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INTRODUCTION 

In quantum mechanics, the Schrodinger 

equation is a partial differential equation 

(PDE) that describes how the quantum 

state of a physical system changes with 

time. It was formulated in late 1925 and 

published in 1926 by the Hustrain physicist 

Erwin Schrodinger. (Schrödinger, 1926) 

Solution of the Schrodinger's equation 

describes not only molecular, atomic, and 

subatomic systems, but also macroscopic 

systems possibility even the whole 

universe (Laloë, 2019) 

It is used in physics and most of 

chemistry to deal with problems about the 

atomic structure of matter. In theoretical 

physics the nonlinear Schrodinger equation 

(NLSE) is a nonlinear variation of the 

Schrodinger equation.  It is a classical field 

equation whose principal applications are 

to the propagation of light in nonlinear 

optical fibers and planer wave guides 

(Boris, 2005). 

Unlike the linear Schrodinger equation, 

the NSLE never describes the time 

evolution of a quantum state. This equation 

with different versions is one of the most 

important models of mathematical physics 

with several applications to different fields 

such as nonlinear optic (Agrawal, 2001), 

models of protein dynamics (Fordy, 1990), 

plasma physics (Stenflo and Yu, 1997), 

self-focusing in laser pulses (Sulem and 

Sulem, 1999) and many other fields. In the 

present research various numerical scheme 

will be developed and compared for 

solving this equation (Bao, 2004; Bao and 

Jaksch, 2003; Dehghan and Taleei, 2010). 

We consider the following nonlinear 

Schrodinger equation: 

𝑖𝑞𝑡 + 𝑞𝑥𝑥 + 2|𝑞2||𝑞| = 0, (1) 

With the initial and boundary 

conditions: 

𝑞(𝑥, 0) = 𝑒2𝑖𝑡,      𝑞𝑥(𝑥, 0)

= 𝑒2𝑖𝑡.          
(2) 

The exact solution of this equation, which 

obtained by the Adomian method 

(Wazwaz, 2010), is: 

𝑞(𝑥, 𝑡) = 𝑒𝑖(𝑥+𝑡).     (3) 

Assume that 𝑞(𝑥, 𝑡)  is the solution to 

the nonlinear Schrodinger Eq. 1, we use the 

following transformations:  

𝑞(𝑥, 𝑡) = 𝑒𝑖𝜃𝑢(𝜁).     (4) 

Where 

𝜃 = 𝛼𝑥 + 𝛿𝑡,     (5) 

𝜁 = 𝑘(𝑥 − 𝜆𝑡), (6) 

Where, 𝛼, 𝛿, 𝑘  and 𝜆  are real 

constants((Wazwaz, 2010)). 

Substituting 4, 5, 6 in 1, we obtain 𝜆 =

2𝛼 and the following ODE 

equation:  
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𝑘2𝑢′′(𝜁) − (𝛿 + 𝛼2)𝑢(𝜁) + 2𝑢3(𝜁)

= 0.     
(7) 

Rewrite this second-order ordinary 

differential equation as follows: 

𝑢′′ − 𝑘1𝑢 + 𝑘2𝑢3(𝜁) = 0, (8) 

Where  

𝑘1 =
𝛿 + 𝛼2

𝑘2
, 𝑘2 =

2

𝑘2
.    (9) 

By setting 𝛿 = −1, 𝑘 = 1, 𝜆 = 0 , we 

have the following equation:  

𝑢′′ = −𝑢 − 2𝑢3. (10) 

In this paper we construct two NSFD 

schemes and one SFD scheme for the Eq. 

10. 

THE FINITE-DIFFERENCE 

SCHEMES 

The main idea behind the finite-

difference methods is to approximate the 

derivatives appearing in the partial 

differential equation by use of Taylor 

series. The solution domain of the problem 

is covered by a mesh of grid-lines  

𝑥𝑖 = 𝑖∆𝑥,                  𝑖 = 0,1, … , 𝑀, (11) 

𝑡𝑛 = 𝑛∆𝑡,                  𝑛 = 0,1, … , 𝑁. (12) 

Parallel to the space and time coordinate 

axes, respectively. Approximations 𝑢𝑖
𝑛  to  

𝑢(𝑖∆𝑥, 𝑛∆ ) are calculated at the point of 

intersection of these lines, namely 

(𝑖∆𝑥, 𝑛∆ )   which is referred to as the 

(𝑖, 𝑛 ) grid-point, the constant spatial and 

temporal grid-spacing are  ∆𝑥 =
1

𝑀
, ∆𝑡 =

1

𝑁
 

respectively.  

