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Abstract 
Radial Basis Functions are considered as important tools for scat-

tered data interpolation. Collocation procedure is a powerful technique 
in meshless methods which is developed on the assumption of radial 
basis functions to solve partial differential equations in high dimen-
sional domains having complex shapes. In this study, a numerical 
method, implementing the RBF collocation method and finite differ-
ences, is employed for solving not only 2-D linear, but also nonlinear 
Sobolev equations. First order finite differences and Crank-Nicolson 
method are applied to discretize the temporal part. Using the energy 
method, it is shown that the applied time-discrete approach is conver-
gent in terms of time variable with order O (Δt). The spatial parts are 
approximated by implementation of two-dimensional MQ-RBF inter-
polation resulting in a linear system of algebraic equations. By solving 
the linear system, approximate solutions are determined. The proposed 
scheme is verified by solving different problems and error norms L∞ 
and L2  are computed. Computations accurately demonstrated the ef-
ficiency of the suggested method.
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INTRODUCTION 
A wide spectrum of phenomena in different 

fields of engineering and sciences including 
physics, chemistry, and biology are simulated by 
partial differential equations (PDEs). Conducting 
investigations on solutions to such equations 
have always been of interest to scholars; how-
ever, most of them, especially nonlinear ones are 
too complex to be solved analytically. Thus, ap-
proximate solutions to them might be provided 
by numerical methods. In this study, linear and 
nonlinear 2-D Sobolev equations are numerically 
studied.  

Consider the following two-dimensional PDE 
(Haq et al., 2019; Guo & Fang, 2012). 

 

(1) 
with following conditions 

(2) 
 
where u=u(x,y,t),F(u) , is the vector valued 

function, Ω R2 , ,Δ,  are gradient and Lapla-
cian operators respectively, αi (i=1,3,4,5) , are 
real constants and α2 is a real constant vector.  

If α1=1, and α2=(0,0), α3=α4=α5=0  then Eq. 
1 turns to the linear Sobolev equation as follows. 

(3) 
 
If α4=α5=0, α2 (0,0), α 3=-1 and  If α4=π2, then 

the following nonlinear Sobolev equation is ob-
tained from Eq. 1. 

 
 
 

 
(4) 

 
Sobolev equations are derivative of evolution 

partial differential equations possessing an im-
portant physical background. They appear in the 
stream of fluids through cracked rock (Barenblatt 
et al., 1960; Cao & Pop, 2016), thermodynamics 
(Chen & Gurtin, 1968), the exchange in different 
media (Ting, 1974), the moisture penetration in 
soil (Shi, 1990) and many other usages in science 
and engineering. Various numerical methods sug-
gested for the numerical solutions of Sobolev 
equations that mostly include finite element 
method. For instance, an expanded mixed finite 
element method for 2-D linear equations of 
Sobolev which was recently proposed by Li et 
al.(2019). In 2017, Gao et al. solved Sobolev 
equation by a weak Galerkin finite element 
method. Based on time discontinuous Galerkin 
space–time FEM method, a numerical method 
for non-linear Sobolev equation was proposed by 
Siriguleng et al.(2013). A Godunov-mixed finite 
element method used to change meshes was pro-
posed and analyzed by Sun (2012) so as to solve 
the nonlinear Sobolev equations. The refence (shi 
et al.,2015), a low order nonconforming finite el-
ement method was combined with the method of 
characteristics so as to treat the nonlinear 
Sobolev equation with convection-dominated 
term. 

There are many robust numerical methods in-
cluding finite element method (FEM) and finite 
volume method (FVM) as well as finite differ-
ence method (FDM), etc. that have been success-
fully applied to various real-world problems 
(e.g.( Patil & Maniyeri, 2019; Jiang et al., 2020; 
Rossi et al.,2019; Gao & Keyes, 2019; Jose et al., 
2017). In most of the aforementioned methods, 
it is needed to arrange the data in a simple do-
main, like a circle or rectangle. In such methods, 
grid generation is often needed which requires 
vast amount of time on computation. The accu-
racy of these methods decreases in non-smooth 
and non-regular domains because the solution of 
the problem is only provided on mesh points. 
Furthermore, in real applications, especially for 
multi-dimensional scattered data, it is not possi-
ble to construct a mesh. The Meshless methods 
were created to alleviate the aforementioned re-
strictions. In 1968, Ronald Hardy, an Iowa State 
geodesist, developed radial basis functions 
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(RBFs) for his desire to find an efficient way to 
interpolate the scattered data on a topographic 
surface. A set of N distinct points X={x1

