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A R T I C L E  I N F O  ABSTRACT 
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regular and intra-regular semirings. Finally, they will be characterized under 
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1. Introduction 

      In algebra, ring theory is the study of rings algebraic structures in which addition and multiplication are 

defined and have similar properties to those operations defined for the integers. Ring theory studies the structure 

of rings, their representations, or, in different language, modules, special classes of rings (group rings, division 

rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within 

the theory itself and for its applications, such as homological properties and polynomial identities. In abstract 

algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must 

have an additive inverse. The term rig is also used occasionally this originated as a joke, suggesting that rigs are 

rings without negative elements, similar to using rng to mean a ring without a multiplicative identity. Von 

Neumann regular rings were introduced by von Neumann (1936) under the name of "regular rings", during his 

study of von Neumann algebras and continuous geometry. Since its inception in 1965, the theory of fuzzy sets 

has advanced in a variety of ways and in many disciplines. Applications of this theory can be found, for 

example, in artificial intelligence, computer science, medicine, control engineering, decision theory, expert 

systems, logic, management science, operations research, pattern recognition, and robotics. Mathematical 

developments have advanced to a very high standard and are still forthcoming to day. The theory of fuzzy sets 
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was first inspired by Zadeh [26]. Fuzzy set theory has been developed in many directions by many scholars and 

has evoked great interest among mathematicians working in different fields of mathematics. Fuzzy ideals in 

rings were introduced by Liu [5] and it has been studied by several authors. Mukhrejee and Sen [6, 7] defined 

fuzzy ideal of of semirings. Jun [3] and Kim and Park [4] have also studied fuzzy ideals in semirings. Lattice 

theory is the study of sets of objects known as lattices. It is an outgrowth of the study of Boolean algebras, and 

provides a framework for unifying the study of classes or ordered sets in mathematics. The study of lattice 

theory was given a great boost by a series of papers and subsequent textbook written by Birkhoff (1967). Shabir, 

Jun and Bano [22] introduced the notions of prime, strongly prime, semiprime and irreducible fuzzy bi-ideals of 

a semigroup.The author by using norms, investigated some properties of fuzzy algebraic structures[12-21]. In 

this paper, Firstly, we define anti fuzzy bi-ideal of semiring R under s-norm S as 𝐴𝐹𝐵𝐼𝑆(𝑅). Secondly, we 

define symbol ⋁ and sum and product of two 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) and we investigate some properties about them. 

Thirdly, we define prime, strongly prime, idempotent, semiprime, irreducible and strongly irreducible of   

𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)   and prove some results about it. Fourthly, we prove that if R be a regular and intra-regular 

semiring and 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), then 𝜇 is a strongly prime if and only if 𝜇 be a strongly irreducible. Also if the set 

𝐴 = {𝜇: 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)} is totally ordered by inclusion (≤), then each 𝜇 ∈ 𝐴 is a prime. Finally, we prove that 

the following assertions are equivalent: 

 

(1) Set of 𝐴 = {𝜇: 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)} is totally ordered by inclusion (≤). 

(2) Each 𝜇 ∈ 𝐴 is strongly irreducible. 

(3) Each 𝜇 ∈ 𝐴 is an irreducible. 

 

2. Preliminaries 

This section contains some basic definitions and preliminary results which will be needed in 

the sequel.  

Definition 1. (See [24])  A semiring is a set 𝑅 equipped with two binary operations + and ., called addition and 

multiplication, such that: 

(1) (𝑅,+) is a commutative monoid with identity element 0: 

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

0 + 𝑎 = 𝑎 + 0 = 𝑎 

𝑎 + 𝑏 = 𝑏 + 𝑎. 

(2) (𝑅, . ) is a monoid with identity element 1: 

(a.b).c = a. (b.c) 

      1. 𝑎 = 𝑎. 1 = 𝑎. 

