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A R T I C L E  I N F O  A B S T R A C T 

Ridge regression is a model that is frequently used and has numerous effective 

applications, particularly in the management of correlated factors in a multiple 

regression model. Additionally, multicollinearity poses a significant risk in 

fuzzy regression models when it comes to predictions. In order to solve this 

problem, we bring together the fuzzy regression model with the ridge 

regression technique. Regarding the evaluation of the coefficients of the ridge 

fuzzy regression model, the algorithm that we have suggested makes use of the 

parametric estimation approach. In this article, we examine the ridge regression 

in the intuitionistic fuzzy environment. We assume that the input and output 

data are intuitionistic fuzzy numbers. Since in the regression analysis we need 

to calculate the distance between the variables, we define a new fuzzy 

parametric distance. Also, the goodness of fit of the model with the indicators 

of the mean square of the prediction error has been investigated in simulation 

examples and real data. 
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1. Introduction 

In statistics, linear regression is a linear model approach between the response variable and one or more 

explanatory variables. Regression is often used to discover the model of linear relationship between variables. In 

this case, it is assumed that one or more descriptive variables whose value is independent of the other variables 

or under the control of the researcher, can be effective in predicting the response variable whose value is not 

dependent on the descriptive variables and under the control of the researcher. The purpose of regression 

analysis is to identify the linear model of this relationship. Since in the real world we often face imprecise 

data, it is better to use fuzzy logic to model the inherent uncertainty in these data. In a general division, the types 

of fuzzy regression can be divided into the following three models: 
 Fuzzy regression in the case where the relationship between the variables is assumed to be fuzzy. In 

other words, the regression equation coefficients are considered fuzzy. 
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 Fuzzy regression in the case that the variables (either prediction or response) are imprecise and fuzzy. 
 Fuzzy regression in the case that both variables and coefficients of the model are considered fuzzy. 
It should be mentioned that the variation in fuzzy regression is not limited to the above modes. Rather, the 

methods that have been proposed for each mode have created a lot of diversity in fuzzy regression 

methods. Like classical regression, which is based on the principle or principles on which model parameters are 

estimated, fuzzy regression can be divided into possible regression methods, regression of the least squares of 

the fuzzy error, and regression of the least absolute magnitude of the fuzzy error.  
Hassamian et al. [10] investigated fuzzy non-parametric regression model with fuzzy responses and exact 

predictors. Li et al. [14] investigated fuzzy multiple linear regression with LR numbers. In it, they presented a 

calculation formula for regression parameters and introduced two new distances between fuzzy 

numbers. Authors of Flores-Sosa et al. [7] applied ordinary least squares and ordered weighted average to solve 

multiple linear regression. In Durso and Chachi [5], the authors proposed Ordered Weighted Averaging to solve 

regression models with exact/fuzzy inputs and fuzzy output. Hasanpour et al. [9] estimated the fuzzy using 

diamond meter. They tried to make the estimates as close to the real value as possible with the ideal planning 

method and by comparing the error of their method with the error of Diamond [4] method, they showed the 

superiority of their method. Rabiei et al. [16] using the fuzzy regression method for a set of data with input and 

fuzzy output. 

Intuitionistic fuzzy sets (IFSs) were first introduced by Atanassov [2] as an extension of Zadeh's fuzzy sets 

[23]. These IFSs serve as a mathematical framework for representing sets that are non-crisp and characterized 

by uncertainty. In the context of these sets, we establish functions that determine both membership and non-

membership. In this particular scenario, it is possible to establish a hesitation function, which can be defined as 

the disparity between the "membership function" and the "one minus non-membership function." Through the 

use of Interval Type-2 Fuzzy Sets (IFSs), we are able to effectively represent and analyze incomplete 

information. Numerous scholars have made significant contributions to the field of Interval Type-2 Fuzzy 

