate solutions in Fig. 2.

Issa	et al/	Numerical	solution	of integro-	differential
------	--------	-----------	----------	-------------	--------------

Ν	$\beta = 1$	$\beta = 2$	$\beta = 3$	Issa et al. (2022)	Biazar and Salahi (2016)
4	4.49×10^{-4}	3.69×10^{-4}	1.00×10^{-3}	8.12×10^{-4}	2.30×10^{-3}
8	1.66×10^{-10}	8.36×10^{-10}	3.13×10^{-10}	7.49×10^{-10}	1.38×10^{-8}
12	7.77×10^{-16}	9.55×10^{-15}	6.64×10^{-14}	9.40×10^{-16}	8.09×10^{-15}
		exact ex	10 ⁻⁰ 10 ⁻²⁰ 10 ⁻²⁰ 10 ⁻⁴⁰ 10 ⁻¹⁰⁰ 0 ⁻¹⁰ 0 ⁻¹⁰		

Table 3: Maximum absolute errors with Gegenbauer as approximating polynomial

Fig. 2. Example 2: Approximate solutions and its absolute errors with $C_N^{\beta}(u)$ and approximating polynomial

Example 3

Considering the Volterra integro-differential equation Issa & Salehi (2017); Biazar & Salehi (2016); Wazwaz (2011); Issa, Biazar, et al. (2022):

$$\Phi'(u) + \int_{0}^{u} t\Phi(t)dt + 1 - \frac{1}{2}u^{2} + u\exp(u) = 0,$$

 $0 \le u \le 1, \ \Phi(0) = 0,$

with the exact solution $\Phi(u) = 1 - \exp(u)$.

Table 4 displays the maximum absolute errors at

12

different values of N and β using Gegenbauer as

approximating polynomial while Table 5 is the corresponding maximum absolute errors using Jacobi polynomial as approximation. Fig. 3 exhibit the graphs of the exact and the corresponding approximate solutions at various values of N and using Gegenbauer polynomial as approximating polynomial.

 5.11×10^{-15}

inter	ont value	p und p und	sing Geqenbauer	us			
Table 4: Maximum absolute errors using Gegenbauer as approximating polynomial							
	Ν	$\beta = 1$	$\beta = 2$	$\beta = 3$	Issa et al. (2019)	Biazar and Salahi (2016)	
	4	1.78×10^{-5}	2.81×10^{-5}	1.88×10^{-5}	7.38×10^{-5}	7.20×10^{-3}	
	8	1.16×10^{-11}	1.50×10^{-11}	2.95×10^{-9}	8.59×10^{-11}	2.31×10 ⁻⁹	
	12	2.22×10^{-17}	1.33×10^{-17}	5.11×10^{-17}	8.91×10^{-17}	9.24×10^{-16}	
	Table 5: Maximum absolute errors using Jacobi as approximating polynomial						
		Ν	$P^{(\frac{1}{2},\frac{1}{2})}(u)$	$P^{(rac{3}{2},rac{3}{2})}$	(u) $P^{(\frac{5}{2},\frac{5}{2})}(u)$	2)	
		4	1.78×10^{-5}	2.81×1	1.88×10	-4	
		8	1.16×10^{-11}	1.50×1	0^{-11} 2.95×10) ⁻⁹	

 2.22×10^{-17}

 1.33×10^{-17}

Fig. 3. Example 3: Approximate solutions and its absolute errors with $C_N^{\beta}(u)$ and approximating polynomial Example 4

Considering Fredholm-Volterra integro-differential equation (Issa & Salehi (2017); Biazar & Salehi (2016); Yalcinbas & Sezer (2000); Shahmorad (2005); Issa, Biazar, et al. (2022)):

$$\Phi''(u) + u\Phi'(u) - u\Phi(u) - \int_{-1}^{1} \sin(u)\exp(t)\Phi(t)dt$$

= $\exp(u) - 2\sin(u), -1 \le u \le 1, \Phi(0) = 1, \Phi'(0) = 1,$

with the exact solution $\Phi(u) = \exp(u)$.