(3) Multiplication left and right distributes over addition: 

 

𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐 
(𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐 

(4) Multiplication by 0 annihilates R: 

 

0. 𝑎 = 𝑎. 0 = 0. 

 

The symbol . is usually omitted from the notation; that is, 𝑎. 𝑏 is just written 𝑎𝑏. Similarly, an order of 

operations is accepted, according to which . is applied before +; that is, a+bc is a+(bc). A commutative semiring 
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is one whose multiplication is commutative. Throughout this paper, 𝑅 stands for the semiring (𝑅,+, . ) with an 

identity element 1𝑅 and zero element 0𝑅. 

Example 1. By definition, any ring is also a semiring. A motivating example of a semiring is the set of integer 

numbers 𝑍 under ordinary addition and multiplicationand it is commutative semiring. 

Definition 2. (See [8])  A non-empty subset 𝐵 of a semiring 𝑅 is called a bi-ideal of 𝑅 if 

(1) 𝑎 + 𝑏 ∈ 𝐵, 

(2) 𝑎𝑏 ∈ 𝐵, 

(3) 𝑎𝑟𝑏 ∈ 𝐵, 

for all 𝑎, 𝑏 ∈ 𝐵 and 𝑟 ∈ 𝑅. 

Definition 3. (See [25])  (1) A semiring 𝑅  is called von Neumann regular or simply regular if for each 

𝑎 ∈ 𝑅 there exists 𝑥 ∈ 𝑅 such that 𝑎 = 𝑎𝑥𝑎. 

(2) A semiring 𝑅  is called an intra-regular semiring if for each 𝑎 ∈ 𝑅  there exists 𝑥𝑖, 𝑦𝑖 ∈ 𝑅  such 

that 𝑎 =  ∑ 𝑥𝑖𝑎
2𝑦𝑖

𝑛
𝑖=1 . 

Definition 4. (See [2]) A (non-strict) partial order is a binary relation ≤ over a set 𝑃 satisfying particular axioms 

which are discussed below. When 𝑎 ≤ 𝑏, we say that 𝑎 is related to 𝑏. (This does not imply that 𝑏 is also related 

to 𝑎, because the relation need not be symmetric.) The axioms for a non-strict partial order state that the relation 

≤ is reflexive, antisymmetric, and transitive. That is, for all 𝑎, 𝑏, 𝑐 ∈ 𝑃, it must satisfy: 

(1) 𝑎 ≤ 𝑎 (reflexivity: every element is related to itself). 

(2) if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 =  𝑏 (antisymmetry: two distinct elements cannot be related in both directions). 

(3) if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐 (transitivity: if a first element is related to a second element, and, in turn, 

that element is related to a third element, then the first element is related to the third element). 

In other words, a partial order is an antisymmetric preorder. A set with a partial order is called a partially 

ordered set (also called a poset). The term ordered set is sometimes also used, as long as it is clear from the 

context that no other kind of order is meant. In particular, totally ordered sets can also be referred to as "ordered 

sets", especially in areas where these structures are more common than posets. For 𝑎, 𝑏, elements of a partially 

ordered set 𝑃 , if 𝑎 ≤ 𝑏  or 𝑏 ≤ 𝑎 , then 𝑎  and 𝑏  are comparable. Otherwise they are incomparable. For 

example {𝑥} and {𝑥, 𝑦, 𝑧} are comparable, while {𝑥} and {𝑦} are not. A partial order under which every pair of 

elements is comparable is called a total order or linear order; a totally ordered set is also called a chain (e.g., the 

natural numbers with their standard order). A subset of a poset in which no two distinct elements are 

comparable is called an antichain. For example set of singletons {{𝑥}, {𝑦}, {𝑧}}. 

Lemma 1. (See [23]) (Zorn’slemma)Supposeapartiallyorderedset𝑃 has the property that every chain in P 

has an upper bound in 𝑃. Then the set 𝑃 contains at least one maximal element. 