Systems (IFSS) in terms of both theoretical advancements and practical implementations (see Szmidt [18] for 

more details). Akram et al. [1] introduced a unique decision-making approach using hypergraphs within the 

context of intuitionistic fuzzy environments. This technique was subsequently used in practical scenarios [17]. A 

hybrid technique that is based on recurrent neural networks was published in Karbasi et al., [11] for the purpose 

of approximating the coefficients (parameters) of a ridge fuzzy regression model that has LR-fuzzy output and 

crisp inputs. This problem was solved in Choi et al. [3] by the use of alpha-level estimation approach. The 

authors of reference Kim and Jung [13] developed a fuzzy ridge estimator that is independent of the distance 

between fuzzy numbers. 

The use of distance and similarity measurements is crucial for identifying the dissimilarities between two 

entities. Decision making, pattern recognition, image processing, machine learning, market prediction, and so on 

are just some of the numerous possible uses for distance and similarity measures. Wang [21] first presented a 

computational formula for the similarity measure of fuzzy collections. Many scholars have taken an interest in 

this issue ever then and have gone into further depth. Different fuzzy set, intuitionistic fuzzy set, and fuzzy 

multiset distance and similarity metrics have been presented. There are a number of distance measures in 

common usage, but three of the most well-known are the Hamming distance, the Euclidean distance, and the 

Housdorff distance. The authors of Li et al. [15] examine the fuzziness of fuzzy sets, similarity measures, and 

connection measures. It was investigated by Ejegwa and Adamu [6] how far apart two intuitionistic fuzzy sets of 

second type may be. Weighted distance measure for intuitionistic fuzzy sets using the Choquet integral with 

regard to the non-monotonic fuzzy measure was presented by Torra and Narukawa [20]. Distance and similarity 

measures based on hesitant fuzzy sets were expanded by Xia and Xu [22]. 
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where 

the independent variables are highly correlated. It has been used in many fields including 

econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey 

Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem 
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of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters 

Kennedy [12]. In general, the method provides improved efficiency in parameter estimation problems in 

exchange for a tolerable amount of bias [8]. 

When it comes to fuzzy multiple regression models, multicollinearity is a major concern, just as it is in 

conventional statistical theory when it comes to traditional multiple regression models. We offer the ridge fuzzy 

regression model, which is a combination of the ridge regression model and the fuzzy regression model. The 

purpose of this model is to lessen the impact of multicollinearity when it is present. We offer a parametric 

estimation approach that is based on the parametric distance measure in order to generate the ridge fuzzy 

regression model. Among the prominent features of the proposed meter is that decision makers can determine 

the distance between two fuzzy numbers based on their decision level by choosing the appropriate alpha 

values. And as a result, the regression model can be determined by changing the parameters of this distance 

according to the level of decision-making desired by the decision-makers. The remaining parts of this study are 

as follows: 
The basics of IFSs, IFNs and related arithmetic operators are presented in Section 2. In this section, a new 

parametric approach for the distance of IFNs is proposed in general using the concepts of decision level and 

degree of uncertainty. The advantages of the proposed method are shown through a suitable example. In section 

3, we will review the concepts of regression and estimation of regression parameters using the meter defined in 

the previous section. In the next section, we introduce ridge regression to estimate model parameters with an 

example.  

2. Fuzzy preliminaries 

We summarize below the basic concepts of intuitionistic fuzzy set theory, such as intuitionistic fuzzy 

numbers, intuitionistic fuzzy arithmetic, and the ranking of intuitionistic fuzzy numbers. 

Definition 1. Suppose   is the universal set, then  ̃ is a fuzzy set by the following representation: 

 ̃   〈    ̃   〉     ̃                                                  (1) 

where   ̃    correspond to membership value of each element of universal set respect to  ̃  and is defined 

according to relation (2): 

  ̃                ̃                                                       (2) 

Definition 2. The intuitionistic fuzzy set  ̃  has the following representation  

 ̃   〈    ̃      ̃   〉     ̃      ̃                           (3) 

where   ̃    and   ̃    respectively correspond to membership and non membership values and are defined 

according to equations (4) and (5): 

  ̃                ̃                                                       (4) 

  ̃                ̃                                                        (5) 

A function   ̃    is called hesitancy function for each     can be represented by relation: 

  ̃         ̃      ̃                                                                (6) 

It is clear that the value of   ̃    is a number between zero and one. 