c , x2
c 

,…, xN
C } in R^d which are called centers is used 

in RBF interpolation. There are no restrictions on 
the geometry of domains of the problem or on the 
position of the centers (Sarra, 2017). Hardy in-
troduced the well-known radial basis function, 
multi-quadric (MQ) for the first time and de-
scribed and named it in a paper appearing in 
1971(Hardy, 1971). Another famous type of 
RBFs, thin-plate splines (TPS) were proposed by 
Duchon, in 1975 (Duchon, 1997). Although, 
Richard Franke, by performing many numerical 
experiments, showed that the MQ-RBFs scheme 
was the best scheme to interpolate scattered data 
among all known interpolation methods(Franke, 
1979). In 1986, Charles Micchelli established 
that the system matrix of the MQ scheme was in-
vertible implying that the problem of RBFs scat-
tered data interpolation is well-posed(Micchelli, 
1986). Edward Kansa was the pioneer of using 
MQs associated with the collocation method to 
solve PDEs in 1990 (Kansa, 1990a; Kansa, 
1990b). After his worthy works, doing research 
in RBFs have actively been continued. During 
recent years, RBFs method has been considered 
as an effective tool for the purpose of solving var-
ious sort of problems including PDEs (Kazem et 
al., 2012; Vertnik & Šarler, 2013; Kadalbajoo et 
al., 2015; Casanova et al., 2019)  integral equa-
tions (Dastjerdi & Ahmadabadi, 2017; Assari & 
Dehghan, 2018) and fractional equations (Chand-
hin et al., 2018; Piret & Hanert, 2013). 

The goal of the present study, is to apply a nu-
merical method which is based on the RBF col-
location method and finite differences, in order 
to solve the 2-D linear and nonlinear Sobolev. In 
order to discretize the temporal part, finite differ-
ences are applied while two dimensional RBF in-
terpolation is implemented for approximating the 
spatial parts. 

The manuscript is organized as following. In 
section 2 a time discrete scheme is obtained and 
the convergence of the scheme is proved. The 
RBF interpolation method is explained by pre-
senting basic concepts and definitions in Section 
3. The suggested method is used in equations (3) 

and (4) in section 4. Then, the proposed method 
is applied for some test problems, and conse-
quently the results are reported in Section 5. Fi-
nally, a conclusion is presented in Section 6. 

 
TIME DISCRETE SCHEME 

In this section, forward finite differences and 
also Crank-Nicolson scheme are used to dis-
cretize the time variable for the first-order time 
derivative. The convergence of this time-discrete 
scheme is analyzed using energy method subse-
quently. 

Let                 and 
 
Also, suppose that  F(u) satisfies the Lipschitz 

condition 
 
 

 
where M is a Lipschitz constant. 
 

Time discretization of the linear Sobolev 
equation 

Consider Eq. 3 at tk. Then 

(5) 
 
Where |R|<S Δt   and is S a positive constant. 

Simplifying Eq. 5 gives the following equation. 
 
 
 
 
 

(6) 
 
If the small term R is omitted then we have 
 
 
 

(7) 
 

The convergence analysis 
Consider the functional spaces which are en-

dowed with inner products and the standard 
norms as follows (Liu et al., 2011). 
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Where L2 (Ω) is the space of measurable func-

tions. The definition of inner products of H1 (Ω) 
and L2 (Ω)   respectively are defined as follows. 

 
The L2  and H1 norms are defined respectively 

as follows. 

 
Here, the weighted  H1 –norm (Liu et al., 2011) 

defined as follows is applied. 
 
 
 

 
Lemma 1. The following inequality is estab-

lished for either functions; f (x) or g(x). 
 
 
 
Proof. (Dehghan et al., 2014). 
Theorem 1. The proposed time discrete 

scheme is H1- convergent by convergence order 
O (Δt). When u(x, tk)=uk  and U(x, tk )=Uk ϵH01  
are the exact solution of Eq. 3 and the approxi-
mate solution respectively.  

 
Proof. Subtracting (6) from (7) leads to 
 

(8) 
where 

 
 
Now, multiply both sides of (8) by λk+1  then in-

tegrate on Ω. 

