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Abstract
In this paper, a nonlinear stiff differential equation is solved by using

the Rosenbrock iterative method, modified homotpy analysis method
and power series method. The approximate solution of this equation is
calculated in the form of series which its components are computed by
applying a recursive relation. Some numerical examples are studied to
demonstrate the accuracy of the presented methods.
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INTRODUCTION
The goal of this paper is to implement the

power seies method, MHAM method and RSK
method the stiff differential equations, which
are often encounter in physical and electrical
circuits problems. This equation models long
wave in a nonlinear dispersive system. So
some numerical techniques prefer to consider
overcoming this type of problem. In recent
years, much research has been focused on nu-
merical solution of the system of differential
equations by using technique of Adomian’s de-
composition methods. In the literature, the
Adomian’s decomposition is used to find ap-
proximate numerical and analytic solutions of
a wide class of linear or nonlinear differential
equations (Adomian 1994,1998; Kaya, 2004;
Repaci, 1990). The basic purpose of this paper
is to illustrate advantages of using Rosenbrock
method over the other methods namely Padé
approximation method and Adomian’s decom-
position method in terms of numerical compar-
isons. However, it shall be considered the
Rosenbrock method (Wanner & Hairer, 1996;
Rosenbrock 1960; Schmitt & Weiner 2004;
Zhao et al., 2005), Padé approximation method
(Baker and Morris 1996), and the Adomian’s
decomposition method in order to solve the
system of first order differential equations. A
lot of works have been done in order to find
numerical solution of this equation. For exam-
ple (Adomian, 1994; Behiry et al.,2007; Per-
turbation, 2003; Corliss & Chang, 1982;
Wanner & Hairer, 1996; Wahlbin, 1974; Kaya,
2004; Repaci, 1990).

ANALYSIS OF THE NUMERICAL
METHODS

Power series method
Suppose k is a positive integer and f1 , f2 ,…, fk

are k real continuous functions defined on some
domain  . To obtain k differentiable functions y1

, y2 , … , yk defined on the interval I such that
(t, y1 (t), y2 (t),…, yk (t))∈G for  t∈I. Let us con-
sider the problems in the following system of
ordinary differential equations:

(1)

where βi is a specified constant vector, yi (t)
is the solution vector for i=1,2,…,k . In the
power series  method, (1) is approximated by
the operators in the form: Lyi (t)=fi (t, y1 (t), y2
(t),…, yk (t)) where L is the first order operator
defined by l=d⁄dt and i=1,2,…,k . Assuming
the inverse operator of L is L-1 which is invert-
ible and denoted by L-1 (0)=∫t0t (0)dt,  then ap-
plying L-1 to lyi (t) yields

where i=1,2,…,k .. Thus yi (t)=yi (t0 )+L-1 fi (t,
y1 (t), y2 (t),…, yk (t)). Hence the power series
method consists of representing yi (t) in the se-
ries form given by

where the components yi,n ,n≥1  and i=1,2,…,
k can be computed readily in a recursive man-
ner. Then the series solution is obtained as

MHAM method
The MHAM method is a zeroth order approxi-

mating search algorithm that does not require any
derivatives of the desired function, just only sim-
ple evaluations of the objective function are used.
This method is particularly well suited when the
objective function does not require a great deal
of computing power. In such a case, it is useless
to use very complicated optimization algorithms
which are needed to loose more spare time in the
optimization calculations, instead of making a lit-
tle bit more evaluations of the objective function
that will lead, at the end, to a shorter calculation
time. The numerical solution of systems of ordi-
nary differential equation of the form, y'

(x)=f(y(x)),y(x0)=y0. The MHAM method
searches to look for the solution of the form
yn+1=yn+h∑i=1

s ci ki where the corrections ki are
found by solving linear equations that generalize
the structure in

(2)

Here Jacobi matrix is denoted by 
The coefficients y, ci , αij and yij are fixed con-
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stants independent of the problem.

RKS Method
Suppose that f(x) has a Maclaurin expansion

about the zero such as                   where
ci=0,1,2,… .The  RKS is a rational function
(Zhao et al., 2005).