General finite difference schemes 

The most general finite difference 

model for equation 

𝑑2𝑢

𝑑𝑡2
= 𝑓(𝑢, 𝜆), (13) 

Where 𝜆 is the system parameters, that is of 

second-order in the discrete derivative 

takes the following form  

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜑(ℎ, 𝜆)

= 𝐹(𝑢𝑘, 𝑢𝑘+1, 𝑢𝑘−1, 𝜆, ℎ). 

(14) 

The discrete derivative, on the left-side, is 

a generalization of that which is normally 

used. Namely 

𝑑2𝑢

𝑑𝑡2
→

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

ℎ2
. (15) 

from Eq. 15 we have 

𝑑2𝑢

𝑑𝑡2
→

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜑(ℎ, 𝜆)
. (16) 

Where the denominator function 𝜑(ℎ, 𝜆) 

has the property 

𝜑(ℎ, 𝜆) = ℎ + 𝑜(ℎ2), 

𝜆 = 𝑓𝑖𝑥𝑒𝑑               ℎ → 0. (17) 

This form the discrete derivative is based 

on the traditional definition of the 

derivative which can be generalized as 

follows: 

𝑑2𝑢

𝑑𝑡2

= lim
ℎ→0

𝑢[𝑡 + 𝜓1(ℎ)] − 2𝑢(𝑡) + 𝑢[𝑡 − 𝜓1(ℎ)]

𝜓2(ℎ)
, 

(18)  

Where  

𝜓𝑖(ℎ) = ℎ + 𝑜(ℎ2),           ℎ → 0,    𝑖

= 1,2. 
(19) 
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EXACT FINITE DIFFERENCE 

SCHEMES 

Consider the general second-order 

differential equation  

𝑑2𝑢

𝑑𝑡2
= 𝑓(𝑢, 𝑡, 𝜆),             𝑢(𝑡0)

= 𝑢0, 

(20) 

Where 𝜆  is the system parameters and 

𝑓(𝑢, 𝑡, 𝜆) is such that Eq. 20 has a unique 

solution exists  for 0 ≤ 𝑡 < 𝑇.  

Let the solution to Eq. 20 be 

𝑢(𝑡) = 𝜑(𝜆, 𝑢0, 𝑡0, 𝑡),  (21) 

With 

𝜑(𝜆, 𝑢0, 𝑡0, 𝑡0) = 𝑢0.  (22) 

Now consider a finite difference 

model for Eq. 20 

𝑢𝑘+1

= 𝐹(𝜆, ℎ, 𝑢𝑘, 𝑢𝑘−1, 𝑡𝑘),         𝑡𝑘

= ℎ𝑘, ℎ = ∆𝑡.   

(23) 

Let the solution of 24 can be expressed in 

the form 

𝑢𝑘 = 𝜑(𝜆, ℎ, 𝑢0, 𝑢−1, 𝑡0, 𝑡𝑘),      (24) 

With 

𝜑(𝜆, ℎ, 𝑢0, 𝑢−1, 𝑡0, 𝑡0) = 𝑢0 .     (25) 

Definition 3-1 

Eq. 20 and Eq. 24 are said to have same 

general solution if and only if 

𝑢𝑘 = 𝑢(𝑡𝑘),       

for ℎ > 0. 

Definition 3.2 

An exact difference scheme is one for 

which the solution of the difference 

equation has the same general solution as 

the associated differential equation.  

By using these two definitions, the 

following theorem can be stated.  

 

Theorem 3.1 

The second order differential equation 

𝑑2𝑢

𝑑𝑡2
= 𝑓(𝑢, 𝑡, 𝜆),             𝑢(𝑡0) = 𝑢0, (26) 

has an exact finite difference scheme 

that is  given by  

𝑢𝑘 = 𝜑(𝜆, 𝑢𝑘, 𝑢𝑘−1, 𝑡𝑘, 𝑡𝑘+1),     , (27) 

The function 𝜑  is the same that in Eq. 21 

Proof: 

The group property of the solutions to 

Eq. 26 gives:  

𝑢(𝑡 + ℎ) = 𝜑[𝜆, 𝑢(𝑡 + ℎ), 𝑢(𝑡

− ℎ), 𝑡, 𝑡 + ℎ]. 
(28) 

Making the following identifications 

𝑡 → 𝑡𝑘,              𝑢(𝑡) → 𝑢𝑘 ,               (29) 

In Eq. 28 we obtained: 

𝑢𝑘+1 = 𝜑[𝜆, 𝑢𝑘, 𝑢𝑘−1, 𝑡𝑘, 𝑡𝑘+1]. 