Definition 3. For two intuitionistic fuzzy sets  ̃   and  ̃   in universal set  , the following propositions are 

valid: 

1.  ̃   ̃          ̃ 
      ̃ 

      ̃ 
      ̃ 

    

2.  ̃   ̃   ̃   ̃   ̃   ̃  

3.  ̃ 
   〈    ̃ 

      ̃ 
   〉      
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Definition 4. An arbitrary intuitionistic fuzzy number (IFN) such as  ̃  defines an intuitionistic fuzzy seton the 

axis of real numbers that membership and non-membership functions are introduced corresponding torelations 

(7) and (8): 

  ̃    {
                            

                            
                                          (7) 

  ̃   =  {
                               

                               
                                  (8) 

where    and   are two continuous and strictly decreasing function from   to        and           

 . Also       and      are called respectively left and right spreads and          . A LR type IFN is 

denoted by   ̃                 

When                     , we obtain a special type of IFNs called triangular intuitionistic fuzzy 

numbers (TriIFN), which are known as an important class of intuitionisticfuzzy numbers. 

Definition 5.Let  ̃                      and  ̃                      are two TriIFNs and   is an arbitrary 

positive number. Then, 

1.  ̃   ̃                                        

2.   ̃                           

 Definition 6.Let  ̃                be an TriIFN. 𝛼 cut, 𝛽 cut and  𝛼 𝛽  cut for  ̃  are respectively: 

1.  ̃       ̃    𝛼     𝛼               

2.  ̃       ̃    𝛽         𝛽               𝛽           

3.  ̃         ̃    𝛼   ̃    𝛽     𝛼                     𝛽               𝛽           

In the following, we express the parametric form of a fuzzy number. 

Definition 7. Parametric form of a fuzzy number including two functions               which apply in the 

following conditions: 

1.   is a bounded left continuous non-decreasing function over        

2.  ̅ is a bounded left continuous non-increasing function over        

3.    ̅. 

Similar to Definition 7, we can also define parametric IFNs. The parametric form of an IFN  ̃  is as     ̅    ̅  

where    ̅        ̅ which apply in the conditions of Definition 7. 

Now we can define a parametric distance measure between two numbers according to what was said about the 

representation of fuzzy numbers. Also, according to the mentioned materials, a TriIFN can be displayed as 

follows:         where              ̅                         and               ̅        

          . 

Definition 8. Let  ̃       ̅      ̅   and  ̃       ̅      ̅   be two IFNs. The parametric distance between 

two numbers is defined as follows: 

      ̃  ̃  ⟦∫        
  

 
   ̅   ̅  

    ∫        
  

 
   ̅   ̅  

   ⟧

 

 
                 (9) 

Theorem 1. The defined function (9) is a meter, which means it applies to the following properties: 

1.       ̃  ̃          ̃  ̃     

2.       ̃  ̃        ̃  ̃   

3.       ̃  ̃        ̃  ̃        ̃  ̃   
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Proof. Items 1 and 2 are clear. For item 3, we have:  

      ̃  ̃  ⟦∫    ̃    ̃ 
 

 

 

   ̅ ̃   ̅ ̃ 
    ∫    ̃    ̃ 

 
 

 

   ̅ ̃   ̅ ̃ 
   ⟧

 
 

 

 ⟦∫    ̃    ̃    ̃    ̃  
 

 

   ̅ ̃   ̅ ̃   ̅ ̃   ̅      ∫    ̃    ̃    ̃    ̃  
 

 

   ̅ ̃   ̅ ̃   ̅ ̃   ̅ ̃    ⟧

 
 