Table 6 shows the maximum errors at various values of N and β . Fig. 4 displays the exact solution and the approximate solution $\Phi_N(u)$ at different values of N and β using Gegenbauer as approximating polynomial.

Table 4: Maximum absolute errors using Gegenbauer as approximating polynomial							
Ν	$\beta = 1$	$\beta = 2$	$\beta = 3$	Issa et al. (2022)	Shahmorad (2005)		
5	2.18×10^{-4}	2.41×10^{-4}	1.30×10^{-4}	4.66×10^{-4}	3.19×10 ⁻³		
10	4.61×10^{-10}	1.83×10^{-10}	6.85×10^{-10}	5.49×10^{-10}	2.10×10^{-6}		
15	9.10×10^{-18}	7.42×10^{-17}	4.42×10^{-17}	1.27×10^{-17}	7.50×10^{-11}		
	2.5	hate at n=5 with α=1 ate at n=10 with α=1 ate at n=15 with α=1	100	***********************			

Fig. 4. Example 4: Approximate solutions and its absolute errors with $C_N^{\beta}(u)$ and approximating polynomial

methods.

DISCUSSION OF RESULTS AND CONCLUSION

Discussion of Results

Table 1-6 depict maximum errors obtained for the four selected problems from the literature. It was observed that the proposed method is more effective and accurate compared to the existing ones, although it gives the same degree of accuracy when compare with Issa, Biazar, et al. (2022) but the proposed method is more robust and more effective than Issa, Biazar, et al. (2022) because the proposed method generalize the results of other orthogonal polynomials such as Legendre polynomial, second kind shifted Chebyshev polynomial and some other orthogonal polynomials. Moreover, the accuracy improves as values of N changes. Figures 1-4 are the exact solutions and the corresponding approximant at various values of N while 1b-4b are the errors graphs.

Conclusion

In this paper, we propose a perturbed Galerkin method for solving integro-differential equations using shifted Gegenbauer and shifted Jacobi polynomials as approximating polynomials. We introduce m+1 perturbation terms into the integrodifferential equation, which is then transformed into a system of algebraic linear equations using the

Galerkin method. The resulting system is solved to obtain the unknown coefficients. For experimentation, we use $\beta = 1, 2, 3$ for the shifted Gegenbauer polynomials $C_i^{(\beta)}(u)$ and $\alpha = \beta = \frac{1}{2}$, $\alpha = \beta = \frac{3}{2}$, $\alpha = \beta = \frac{5}{2}$ (with the same values for α and β) for shifted Jacobi polynomial $P_i^{(\alpha,\beta)}(u)$. The method is applied to selected problems from the literature, and the results are compared with existing solutions. The proposed method shows better accuracy compared to the Galerkin method, Tau method, and radial basis method, and agrees well with the perturbed Chebyshev Galerkin method. However, it is more robust and effective as it generates results using other orthogonal polynomials. In summary, the method is both more effective and accurate. In conclusion, the proposed method is more effective and accurate than existing

REFERENCES

- Biazar, J., & Salehi, F. (2016). Chebyshev Galerkin method for integro-differential equations of the second kind. Iranian J. of Numer. Analy. and Opt., 6(1), 31-42.
- Bildik, N., Konuralp, A., & Yalcinbas, S. (2010). Comparison of Legendre polynomial approximation and variational

Issa et al/Numerical solution of integro-differential ...

iteration method for the solutions of general linear Fredholm integro-differential equations. Appl. Math. Comput., 59, 1909-1917.