(3)

which has a Maclaurin expansion which agrees
with power series as far as possible. Notice that
P_f has a quotient of polynomials, which has L+1
terms numerator coefficients and M+1 denomi-
nator coefficients. There is a more or less irrele-
vant common factor between them, and for
definiteness we take β0=1. This choice turns out
to be an essential part of the precise definition
and Pf is here conventional notation with this
choice for β0. So there are  L+1. independent nu-
merator coefficients and M  independent denom-
inator coefficients which makes L+M+1.
unknown coefficients in all. This number sug-
gests that normally the [[L⁄M]] must to fit the
power series through the orders 1,x, x2 , x3 ,…,
x(L+M) in the notion of formal power series

(4)

Substituting (4) in (3), then

(5)

Equating the coefficients of                                 in
(5), then

(6)
...

are obtained. If  J<0, then cj=0 is defined for
consistency. Since β0=1, the system which is
given by (6) become a set of M linear equations
for   unknown denominator coefficients as
follows:

Thus βI can be calculated easily. The numerator
coefficients    α0, α1 ,…, αL follow immediately
from (5) by equating the coefficients   1, x," x2

x^3 ,,…, x^L, then α0 = c0 ,     , α1= c1+β1c0

,α2=c2+β1 c1+β2 c0 ,…,     ,
are obtained.

NUMERICAL EXAMPLES
Example 1. Let us to consider the following

differential equation as follows (Rosenbrock,
1960):

(7)

with initial conditions

The exact solution of this problem is

where initial conditions

(8)

R e -

garding to these approximate solutions, it is
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illustrated with Tables in which the errors can be seen as follows:
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X Exact MHAM RKS Abs. Err. MHAM RKS. Err. Abs
0.0 0 -9.35E-08 0.0011905 0 £012-

0.1 0.1617584 0.1617584 0.1619634 £016- £013-

0.2 0.3512394 0.3512394 0.3512605 £016- £014-

0.3 0.5630688 0.5630689 0.5630697 £016- £015-

0.4 0.7859815 0.7859816 0.7859815 £016- £018-

0.5 1 1.0000001 1 £017- 0

0.6 1.1725466 1.1725469 1.1725467 £015- £017-

0.7 1.2531327 1.253133 1.2531337 £015- £015-

0.8 1.166156 1.1661561 1.1661811 £016- £014-

0.9 0.8011947 0.8011947 0.8014527 £016- £013-

1 0 7.203E-07 0.0015873 £015- £012-

E £015- £012-

Example 2. We consider the system as follows:

(9)

with initial conditions

The exact solution of this problem is

X Exact Sol MHAM RKS Abs. Err. MHAM RKS. Err. Abs
0.0 0 -1E-08 -0.0001984 ::; 10-8 ::; 10-3

0.1 0.2582482 0.2582482 0.2582214 ::; 10-7 ::; 10-4

0.2 0.3613712 0.3613712 0.3613692 ::; 10-7 ::; 10-4

0.3 0.3271114 0.3271114 0.3271114 ::; 10-6 ::; 10-6

0.4 0.1907226 0.1907226 0.1907226 ::; 10-7 ::; 10-9

0.5 0 2E-10 0 ::; 10-9 0

0.6 -0.1907226 -0.1907226 -0.1907226 ::; 10-7 ::; 10-9

0.7 -0.3271114 -0.3271114 -0.3271114 ::; 10-6 < 10-6

0.8 -0.3613712 -0.3613712 -0.3613692 ::; 10-7 ::; 10-4

0.9 -0.2582482 -0.2582482 -0.2582214 ::; 10-7 ::; 10-4

1 0 1E-08 0.0001984 ::; 10-8 ::; 10-3

E < 10-6 ::; 10-3
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CONCLUSION
The RKS and MHAM methods have been

shown to solve effectively, easily and accurately
a large class of nonlinear stiff  problems with the
approximations which convergent are rapidly to
exact solutions. In this work, the RKS and
MHAM  methods have  been successfully em-
ployed to obtain the approximate analytical so-
lution of the stiff differential equations. The
solution is rapidly convergent by using this meth-
ods.
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