 

 ⟦∫    ̃    ̃      ̃    ̃   

 
   ̅ ̃   ̅ ̃     ̅ ̃   ̅ ̃ 

    ∫    ̃    ̃      ̃    ̃ 
  

 
   ̅ ̃   ̅ ̃   

  ̅ ̃   ̅ ̃ 
   ⟧

 

 
       ̃  ̃        ̃  ̃                                                                                             

Assume  ̃                and  ̃               be two LR IFNs. Then 

  
     ̃  ̃                ∫          

 

 

           ∫            
 

 

       ∫          
 

 

           ∫          
 

 

             ∫         
 

 

  

             ∫                      ∫         
 

 

  
 

 

              ∫           
 

 

 

In a special case where two numbers are triangular, we have: 

  
     ̃  ̃            𝛼        (

   𝛼  

 
)          (

𝛽 

 
)        (

   𝛼  

 
)

        𝛽          (
𝛽 

 
)              

 

 
 𝛼  

𝛼 

 
               (

𝛽 

 
) 

With simplify the above equation we have: 

  
     ̃  ̃            𝛼  𝛽                 (

   𝛼  

 
)                     (

𝛽 

 
)

    𝛼                     𝛽                        

Example 1. Let  ̃                    and  ̃               be two TriIFNs. In this case, we have: 

  
     ̃  ̃       𝛼  𝛽      (

   𝛼  

 
)      (

𝛽 

 
)        𝛼      𝛽  

Table 1 shows the value of distance  ̃ and  ̃ for different 𝛼 and 𝛽 . Also, in Figure 1, you can see the 

membership function of two IFNs  ̃ and  ̃. that alpha and beta represent different levels of decision making. As 

alpha increases, a higher decision level is selected, and conversely, if alpha is a lower value, it means that this 

problem is solved at a lower level of decision making. It is the opposite for beta, i.e. a low beta value indicates 

problem solving at a higher level of decision making. The data in the Table 1 shows that the distance between 

these two fuzzy numbers for members of the set that have a membership function of 0.8 and a non-membership 

function of 0.2 is equal to 0.023 (second row of the table). The members of the set whose membership is less 

than 0.4 and their non-membership is 0.8 is estimated at 0.21. 



24 Z.Behdani and M.Darehmi/ FOMJ 5(2) (2024) 19–31 

  
Figure 1. Membership functions of  ̃ and  ̃ in Example 1. 

 

Table 1.  ̃ and  ̃ distance values for different 𝛼and 𝛽in Example1  

Num.         
   ̃  ̃  

1 0.2 0.8 0.22 

2 0.8 0.2 0.023 

3 0.5 0.5 0.11 

4 0.4 0.8 0.21 

5 0.6 0.6 0.13 

6 0.3 0.4 0.12 

7 0 1 0.31 

8 1 0 0 

3. Regression model 

In classical regression, it is assumed that the variables and their related observations are accurate. Also

the difference between the observed value for the dependent variable and the value obtained through the 

model, and the overall error of the model, is attributed to the random error related to observations and 

measurements, the absence of some variables, etc. About these random error statements and its possible 

distribution, assumptions such as normality, non-correlation, stability of variance... are considered. Based on 

these assumptions, statistical analysis such as estimation of parameters, prediction of the value of the 

dependent variable and hypothesis tests related to the model can be performed. But in many cases, one or 

more of the above assumptions may not be true, or, for example, due to the small sample size, it is not 

possible to ensure the correctness of some assumptions. For example, in a study, observations related to 

variables may be inaccurate or inaccurately reported; Or the variables under study may have an imprecise 

relationship. Also, assumptions such as normality and non-correlation of random error sentences may not 

hold. In such a situation, classical tools cannot provide suitable criteria for data modeling. One of the 

possible ways is to use the concept of fuzzy sets to model data in such conditions. 