Definition 5. Let 𝑋 be a non-empty subset of 𝑅. Then the anti characteristic function of 𝑅 denoted and defined 

by  

𝜇𝑋(𝑎) = {
0 𝑎 ∈ 𝑋
1 𝑎 ∉ 𝑋.

 

Definition 6. (See [1]) An s-norm 𝑆  is a function 𝑆 ∶  [0, 1]  ×  [0, 1]  →  [0, 1]  having the following four 

properties for all 𝑥, 𝑦, 𝑧 ∈ [0, 1]: 

(1) 𝑆(𝑥, 0) = 𝑥, 

(2) 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥, 𝑧)𝑖𝑓 𝑦 ≤ 𝑧, 

(3) 𝑆(𝑥, 𝑦) =  𝑆(𝑦, 𝑥), 

(4) 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧) , 
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We say that 𝑆 is idempotent if for all 𝑥 ∈  [0, 1], 𝑆(𝑥, 𝑥) = 𝑥. 

 

 

Example 2. The basic S-norms are 

𝑆𝑚(𝑥, 𝑦) =  𝑚𝑎𝑥{𝑥, 𝑦}, 
 
𝑆𝑏(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝑥 +  𝑦} 

and 

𝑆𝑝(𝑥, 𝑦) =  𝑥 + 𝑦 − 𝑥𝑦 

 

  for all 𝑥, 𝑦 ∈ [0, 1]. 

 

𝑆𝑚 is standard union, 𝑆𝑏 is bounded sum, 𝑆𝑝 is algebraic sum. 

 

Lemma 2. (See [1]) Let S be a s-norm. Then 

 

𝑆(𝑆(𝑥, 𝑦), 𝑆(𝑤, 𝑧)) =  𝑆(𝑆(𝑥, 𝑤), 𝑆(𝑦, 𝑧)), 

for all 𝑥, 𝑦, 𝑤, 𝑧 ∈ [0, 1]. 

 

3. Anti fuzzy bi-ideals under s-norms 

 

Definition 7. A fuzzy subset 𝜇 ∶ 𝑅 → [0, 1] is called an anti fuzzy bi-ideal of 𝑅 under s-norm 𝑆 if 

(1) 𝜇(𝑎 + 𝑏) ≤ 𝑆(𝜇(𝑎), 𝜇(𝑏)), 

(2) 𝜇(𝑎𝑏) ≤ 𝑆(𝜇(𝑎), 𝜇(𝑏)), 

(3) 𝜇(𝑎𝑏𝑐) ≤ 𝑆(𝜇(𝑎), 𝜇(𝑐)), 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. 

We denote the set of all anti fuzzy bi-ideals of semiring 𝑅 under s-norm 𝑆 by 𝐴𝐹𝐵𝐼𝑆(𝑅). 

 

Example 3. Let 𝑅 = (𝑅,+, . ) be a semiring of real numbers. Define 𝜇 ∶ 𝑅 → [0, 1] by 

 

𝜇(𝑥) = {0.30 𝑥 ∈ ℝ≥0

0.50 𝑥ℝ<0
 

 

if 𝑆𝑝(𝑎, 𝑎) = 𝑎 + 𝑏 − 𝑎𝑏 for all 𝑎, 𝑏 ∈ [0, 1], then 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

 

Definition 8. Let 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(1) The symbol 𝜇 ∨  𝜗 is a fuzzy subset 𝜇 ∨  𝜗 ∶ 𝑅 → [0, 1] and defined dy 

 

(𝜇 ∨  𝜗)(𝑎) = 𝑆(𝜇(𝑎), 𝜗(𝑎)) 

for all 𝑎 ∈ 𝑅. 

(2) The sum of 𝜇 and 𝜗 is a fuzzy subset 𝜇 + 𝜗 ∶ 𝑅 → [0, 1] with 

 

(𝜇 +  𝜗)(𝑎)  =  ⋀ 𝑆(𝜇(𝑏), 𝜗(𝑐))

𝑎=𝑏+𝑐

 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. 
 