This is the requirement for ordinary 

difference equation which has the same 

general solution as Eq. 20.  

Note that this theorem is only an 

existence theorem. 

It basically says that if a differential 

equation has a solution, then an exact 

finite-difference scheme exists.  
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A major implication of the theorem is 

that the solution of the difference equation 

is exactly equal to the solution of the 

ordinary differential equation on the 

computational grid for fixed, but, arbitrary 

step-size h. 

 

Definition 3.3 

Consider the second order differential 

Eq. 20 with the finite-difference equation 

of the form 23.  

The method 25 is called elementary 

stable, if for any value of the step-size h, 

the linear stability of each fixed point *y  

of system 20 is the same as the stability of 

*y  as a fixed point of the discrete method 

25. 

 

Theorem 3.2 

If the difference scheme 25 satisfies 

𝜕𝐹

𝜕𝑡
(ℎ, 𝑢) ≥ 0,                 𝑓𝑜𝑟 ℎ > 0, (30) 

And for every ℎ > 0  the equations 𝑢 =

𝐹(ℎ, 𝑢) in u have the same roots with their 

multiplicity, then the difference scheme 23. 

is: 

 (i) Elementary stable and (ii) Stable 

with respect to monotonicity of solutions 

(Anguelov and Lubuma, 2003). 

NONSTANDARD MODELING 

RULES 

The genesis of nonstandard finite 

difference (NSFD) modeling procedures 

developed in 1989 by Mickens. Extensions 

and a summary of the known results up to 

1994 are given in (Mickens, 1994). 

For constructing nonstandard schemes; 

we concentrate on the exact finite 

difference scheme for the general logistic 

differential equation. The following 

observations are important  

i)  Exact finite difference schemes 

generally require that nonlinear terms be 

modeled non- locally. Thus, for the logistic 

equation the 
2u  term is evaluated at two 

different grid points 

𝑢2 → 𝑢𝑘𝑢𝑘+1,           𝑜𝑟           𝑢2

→ 2𝑢𝑘
2 − 𝑢𝑘𝑢𝑘+1,       

 

However, for finite fixed, nonzero 

values of step-size, the two representations 

of the squared terms are not equal, i.e, 

 

𝑢𝑘+1𝑢𝑘 ≠ (𝑢𝑘)2                     𝑎𝑛𝑑      

         2𝑢𝑘
2 − 𝑢𝑘𝑢𝑘+1 ≠ (𝑢𝑘)2,       

 

So a seemingly trivial modification in 

the modeling nonlinear terms can lead to 

major changes in the solution behaviors of 

the difference equations.  

ii) The discrete derivatives for both 

differential equations have denominator 

functions that are more complicated than 

those used in the standard modeling 

procedure, in fact we have : 

𝑑𝑢

𝑑𝑡
→

𝑢𝑘+1 − 𝑢𝑘

𝜑(ℎ, 𝜆)
,       (31) 

where 𝑡𝑘 = (∆𝑡) = ℎ𝑘, 𝑥𝑘   is an 

approximation to 𝑥(𝑡𝑘)  and the 



Iranian Journal of Optimization, 13(1), 13-27 ,March 2021    

 

18 
 

Izadi/ Using Nonstandard Finite Difference… 

 

denominator function satisfies the 

condition 

𝜑(ℎ, 𝜆) = ℎ + 𝑜(ℎ2). (32) 

In Eq. 32, 𝜆  represents various 

parameters appearing in the differential 

equation. This way of constructing discrete 

derivatives can be easily extended to partial 

derivatives(Mickens,1989؛ 

Mickens,1994). 

For example, the time-derivative in the 

logistic equation is replaced by the 

following discrete representation 

𝑑𝑢

𝑑𝑡
→

𝑢𝑘+1 − 𝑢𝑘

𝑒𝜆ℎ − 1
𝜆

.     (33) 

iii) The order of discrete derivatives in 

the exact finite difference schemes is 

always equal to the corresponding order of 

derivatives of the differential equation.  

 

The rules for construction the discrete 

models 

Rule 1: The order of the discrete 

derivatives must be exactly equal to the 

orders of the corresponding derivatives of 

the differential equations.  

Rule 2: Denominator function for the 

discrete derivatives must, in general, be 

expressed in terms of more complicated 

functions of the step sizes than those 

conventionally used. 

Rule 3: Nonlinear terms must, in 

general, be modeled nonlocally on the 

computational grid or lattice. 

Rule 4: Special solutions of the 

differential equations should be special 

(discrete) solutions of the finite difference 

models.  

Rule 5: The finite-difference equations 

should not have solutions that do not 

correspond exactly to solutions of the 

differential equations.  