In linear regression with fuzzy input and output, it is assumed that coefficients are crisp and ambiguity 

in the input and output. 

 ̃        ̃      ̃      ̃        ̃                                              (10) 

Or 

 ̃     ∑    ̃  
 
                                                                                       (11) 
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Based on observations  

  ̃   ̃    ̃      ̃                      

where            are model coefficients. To simplify the relationships, we assume that the regression and 

independent variables of both intuitive triangular symmetric fuzzy numbers are as follows. 

 ̃                                     

 ̃                                           

Our goal here is to find the coefficients               so that the distance between the  ̂̃    
 ̂̃ 

  
 ̂̃ 

  

and  ̃     ̃ 
   ̃ 

  is the smallest. For this purpose, the following minimization problem based on the 

distance defined in Definition 7 should be solved 

         ∑  

 

   

  ̃   ̃̂   

The least squares function is written as follows: 

              ∑    
 

 

   

  ̃   ̃̂  

 ∑        ∑     

 

   

     𝛼  𝛽 

 

   

         ∑     

 

   

  

        ∑     

 

   

   (
   𝛼  

 
)           ∑      

 

   

  

         ∑      

 

   

   (
𝛽 

 
)     𝛼         ∑     

 

   

         ∑     

 

   

     

    ∑     

 

   

   𝛽        ∑     

 

   

          ∑      

 

   

          ∑      

 

   

   

This function should be minimized with respect to           . If we write these equations in the form of 

a matrix, the data and results will be displayed more compactly. For this purpose, we write the least squares 

equation as follows: 

                  𝛼  𝛽                                               

                                      

                                                       

Where in   
      

 
   

  

 
      𝛼    and   𝛽  

  [

  

  

 
  

 
],    L [

  
  
 
  

 
]         [

  
  
 
  

 
]         [

   
   
 

   
 
]        [

   
   
 

   
 
] 
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  [
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]     
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]           [

 
 

    

    

    

    

 
 

    

    

   
              

],     [

  

  

 
  

 
] 

 

The least squares estimators should apply in the following relationship: 

              

  
  ̂    

Therefore, the least squares estimator of  , under the condition of having the inverse of  , becomes as 

follows. 

 ̂       𝛼  𝛽                                                   

             𝛼  𝛽                                                

                                                                                                                               (12) 

If the triangular fuzzy numbers are intuitively symmetric, then                 and     . In 

this case, the least squares estimator is equal to: 

 ̂       𝛼  𝛽                                           𝛼  𝛽           

                                                                                                               (13) 

4. Ridge regression 

Ridge regression is a statistical technique used to estimate the coefficients of multiple-regression models in 

situations when the independent variables exhibit significant levels of correlation. The phrase "ridge 

regression" is often used to describe a linear regression model in which the coefficients are estimated using a 

ridge estimator instead of ordinary least squares (OLS). The ridge estimator, is known to have a lower variance 

compared to the OLS estimator. In some instances, the ridge estimator exhibits a mean squared error that is 

comparatively less than that of the ordinary least squares (OLS) estimator. This is due to the ridge estimator's 

ability to effectively balance its variance and the square of its bias. When the independent variables are related 

to each other so that the correlation coefficient between them is statistically significant, the problem of 

collinearity has arisen. As a result, other variables in the regression model may be able to estimate the effect of 

each variable. In this way, the estimators become very sensitive, and their variance will also be large. As 

mentioned earlier, the occurrence of multiple collinearity between the predictor variables in linear regression 

analysis may cause severe instability in the estimates of the least squares of the regression parameters, which 

means that the magnitude and sign of the parameters in different samples are significantly different. It will be 

stable, as a result of which, the estimation of the lowest second power obtained will not be reliable. 