 
 
 

or 

 
 
 

Applying Lemma 1 and Schwarz inequality 
gives 

 
 
 

 
 
 
 
 

 
 

 
 
Simplifying the above relation leads and mul-

tiplying both sides by 2 leads to 

 
 

(9) 
 
According to Poincare inequality (Quarteroni 

& Valli, 2008): 
 
 

(10) 
also the following inequality 

 
 
 
(11) 

Eq. 9 is written as follows. 
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Now put η=Δt/2. 
 
 
 

 
 
 
Since 1<1+Δt  and 1-Δt/2<1 , the relation can 

be written as following. 

 
Using the weighted H1 -norm results in 
 
 
 
 
 

. 

. 

. 
 
 

As λ0=0 
 

 
 

Consequently 
 
 
 

which completes the proof. 
 

Time discretization of the non-linear Sobolev 
equation  

Considering Eq. 4 at tk gives 

 
(12) 

Where F1 (u)=u. u  and F1 (u)=u2. Simplify-
ing Eq.12 gives the following equation. 

(13) 
 
Omitting the small term R results in 

 
 

(14) 
 
The convergence analysis 

Theorem 2. Assume u(x, tk )=uk is considered 
as the exact solution of Eq. 4 and U(x, tk)=Uk 
ϵH0

1  is the approximate solution, consequently 
the time discrete solution is H1 - convergent and 
the convergence order is O(Δt). 

 
Proof. When 13 is subtracted from 14, follow-

ing relation is hold. 

 
 

 
 
 

 
 

(15) 
 
If both sides of Eq. 15 are multiplied by λk+1, 

and also integrated on Ω, and finally using Lip-
schitz condition then 
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Where M1, M2, M3, M4 are Lipschitz con-
stants.  

Applying Schwarz inequality , Lemma 1, and 
(10) gives 

 
 
 
 
 
 
where M is the maximum of {M1, M2, M3, 

M4}. 

Simplifying the above relation and multiplying 
both sides by 2 leads to 

 
Because   
 
we can write 

 
 

 
According to relations (10) and (11), the above 

equation can be expressed in the following form: 
 
 

Let η=ΔtMC. Therefore, 
 
 
 
 

 
 

Where            . Applying the weighted H1 -norm 
leads to 

 
 
 

 
 
 

 
 

 
 
 
 

 
 
 
As λ0=0 

 
 

 
 

 
 
 

 
 
 
 
On the other hand, 
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Therefore, 

 
That finishes the proof. 
 

BASIC DEFINITIOMS 
In this section, some basic concepts and defi-

nitions are expressed for the radial basis func-
tions interpolation. 

 
Definition 1. Let ℝd  be d-dimensional Euclid-

ean space and x* ϵ ℝd. A radial basis function is a 
function which is both continuous and multivari-
able like φ:ℝd→ℝ  that its value at any point xϵ ℝd, is dependent on the distance from a certain 
point x* ϵ ℝd. This function could be written as 
φ(r)=φ(ǁx-x* ǁ) where r=ǁx-x*ǁ  and ǁ. ǁ  is the Eu-
clidean norm on R^d. The function φ is an uni-
variable function in r and x* is a center of RBF φ. 

 
Definition 2. Given the data (xi, fi), with 

i=1,…,N    , xi ϵ ℝd  and fi ϵℝ, the scattered data 
interpolation problem is defined as finding a 
smooth function s such that s(xi)=fi, for i=1,…
,N. Function s is called an interpolant. 

A radial basis function interpolant at centers 
X={X1

c , X2c ,…, XNc } ℝd assumes the fol-
lowing form. 

 
 

(16) 
 
Where rj=ǁX-Xj

c ǁ,φ(r) is a radial basis func-
tion, coefficients αj ,j=1,…,N are constants to be 
determined by imposing the interpolation condi-
tion u(Xi)=fi  at the set of N centers, X. This en-
forcement leads to the linear system 

 
                             u=Ba                             (17) 
 
where a=(α1,…, αN)T ,u= (u1,…, uN)T, and 

B is a N×N matrix called the interpolation matrix 
or the system matrix with entries 

 
 

Definition 1 suggests that an RBF is independ-
ent of the spatial dimension. This property assists 
to easily transform a multivariable problem into 
a one-variable problem. This is the superiority of 
the RBF interpolation scheme to the other clas-
sical methods. 

Generally, it is possible to fall RBFs into two 
separate major categories: Infinitely smooth and 
piecewise smooth; which are given in Table 1 
and Table 2, respectively. Infinitely smooth RBFs 
include a free parameter which is called shape 
parameter, denoted by Ɛ . Although this parame-
ter can be chosen arbitrarily, a proper choice of 
its value is necessary. Because in an infinitely 
smooth RBF interpolation, the value of a shape 
parameter influences on the accuracy of the 
scheme (Rippa, 1999).  