General NSFD method for Eq. 10 

In this subsection, we construct general 

NSFD schemes for the differential Eq. 10. 

The scheme is given as follows: 

∆2𝑢𝑘

𝜑
→ −𝑢𝑘 − 2𝑢𝑘

2((1 + 𝜃)𝑢𝑘+1

− 𝜃𝑢𝑘−1),     

(34) 

Where  

𝜑 = ℎ2 + 𝑜(ℎ4)   and 𝜃 ≥ 0.  

We are able to find sufficient condition 

such that the scheme 34 has the stability 

stated in (i), (ii), of theorem 3.1, the main 

result is stated in the following theorem.  

Theorem 4.2.1 

If 𝜃 ≥
1

2
 then the difference scheme 34 

is stable with respect to monotonicity of 

solutions and is elementary stable on the 

positively invariant interval [ 0, ∞). 

Proof: 

It is not difficult to see that the difference 

Eq.34 and the differential Eq.10 share the 

same fixed-points. 

The difference Eq.34  can be written as 

𝑢𝑘+1 = 𝐹(𝜑, 𝑢𝑘, 𝑢𝑘−1),     

where  
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𝐹(𝜑, 𝑢) =
𝑢 + 2𝜑𝜃𝑢3 − 𝜑𝑢

1 + 2𝜑𝑢2(1 + 𝜃)
,     (35) 

The partial derivative of 𝐹(𝜑, 𝑢) is 

∂𝐹

∂𝑢

=
1 − 𝜑 + 𝜑𝑢2(6𝜃 − 2(1 + 𝜃)) + 4𝜑2𝑢4𝜃(1 + 𝜃) + 2𝜑2𝑢2(1 + 𝜃)

(1 + 2𝜑𝑢2(1 + 𝜃))2
,     

 

   (36) 

Since all parameters and variables are 

assumed nonnegative and 0 ≤ 𝜑 ≤ 1. 

We see from the Eq.36, the condition 

∂𝐹

∂𝑢
≥ 0  is satisfied if (𝑢𝜃 − 2(1 + 𝜃)) ≥

0, ie 𝜃 ≥
1

2
. 

TWO NONSTANDARD FINITE-

DIFFERENCE SCHEMES FOR EQ. 

10 

The first NSFD scheme 

The first (NSFD) scheme selected for 

Eq.10 in this paper is 

𝑢𝑚+1 − 2𝑢𝑚 + 𝑢𝑚−1

4Sin2 ℎ/2

= −𝑢𝑚 − 2𝑢𝑚
2

(3𝑢𝑚+1 − 𝑢𝑚−1)

2
.     

(37) 

This particular discretization has several 

important features: 

 1. The nonlinear term is modeled bye 

following representation: 

𝑢𝑚
3 → (

3𝑢𝑚+1 − 𝑢𝑚−1

2
) 𝑢𝑚

2 .     (38) 

2. The denominator function in this 

scheme is : 

𝜑(∆𝑥) = 4Sin2 ℎ/2.     (39) 

Since the expression given by Eq. 37 is 

linear in 𝑢𝑚+1, it can be solved to give: 

 𝑢𝑚+1

=
𝑢𝑚(2 − 4𝑆) + 𝑢𝑚−1(4𝑆𝑢𝑚

2 − 1)

1 + 12𝑢𝑚
2 𝑆

,    
(40) 

Where S = Sin2 ℎ/2 

 

Analysis of nonstandard finite 

difference approximation for the first 

scheme: 

stability 

 consider the Eq.40 and show the 

stability of this equation. We write 

homogeneous case of Eq.40. The 

characteristic equation for this equation is: 

12𝑟𝑠 + 𝑟 + (4𝑠 − 2) = 0,    (41) 

We know that if the characteristic roots less 

or equal to 1 then the equation is stable. So, 

in this equation if 0.625 ≤ 𝑠 ≤ 1 then the 

equation is stable. 

Consistency 

A finite-difference is said to be 

consistent with an equation if, in limit as 

the grid spacing tends to zero, the finite-

difference formula is identical to the 

equation at each point in the solution 

domain. 

To researching the consistency of Eq.10 

by first method, consider Eq. 40 

written in the form: 

ℓΔ(𝑢𝑗) = 𝑢𝑗+1(1 + 12𝑢𝑗
2𝑠) − 𝑢𝑗(2

− 4𝑠)

− 𝑢𝑗−1(4𝑠𝑢𝑗
2 − 1)

= 0.   