- Chen, J., Huang, Y., Rong, H., Wu, T., & Zeng, T. (2015). A multiscale Galerkin method for second-order boundary value problems of fredholm integro-differential equation. Journal of Computational and Applied, 290, 633-640.
- Demir, D. D., Lukonde, A. P., Kurkcu, O. K., & Sezer, M. (2021). Pell-Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays. Mathematical Sciences, 15, 55-64.
- Golbabai, A., & Seifollahi, S. (2007). Radial basis function networks in the numerical solution of linear integrodi_erential equations. Appl. Math. Comput., 188, 427-432.
- Gumgum, S., Baykus, S. N., Kurkcu, K. O., & Sezer, M. (2018). A numerical technique based on lucas polynomials together with standard and Chebyshev-Lobatto collocation points for solving functional integro-differential equations involving variable delays. Sakarya Univ. J. Sci., 22(6), 1659-1668.
- Hosseini, S. M., & Shahmorad, S. (2003a). Numerical solution of a class of integro-differential equations by the tau method with an error estimation. Applied Mathematics and Computation, 136, 559-570.
- Hosseini, S. M., & Shahmorad, S. (2003b). Tau numerical solution of fredholm integro-differential equations with arbitrary polynomial bases. Applied Mathematical Modelling, 27, 145-154.
- Huang, Y., & Li, X. (2009). Approximate solution of a class of linear integro-differential equations by Taylor expansion method. Intl. J. Comput. Math., 15(3), 1-12.
- Issa, K., Biazar, J., Agboola, T. O., & Aliu, T. (2022). Perturbed Galerkin method for solving integrodifferential equations. Journal of Applied Mathematics, 9748558, 1-8.
- Issa, K., Biazar, J., & Yisa, B. M. (2019). Shifted Chebyshev approach for the solution of delay Fredholm and Volterra integro-differential equations via perturbed Galerkin method. Iranian Journal of Optimization, 11(2), 149-159.
- Issa, K., & Salehi, F. (2017). Approximate solution of perturbed Volterra-Fredholm integro- differential equations by Chebyshev-Galerkin method. Journal of Mathematics, 8213932.
- Issa, K., Yisa, B. M., & Biazar, J. (2022). Numerical solution of space fractional diffusion equation using shifted Gegenbauer polynomials. Comput. Methods for Differential Equations, 10(2), 431-444.
- Izadkhah, M. M., & Saberi-Nadja_, J. (2015). Gegenbauer spectral method for time-fractional convectiondiffusion equations with variable coefficients. Mathematical Methods in the Applied Sc., 38(15), 3183-3194.
- Jangveladze, T., Kiguradze, Z., & Neta, B. (2011). Galerkin _finite element method for one nonlinear integro-

differential model. Appl. Math. Comp., 217(16), 6883-6892.

- Jimoh, A. K., & Issa, K. (2014). Comparison of some numerical methods for the solution of fourth order integro-differential equations. J. Nig. Math. Physics, 28, 115-122.
- Khater, A., Shamardan, A., Callebaut, D., & Sakran, M. (2007). Numerical solutions of integral and integro-differential equations using Legendre polynomials. Numer. Alg., 46, 195-218.
- Mason, J. C., & Handscomb, D. C. (2003). Chebyshev polynomials. Chapman and Hall, CRC Press.
- Mohamed, F., Mohamed, E., & El-Azab, M. S. (2014). Legendre-Galerkin method for linear Fredholm integro-differential equations. Applied Math. and Comput., 243, 789-800.
- Shahmorad, S. (2005). Numerical solution of the linear Fredholm-Volterra integro-differential equations by the tau method with an error estimation. Appl. Math. and Computation, 167(2), 1418-1429.
- Shahsavara, A. (2010). Numerical solution of linear Volterra and Fredholm integro-differential equations using Haar wavelets. Math. Sci. J., 6, 85-96.
- Szego, G. (1975). Orthogonal polynomials. 4th Ed., AMS Colloq. Publ.
- _Smarda, Z., & Khan, Y. (2012). Singular initial value problem for a system of integro-differential equations. abstract and applied analysis. Comput. Methods for Differential Equations, 918281, 1-18.
- Wazwaz, A. (2011). Linear and nonlinear integral equations. Methods And Applications, Springer.
- Yalcinbas, S., & Sezer, M. (2000). The approximate solution of high-order linear Volterra-Fredholm integrodifferential equations in terms of taylor polynomials. Appl. Math. Comput., 112, 291-308.
- Yalcinbas, S., & Sezer, M. (2006). A Taylor collocation method for the approximate solution of general linear Fredholm-Volterra integro-difference equations with mixed argument. Appl. Math. Comput., 175, 675-690.