The MQ RBF is the focus of this paper because 
of its popularity in applications and its good ap-
proximation characteristic. 

 
Table 1 : Infinitely smooth RBFs 

 
 
 

Table 2: Piecewise smooth RBFs 
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Name of function Definition

Multiquadric (MQ)

Inverse Multiquadric (IMQ)

Inverse Quadric (IQ)

Gaussian (GA)

Name of function Definition
Linear r
Cubic r3

Thin Plate Spline (TPS) r2log(r)



Piecewise smooth RBFs have algebraic conver-
gence rates (Wendland, 2004). While infinitely 
smooth RBFs achieve spectral or exponential 
convergence rates (Jackson,1988; Platte, 2011). 

 
IMPLEMENTATION OF THE METHOD  
RBF collocation method is implemented on 

both linear and nonlinear Sobolev equations in 
this section. 

 
Linear sobolev equation 

In this section, Consider two-dimensional time-
dependent linear PDE (3). for discretizing this 
equation in time, forward finite difference and 
Crank-Nicolson scheme are applied to temporal 
parts as follows. 

 

(18) 
Simplifying this equation yields to 

(19) 
 
Discretizing Eq. 19 in space by RBF expansion 

(16) results in 
 
 
 

 
 
 

(20) 
or 

(21) 
 
Where ak denotes the RBF expansion coeffi-

cients at time level tk and M=BXX+Byy . BXX. 
and Byy  are matrices of second derivative of the 
system matrix, B, respectively in x , and y.  

Let 
 

 
 
and 
 
 
 
 
Assume that T1  is non-singular. Then, ak+1 is 

given by 
 

(22) 
 

Recalling that ak =B-1 uk , the approximate PDE 
solution at tk+1 is obtained as follows. 

 
(23) 

 
Where A=BTL

-1 TR B-1  and F= ΔtBTL
-1 fk. 

 
Nonlinear sobolev equation 

Consider the two dimensional time-dependent 
nonlinear PDE (4). The temporal parts of this 
equation are discretized within a time period 
using forward finite difference and Crank-Nicol-
son scheme as follows. 

(24) 
 
The following formulas are used to approxi-

mate the non-linear terms. 
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(25) 
 
when Eq. 25 is substituted in (24) and left and 

right sides of the equation are multiplied by Δt 
we have 

 
 
 
 
 
 

(26) 
or 

 
 

(27) 
 
Eq. 27 is discretized in space by RBF expan-

sion (16) as follows. 

 
 
 

 
 
Where ak denotes the RBF expansion coeffi-

cients at time level tk, Dk=diag(uk), 
Dx

k=diag(ux
k) Dy

k=diag(uy
k) and M=Bxx +Byy 

.Bxx and Byy are matrices of second derivative 
of the system matrix, B, respectively in x, and y. 
Bx and  are matrices of first derivative of the sys-
tem matrix, B, respectively in x, and y. 

Let 
 

and 
 
TR= B-M  
 
By the assumption  TL is non-singular,ak+1 is 

given by (22). Finally, the approximate PDE so-
lution at tk+1  namely uk+1 is obtained by (23). 

 
NUMERICAL EXPERIMENTS 

In this section, some problems as examples are 
numerically solved as instances for the purpose 
of verifying the ability of the proposed method 
with regards to Sobolev equations. Among all of 
the RBFs, MQ, the most popular RBF, is used in 
computations due to the rapid convergent rate. 
The domain Ω is chosen as the unit region, i.e. 
Ω=[0,1]2. In order to test the accuracy, two error 
norms, L∞  and  L2  defined as follows are com-
puted. 

Where u ̃  and u denote the approximate and 
exact solutions, respectively. 