(42) 

Replacing 𝑢𝑗  in 42 by the exact solution 

�̂�𝑗  of Eq.10 and after rearranging, we have: 
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ℓΔ{�̂�𝑗} = (𝑢𝑗+1 − 2𝑢𝑗 + 𝑢𝑗−1) + 4𝑠𝑢𝑗

+ 4𝑠𝑢𝑗
2(3𝑢𝑗+1 − 𝑢𝑗−1).   

(43) 

Since �̂�𝑗  is continuously differential, the 

terms of 43 may be replaced by their Taylor 

expansions about the (𝑗∆𝑥), this gives: 

ℓΔ(�̂�𝑗) = (
2Δ𝑥2

2!

∂2𝑢

∂𝑥2
|
𝑗

+ 2
Δ𝑥4

4!

∂4𝑢

∂𝑥4
|

𝑗

+ ⋯ ) + 4𝑠𝑢𝑗

+ 4𝑠𝑢𝑗
2 (2𝑢𝑗 + 4Δ𝑥

∂𝑢

∂𝑥
|
𝑗

+
2Δ𝑥2

2!

∂2𝑢

∂𝑥2
+ 4

Δ𝑥3

3!

∂3𝑢

∂𝑥3
+ ⋯ ), 

(44) 

or 

ℓΔ(�̂�𝑗) = 2𝑢𝑗
3 + 𝑢𝑗 +

(Δ𝑥)2

4𝑠
(

∂2𝑢

∂𝑥2|
𝑗

+
2(Δ𝑥)4

4!

∂4𝑢

∂𝑥4|
𝑗

+
2(Δ𝑥)4

6!

∂6𝑢

∂𝑥6
|
𝑗

+ ⋯ ), 

(45) 

 

ℓΔ(�̂�𝑗) = 2𝑢𝑗
3 + 𝑢𝑗 +

(Δ𝑥)2

4𝑠
(

∂2𝑢

∂𝑥2|
𝑗

+ 𝐸(�̂�), ), (46) 

where  

𝐸(�̂�) =
2(Δ𝑥)2

4𝑠
|

𝑗

∂4𝑢

∂𝑥4
+

2(Δ𝑥)4

6!

∂6𝑢

∂𝑥6
|

𝑗

+ ⋯ (47) 

is the truncation error of the second order 

accurate in  space.  

As previously seen , when the grid 

spacing get smaller and smaller with the 

first method the truncation error gets 

smaller and smaller at a fix point in the 

solution domain.  

In the limit as Δ𝑥 → 0, the nonstandard 

finite difference formula 40 is equivalent to 

the Eq.10, so this method is consistent.  

Preserving the positivity and boundary 

conditions 

According to the nonstandard finite 

difference rules, the Eq. 40 has to satisfy 

two criteria, positivity and boundary 

condition: 

The boundary condition is (Mickens, 

2000;) 

0 ≤ 𝑢𝑚 ≤ 1 → 0 ≤ 𝑢𝑚+1 ≤ 1, (48) 

and the positivity condition is  

0 ≤ 𝑢𝑚 → 0 ≤ 𝑢𝑚+1, 

It can easily be shown by the following 

argument that the Eq. 40 include this 

conditions: 

0 ≤ 𝑢𝑚 ≤ 1 → 0 ≤ 𝑢𝑚(2 − 4𝑆𝑖𝑛2 ℎ
2⁄ )

≤ 2, 
(50) 

0 ≤ 𝑢𝑚−1 ≤ 1 → 0

≤ 𝑢𝑚−1(4𝑆𝑖𝑛2 ℎ
2⁄ 𝑢𝑚

2

− 1) ≤ 3, 

(51) 

and 

0 ≤ 1 + 12𝑢𝑚
2𝑆𝑖𝑛2 ℎ

2⁄ ≤ 13, (52) 

So from 49 ,50, 51 we have 

0 ≤ 𝑢𝑚+1 ≤
5

13
≤ 1.    

The second NSFD scheme 

We use the Mickens NSFD model 

(Mickens, 2002), for construct the second 

scheme (NSFD) to Eq.10. 