The occurrence of multiple collinearity between the predictor variables in the linear regression analysis may 

cause severe instability in the estimates of the least squares of the regression parameters, which means that the 

magnitude and sign of the parameters in different samples are significantly unstable. It will be that as a 

result, the estimation of the lowest second power obtained will not be reliable. In order to solve this problem, in 

this section, we express ridge regression for TriIFNs based on the proposed distance measure in the Definition 

8. 
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         ∑  

 

   

  ̃   ̃̂    ∑  
 

 

   

 

The Lagrangian parameter, sometimes called the ridge or biasing parameter, is the penalty parameter that 

affects the magnitude of the coefficients and the degree of regularization. Other names for this parameter are 

biasing parameter and ridge parameter. The symbol   compels the coefficients to approach zero while 

preventing them from really reaching it. (The coefficient will be decreased in proportion to the severity of the 

imposed punishment.) As approaches 0, we will have arrived at the solution with the fewest squares. The 

estimate converges to zero as approaches infinity in the intercept-only model. There is an answer to each and 

every problem. As a result, the   lay out a strategy for finding a solution. 

Therefore, the estimator of  , becomes as follows. 

 ̂       𝛼  𝛽                                                         

           𝛼  𝛽                                                          

                                                                                                                                                    (14) 

5. Numerical example 

In the following example, we will utilize a basic ridge linear regression model with a triangular intuitionistic 

fuzzy output in order to demonstrate how to apply the parametric distance measure as well as the least square 

approach. 

Example 2. We apply our proposed fuzzy multiple linear regression model and ridge regression model to the 

house price data taken from Tanaka [19]. The house price data are shown in Table 2. We have converted these 

data into intuitive fuzzy. Table 2 shows these data. 

able 2. Input-output data concerning house prices taken from Tanaka [19].. 

No.  ̃               ̃                   ̃                   ̃                  

1                                                                  

2                                                              

3                                                                 

4                                                                

5                                                              

6                                                                  

7                                                                 

8                                                                 

9                                                                  

10                                                               

11                                                                   

12                                                                     

13                                                                    

14                                                                   

15                                                                     

 

Models (13) are applied to obtain the set of the parameters of model  ̃        ̃      ̃      ̃   

              .The parameters values obtained are described in Table 3. In this table, the estimated values of 

the response variable and error are also recorded for different values of alpha and beta. 
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Table 3. Estimation of parameters and  ̃̂for independent variables  
 ̃                  ,  ̃                    and  ̃                in Example 2  

Num.      ̂                    ̂    ̂  ̂  ̂ ̃  MSE 

1 0.2 0.8 (147.8,18.87,14.54,-167.08) (232.9662,72,51,-42.72) 32504.59 

2 0.8 0.2 (248.99,17.98,13.46,-165.19) (272.11,66.94,-47.74) 507.86 

3 0.5 0.5 (174.88,18.48,14.08,-163.56) (252.1946,70.51,-42.24) 7935.62 

4 0.4 0.8 (152.58,18.77,14.42,-165.75) (238.42,72.04,-42.21) 23108.69 

5 0.6 0.6 (170.60,18.51,14.12,-163.51) (250.91,70.72,-41.95) 8887.91 

6 0.3 0.4 (161.56,18.61,14.23,-164.04) (246.33,71.28,-41.73) 12919.25 

7 0 1 (138.94,19.11,14.81,-170.34) (220.47,73.52,-44.16) 63485.7 

8 0.99 0.01 (285.89,17.68,13.09,-164.94) (284.96,64.97,-49.84) 0.064 

9 0.4 0.3 (171.41,18.49,14.09,-163.13) (252.22,70.62,-41.78) 7713.43 

For example, if in a new case, we observe  ̃                  ,  ̃                    and 

 ̃                 then for different values for   and   we predict  ̂  in Table 3. To calculate ridge 

estimators, we use Equation (14) for different values of  . Tables 4 show the values of the estimators and the 

MSE for different values of   and         and        . As seen in Figure 2, at the confidence level of 

       , the lowest error value for   is 0.4, where the ridge estimators are  ̂             ̂       

       ̂             and  ̂              with               

Table 4. The error values and estimation of ridge parameters for the data of Example 2 (        and         ).  