 
Example 1. Take following equation: 

with two cases of exact solutions: 
 
Case I:   
 
Case II:  
 
Initial and boundary conditions and the source 

term f(x,y,t) are taken from the exact solution. 
The computed error norms t=1 are reported in 

Table 3. The results are weighed against those ad-
dressed in (Haq et al., 2019), which shows that 
the suggested method has higher degree of accu-
racy. Besides, they are compared with the work 
addressed in (Oruç, 2018). CPU time is also 
computed and given in this table indicating the 
efficiency of the method. It should be noted that, 
for every number of nodes, N×N, value of shape 
parameter varies. Here, the optimal value of 
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shape parameter is determined by trial and error. 
Numerical and exact solutions and absolute error 
for cases I and II are depicted in Figs. 1 and 2, 

respectively. The figures show that exact and ap-
proximate solutions fit together. 
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N� N L∞ L2 CPU time(s)
L∞

  

(Haq et al., 2019)
L∞

 

(Oruc., 2018: 40)
Shape  

parameter

case I

4�4 5.5840e-08 1.1168e-07 0.0916 7.4767e-03 4.2735e-04 9.1

8�8 3.8312e-05 1.3227e-04 0.1118 2.1515e-03 1.4656e-04 10.5

16�16 5.1334e-05 3.7155e-04 0.2320 4.9543e-04 1.2647e-05 9.6

32�32 5.6155e-05 8.3930e-04 3.8208 5.9549e-05 3.7398e-06 9.8

case II

4�4 2.4997e-06 4.7833e-06 0.0953 6.27731e-03 3.6864e-03 30000

8�8 2.9800e-06 1.1474e-05 0.1100 1.7252e-03 6.1921e-04 170000

16�16 3.0726e-06 2.5068e-05 0.2341 3.8947e-04 7.7847e-05 800000

32�32 3.1011e-06 5.1428e-05 3.3932 4.9551e-05 3.0337e-05 4000000

Table 3: Error norms of Example 1 at t =1, Δt=0.01.

Fig .1. Approximate and exact solutions and absolute error graphs of Example 1 (case I) at t=1, N=32  and Δt=0.01
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Fig. 2. Approximate and exact solutions and absolute error graphs of Example 1 (case II) at t=1, N=32  and Δt=0.01

Example 2. Consider the nonlinear Sobolev 
equation 

 
 
 
 
 
with conditions  

 
 

 
 
and the source term 

 
 

 

with exact solution  
u(x,y,t)=sin(πx)sin(πy)exp(t). 
The error norms at t=0.2 and t=1  are calculated 

and presented in Tables 4 and 5, respectively. The 
computed errors are compared with those in (Haq 
et al., 2019). Comparisons show that better ap-

proximations could be obtained by the proposed 
method, except for the case N=32 at t=1  where 
the infinite norm is larger than the corresponding 
value in (Haq et al., 2019). Fig. 3 illustrates the 
exact and approximate solutions and also absolute 
error. It is obviously observed that the approxi-
mate solutions are in good agreement with exact 
ones. This demonstrates that the method works 
effectively in non-linear problems. 

 
CONCLUSION 

In this study, an RBF meshless method has been 
suggested for solving linear Sobolev and non-lin-
ear Sobolev equations numerically. First, the finite 
difference formula and Crank Nicolson technique 
are implemented to discretized the time derivative. 
As a result, a time semi-discrete formula was ob-
tained. The energy method was used to prove con-
vergence of the time semi-discrete scheme. After 
that, a fully discrete formula was achieved by ap-
proximating the spatial terms by two-dimensional 
RBF interpolation. The numerical experiments 
suggest high degree of accuracy. By referring to 
the obtained results, it can be concluded that the 
results of proposed scheme are better than those 
formerly presented in the literature. 
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N� N L∞ L2
L∞

 

(Haq et al., 2019)
L2

 

(Haq et al., 2019) Shape parameter

4�4 5.2245e-04 1.5000e-03 2.4122e-02 5.9255e-02 0.6

8�8 1.4763e-04 5.8277e-04 6.6546e-03 2.9818e-02 1.4

16�16 1.6157e-04 1.2000e-03 1.6374e-03 1.4401e-02 3.7

32�32 1.7230e-04 2.5000e-03 3.4286e-04 6.0619e-03 15

Table 4: Error norms of Example 2 at t =1, Δt=0.001

N� N L∞ L2
L∞

 

(Haq et al., 2019)
L2

 

(Haq et al., 2019) Shape parameter

4�4 1.5000e-03 2.4000e-03 5.8662e-02 1.7284e-01 0.7

8�8 1.0000e-03 5.1000e-03 1.3147e-02 7.5881e-02 1.6

16�16 1.1000e-03 8.4000e-03 3.0030e-03 3.4724e-02 3.8

32�32 1.2000e-03 9.0000e-03 5.5208e-04 1.3063e-02 15.5

Table 5: Error norms of Example 2 at t =1, Δt=0.001

Fig. 3. Graphs of approximate and exact solutions and absolute error of Example 2 at t =1, Δt=0.001
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