In this model, denote the fixed – point 

of equation 

𝑑2𝑢

𝑑𝑥2 = 𝑓(𝑢) , (53) 

By  

{�̅�(𝑖), 𝑖 = 1,2, … 𝐼} , (54) 

That, (I) may be unbounded. 
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The fixed-points are the solution to the 

equation 

𝑓(�̅�) = 0, (55) 

Define 𝑅𝑖as, 

𝑅𝑖 =
𝑑𝑓[�̅�(𝑖)]

𝑑𝑢
, (56) 

and 𝑅∗ as 𝑅∗ = 𝑀𝑎𝑥|𝑅𝑖|,          𝑖 = 1 … 𝐼; 

Linear stability analysis applied to the i-

th fixed-point gives the following results: 

i) If 𝑅𝑖>0 the fixed-point 𝑢(𝑡) = �̅�(𝑖) is 

linearity unstable  

ii) If 𝑅𝑖<0 the fixed-point 𝑢(𝑡) = �̅�(𝑖) is 

linearity unstable 

So; the nonstandard finite-difference 

scheme for Eq. 53 is: 

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜑(ℎ𝑅∗)
𝑅∗

= 𝑓(𝑢𝑘), (57) 

where  

𝜑(𝑧) = 𝑍2 + 𝑜(𝑧4),              𝑧 → 0, 

0 < 𝜑(𝑧) < 1    ,                      z > 0. 

 

(58) 

Theorem 5.2.1 

The nonstandard finite difference 

scheme, Eq.57 has fixed-points with 

exactly the same linear stability properties 

as the differential Eq. 53 (Mickens, 2002; 

Mickens, 2005). 

So, in the Eq. 10, we have : 

𝑓(𝑢) = −𝑢 − 2𝑢3 , and  the  fixed 

points are �̅�(1) = 0  and �̅�(2) =

+𝑖√2

2
, �̅�(3) = −𝑖

√2

2
,  

Therefore,  

𝑅𝑖 = −1 − 6𝑢𝑖
2 → 𝑅0 = −1  

and  𝑅2 = 𝑅3 = 2 → 𝑅∗ = 2, 
(59) 

points. The denominator function 57 is :  

𝜑 =
1 − 𝑒−2ℎ

2
. (60) 

The NSFD scheme for Eq.10,  is: 

𝑢𝑚+1 − 2𝑢𝑚 + 𝑢𝑚−1

ℎ𝜑

= −𝑢𝑚

− 𝑢𝑚
2 (3𝑢𝑚+1

− 𝑢𝑚−1). 

(61) 

Since the expression 60 is linear in 𝑢𝑚+1, 

it can be solved for to give: 

𝑢𝑚+1

=
𝑢𝑚(2 − ℎ𝜑) + 𝑢𝑚−1(ℎ𝜑𝑢𝑚

2 − 1)

1 + 3𝑢𝑚
2 ℎ𝜑

. 
(62) 

Analysis of (NSFD) approximation for 

the second scheme: 

Stability 

Consider the Eq. 61 that is second 

NSFD scheme for Eq. 10 for stability, we 

write homogeneous case of this equation. 

Then the characteristic equation is:  

3𝑟2ℎ𝜑 + 𝑟 + (ℎ𝜑 − 2) = 0,

  
(63) 

If the characteristic roots less or equal to 1, 

We should have the following unequal 

relation:  

ℎ𝜑 ≥ 1
4⁄ ,  (64) 

That is the stability condition.  

 

Consistency 

To show the consistency of Eq. 10 by 

the second Method; we consider Eq. 61 

written in the following form: 
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ℓ𝛥(𝑢𝑗) = 𝑢𝑗+1(1 + 3ℎ𝑠𝑢𝑗) − 𝑢𝑗(2 − ℎ𝑠)

− 𝑢𝑗−1(ℎ𝑠𝑢𝑗
2 − 1) = 0, 

(65) 

where 𝑠 = 𝜑. 

Replacing 𝑢𝑗  in 64 by the exact solution 

�̂�𝑗  of Eq. 10 and after rearranging, we have 

ℓ𝛥(�̂�𝑗) = (𝑢𝑗+1 − 2𝑢𝑗 + 𝑢𝑗−1)

+ 𝑢𝑗ℎ𝑠

+ ℎ𝑠𝑢𝑗
2(3𝑢𝑗+1

− 𝑢𝑗−1) = 0, 

(66) 

By replacing the Taylor expansions in to 

the terms of above equation about the 𝑗Δ𝑥, 

we have: 

ℓ𝛥(�̂�𝑗) = (
2𝛥𝑥2

2!

𝜕2𝑢

𝜕𝑥2
|𝑗 +

2𝛥𝑥4

4!

𝜕4𝑢

𝜕𝑥4
|

𝑗

+ ⋯ ) + 𝑢𝑗ℎ𝑠

+ ℎ𝑠𝑢𝑗
2 (2𝑢𝑗 + 4𝛥𝑥

𝜕𝑢

𝜕𝑥
|

𝑗

+
2𝛥𝑥2

2!