Num.    ̂                   MSE 

1 0 (285.89,17.67,13.09,-164.95) 0.01835 

2 0.001 (263.65,17.72,13.14,-162.21) 0.018352 

3 0.003 (227.79,17.78,13.21,-157.73) 0.018355 

4 0.007 (178.15,17.86,13.29,-151.28) 0.01836 

5 0.009 (160.27,17.89,13.31,-148.85) 0.018361 

6 0.015 (122.25,17.93,13.33,-143.36) 0.018365 

7 0.035 (65.11,17.91,13.2,-133.12) 0.018369 

8 0.07 (32.20,17.74,12.81,-123.34) 0.018366 

9 0.127 (14.55,17.43,12.164,-112.64) 0.018359 

10 0.225 (4.81,16,96,11.19,-99.20) 0.01835 

11 0.35 (0.72,16.48,10.21,-86.47) 0.018346 

12 0.65 (-1.74,15.69,8.61,-66.28) 0.018353 

13 0.85 (-2.06,15.33,7.90,-57.36) 0.018362 

14 0.94 (-2.11,15.20,7.63,-54.08) 0.018367 

15 1 (-2.12,15.12,7.47,-52.09) 0.018369 
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Figure 2. The coefficients and MSE for the ridge fuzzy regression model, 𝛼       𝛽       

 

Figure 3. The coefficients and MSE for the ridge fuzzy regression model, 𝛼      𝛽      

6. Conclusion 

Addressing multicollinearity in multiple linear regression models is a crucial subject in the field of 

statistics. The phenomena might result in imprecise estimations of the regression coefficients, increase their 

standard errors, provide non-significant p-values, and diminish the predictive capacity of the fitted model. Ridge 

regression was first proposed as a method to mitigate the impact of multicollinearity when it is present. When 

two or more of the variables in a multiple linear regression model exhibit a strong correlation, the columns of 

the design matrix become linearly dependent. Therefore, it is not possible to estimate the standard regression 

parameter. Ridge regression may enhance model performance by reducing model complexity. As models 

increase in complexity, they have the ability to capture inconsequential local structures, which is referred to as 

overfitting. When more factors are added to the model, coefficient estimates in these circumstances become 

more susceptible to excessive variation. Ridge regression reduces the number of parameters, which in turn 

allows for a trade-off between bias and variance, resulting in improved model performance. 
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The fuzzy regression model is a commonly used statistical model in fuzzy statistical investigations. Similar 

to conventional regression models, fuzzy regression models also encounter the issue of multicollinearity. This 

study presents a parametric estimation approach that utilises a parametric distance measure to estimate the 

parameters of the ridge fuzzy regression model. The fuzzy ridge regression model creates a fuzzy linear function 

that minimises the combined total of squared error term and penalty term. On the other hand, a fuzzy multiple 

linear regression model generates a fuzzy linear function that minimises the squared error. In order to 

demonstrate the effectiveness of the suggested method, an examples is provided. 
In this article, fuzzy ridge regression for exact input and fuzzy output variables, as well as ridge regression 

for fuzzy input and output and exact coefficients, were studied. For future research, the fuzzy ridge regression 

model can be used when both the input and output variables are fuzzy and the coefficients of the model. The 

novelty of this approach is its parametric nature, which allows decision makers to solve the desired regression 

model according to their decision-making level. 

It is important to note that ridge regression is often favoured over lasso regression when the study purpose is 

to address multicollinearity without eliminating variables that have poor contributions. However, in cases when 

the data has a high number of dimensions and it is important to exclude collinear variables, lasso regression may 

be preferred over ridge regression. In future works, we want to expand the suggested parametric estimation 

technique for ridge fuzzy models to include lasso fuzzy regression models, in order to effectively handle such 

scenarios. The use of lasso fuzzy regression will be particularly advantageous in the modelling of associated 

genetic data sets. 
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