𝜕2𝑢

𝜕𝑥2
+ ⋯ ), 

(67) 

Or 

ℓ𝛥(�̂�𝑗) = 𝑢𝑗 + 2𝑢𝑗
3

+
(𝛥𝑥)2

ℎ𝑠
(

𝜕2𝑢

𝜕𝑥2
|

𝑗

+
2(𝛥𝑥)2

4!

𝜕4𝑢

𝜕𝑥4
|

𝑗

+ ⋯ ). 

(68) 

So 

 ℓ𝛥(�̂�𝑗) = 2𝑢𝑗
3 + 𝑢𝑗 +

(𝛥𝑥)2

ℎ𝑠
(

𝜕2𝑢

𝜕𝑥2
|
𝑗

+ 𝐸(�̂�)), 
(69) 

 

where  

𝐸(�̂�) =
2(𝛥𝑥)2

4!

𝜕4𝑢

𝜕𝑥4
+

2(𝛥𝑥)4

6!

𝜕6𝑢

𝜕𝑥6

+ ⋯. 

(70) 

In the limit as Δ𝑥 → 0 the finite difference 

formula 70 is equivalent to the Eq. 10 So; 

the 61 equation is consistence too.  

The positivity and boundary conditions 

It can be shown that the Eq. 61 preserve 

the positivity and boundary conditions i.e, 

if 

0 ≤ 𝑢𝑚 ≤ 1 → 0 ≤ 𝑢𝑚+1 ≤ 1, (71) 

Because, we have  

0 ≤ 𝑢𝑚 ≤ 1 → 0 ≤ (2 − ℎ𝑠)𝑢𝑚

≤ 2 − ℎ𝑠; 
(72) 

0 ≤ 𝑢𝑚−1 ≤ 1

0 ≤ 𝑢𝑚
2 ≤ 1

→ 0

≤ 𝑢𝑚−1(ℎ𝑠𝑢𝑚
2 − 1)

≤ ℎ𝑠 − 1; 

(73) 

and 

1 ≤ 1 + 3𝑢𝑚
2 ℎ𝑠 ≤ 3ℎ𝑠; (74) 

from 71,74 we have: 

0 ≤ 𝑢𝑚+1 ≤
1

3ℎ𝑠
≤ 1. 

  
(75) 

The standard finite difference scheme 

In this section we construct (SFD) 

scheme by consider the following 

approximation of the derivative for solving 

the Eq. 10. 

𝜕2𝑢

𝜕𝑥2
|

𝑗

=
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

𝛥𝑥2

−
(𝛥𝑥)2

12

𝜕4𝑢

𝜕𝑥4
|

𝑗

+ 𝑜(𝛥𝑥)4, 

(76) 

By replacing this term in Eq. 10, and 

omitting term of {𝑜(Δ𝑥2)}, we obtain  
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𝑢𝑖+1 = 𝑢𝑖(2 − ℎ2) − 𝑢𝑖−1

− 2ℎ2𝑢𝑖
3, 

(77) 

Where ℎ = Δ𝑥. 

Clearly, the total of the truncation error, 

in using the 77 instead of 10 is: 

𝐸{𝑢𝑖} = [−
(𝛥𝑥)2

12

𝜕4𝑢

𝜕𝑡4
]

+ 𝑜(𝛥𝑥4). 

 

NUMERICAL TEST 

In this Section we use two numerical 

schemes that were introduced, in Sections 

The first NSFD scheme and the second 

NSFD scheme for solving  the nonlinear 

partial differential equation Schrodinger 1. 

The accuracy of our proposed numerical 

methods is measured by computing the 

difference of the analytic and the numerical 

solutions at some points.  

Then we compare the error of these two 

NSFD and SFD schemes at 𝑡 = 6  and  

some Δ𝑥. 

In this example, the analytical solution 

of the Eq.1 is (Wazwaz, 2010) 

𝑞(𝑥, 𝑡) = 𝑒𝑖(𝑥+𝑡), (78) 

The numerical solution for this equation 

is:  

𝑞(𝑥, 𝑡) = 𝑢(𝑥)𝑒−𝑖𝑡 (79) 

That 𝑢(𝑥) is the numerical solution of the 

ODE 10, with initial and boundary values, 

𝑢1 = 𝑢(0) = 𝑒2𝑖𝑡

𝑢𝑥(0) = 𝑒2𝑖𝑡
 (80) 

In the numerical schemes 40 and 61, 

when 𝑚 = 0  we need 𝑢−1 , that  is 

calculated as follows: 

𝑢𝑥(0) =
𝑢1−𝑢−1

𝛥𝑥
= 𝑒2𝑖𝑡 →

𝑢1−𝑢−1

𝛥𝑥
= 𝑢1 → 𝑢−1 = 𝑢1(1 −

𝛥𝑥) ≈ 𝑢1𝑒𝑖𝛥𝑥,  

(81) 

So 

𝑢1 = 𝑒𝑖(2𝑡+𝛥𝑥).  (82) 

We use the first NSFD and second 

NSFD schemes at 𝑡 = 6, by Δ𝑥 = 0.1 and 

Δ𝑥 = 0.05, 0.02 . Then compare these 

methods by SFD scheme in same points by 

calculating the errors. The results are 

shown in the Tale 1 and the plots of errors 

are in Fig.1-Fig.6.Note that the Fig.4-Fig.6, 

are at polar coordinates. 

Table 1: Shows the error of two NSFD schemes and SFD schemes for equation (1-10) a t =6 , 

Δx=0.02,0.05,0.1 

 Error of NSFD 1 Error of NSFD 2  

Error of SFD 

𝑡 =  6 

Δ𝑥 = 0.1 

0 0 0 

1.1444e – 16 1.1444e - 16 1.1444e - 16 

0.0199 0.0174 0.020 

0.508 0.0503 0.0584 

0.1100 0.0952 0.1118 

𝑡 =  6 

Δ𝑥 = 0.05 

0 0 0 

8.9681e - 16 8.9681e - 16 8.9681e - 16 

0.0050 0.0047 0.0050 
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0.0149 0.0139 0.0149 

0.0249 0.0257 0.0295 

𝑡 =  6 

Δ𝑥 = 0.02 

0 0 0 

1.2413e - 16 1.2413e - 16 1.2413e – 16 

8.0001e – 04 7.8039e - 04 8.0001e - 04 

0.0024 0.0023 0.0024 

0.0048 0.0047 0.0048 

 

 

 
 Fig 1. The plot error of two NSFD schemes and SFD scheme for equation (1-10) at t=6, Δ𝑥 = 0.1 

 

Fig 2. The plot error of two NSFD schemes and SFD scheme for equation (1-10) at t=6, Δ𝑥 = 0.05 

 

Fig. 3. The plot error of two NSFD schemes and SFD scheme for equation (1-10) at t=6, Δ𝑥 = 0.02 
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From the above results we can see that 

the error of second NSFD scheme is lower 

than the other method, so this method works 

better than the other methods.  

The following graphs are the graphs of 

the exact solution and numerical solutions 

that are obtained by the previous methods at 

𝑡 = 2 and Δ𝒙 = 𝟎. 𝟎𝟐. 

 

Fig. 4. The plot of exact and numerical solution by 

the first NSFD method at 𝑡 = 2, Δ𝑥 = 0.02 

 

Fig. 5. The plot of exact and numerical solution by 

second NSFD method at 𝑡 = 2, Δ𝑥 = 0.02 

 

Fig. 6. The plot of exact and numerical solution by 

the SFD method at 𝑡 = 2, Δ𝑥 = 0.02 

 

By attention to these graphs we can see that 

in Fig. 5,the number of points that exact and 

numerical solutions are coincident together 

are more than the others. 

 

CONCLUSION 

The nonlinear Schrodinger equation is 

one of the most important equations in 

quantum mechanics, chemistry and physics 

science. In this work, we studied two 

nonstandard finite difference (NSFD) and 

one explicit finite-difference (SFD) 

schemes to approximate the solution of this 

equation.  

In Section 1, the nonlinear Schrodinger 

equation was converted into an ODE by a 

transformation. In Section 2, we have 

presented two NSFD schemes for reduced 

ODE and have shown that both schemes are 

conditionally stable and consistence of 

order 𝑂{(Δ𝑥)4}, and both have the 

positivity and boundary property. Also in 

the same section, we constructed to SFD 
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scheme with total error of order 𝑂{(Δ𝑥)4} 

to approximate the solution of this equation. 

In Section 6, we solved the Schrodinger 

equation with these numerical methods at 

some points. 

Then we compared these solutions to the 

exact solution of this equation that is given 

by the Adomian method(Wazwaz,2010). 

By drawing the errors of these methods at 

𝑡 = 6 and divers  Δ𝑥, it is observed that the 

plot error of the second NSFD method is 

lower than the others. 

It shows that the second numerical 

scheme works better than the other one and 

SFD method. Finally, we have plotted the 

exact and numerical solutions of the NSFD 

and SFD methods at 𝑡 = 2 and Δ𝑥 = 0.02. 

The results also show that the number of 

calculated points which are exactly the 

same as corresponding exact solutions, are 

more in the second NSFD method. 

The errors of the second NSFD method 

were smallest than the others in all of the 

points. So this method is better than the 

others method. 
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