(3) The product of 𝜇 and 𝜗 is a fuzzy subset 𝜇 𝑜 𝜗 ∶  𝑅 → [0, 1] by 
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(𝜇 𝑜 𝜗)(𝑎)  =  ⋀ 𝑆(𝜇(𝑏), 𝜗(𝑐))

𝑎=𝑏𝑐

 

 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. 

 
Remark 1. Let 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) then for all 𝑏, 𝑐 ∈ 𝑅 we have that 
 

(𝜇 𝑜 𝜇𝑅)(𝑏𝑐) =⋀𝑆(𝜇(𝑏), 𝜇𝑅(𝑐)) =⋀ 𝑆(𝜇(𝑏), 0)
𝑏𝑐

𝑏𝑐

= 𝜇(𝑏). 

 

Proposition 1. 

 (1) 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) if and only if 𝜇 ≤ 𝜇 + 𝜇 and 𝜇 ≤ 𝜇𝑜𝜇   and  𝜇 ≤ 𝜇𝑜𝜇𝑅 𝑜𝜇. 

(2) A non-empty subset 𝐵 of a semiring 𝑅 is a bi-ideal of 𝑅 if and only if the anti characteristic 

function 𝜇𝐵  ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(3) Let 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). Then 𝜇 ∨  𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(4) Let 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) such that 𝑅 be commutative. Then 𝜇 𝑜 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 
Proof. (1) Let µ ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 
If 𝑎 = 𝑏 + 𝑐, then 

𝜇(𝑎)  =  𝜇(𝑏 +  𝑐)  ≤  𝑆(𝜇(𝑏), 𝜇(𝑐))  ≤  ⋀ S(𝜇(b), 𝜇(c)) 

𝑎=𝑏+𝑐

 

 
 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅 and so µ ≤  µ + µ. 
If 𝑎 = 𝑏𝑐, then 

𝜇(𝑎)  =  𝜇(𝑏 𝑐)  ≤  𝑆(𝜇(𝑏), 𝜇(𝑐))  ≤  ⋀ S(𝜇(b), 𝜇(c)) 

𝑎=𝑏𝑐

 

 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅  and so 𝜇 ≤  𝜇 𝑜 𝜇. 
If 𝑎 = 𝑏𝑐𝑑, then 

𝜇(𝑎)  =  𝜇(𝑏𝑐𝑑)  ≤  𝑆(𝜇(𝑏), 𝜇(𝑑))  =  𝑆((𝜇 o 𝜇𝑅)(𝑏𝑐), 𝜇(𝑑))  ≤  ⋀ 𝑆((𝜇 o  𝜇𝑅)(𝑏𝑐), 𝜇(𝑑)) 

𝑎=𝑏𝑐𝑑 

 

 

and 𝑡ℎ𝑒𝑛   µ ≤  µ 𝑜 𝜇𝑅 𝑜 µ.  

Conversely, we prove that µ ∈ 𝐴𝐹𝑆(𝑅). Since  𝜇 ≤  𝜇 +  𝜇 so  

 

𝜇(𝑎 + 𝑏) ≤ (µ +  µ)(𝑎 + 𝑏) = ⋀ 𝑆(µ(𝑎), (µ(𝑏)) ≤ 𝑆(µ(𝑎), (µ(𝑏)) 

𝑎+𝑏 

  

and then 

 

𝜇(𝑎 +  𝑏)  ≤  𝑆(𝜇(𝑎), (𝜇(𝑏))                                                                                                                                              (1) 

 

for all 𝑎, 𝑏 ∈ 𝑅. As 𝜇 ≤ 𝜇 𝑜 𝜇 so 

 

𝜇(𝑎𝑏)  ≤  (µ o µ)(𝑎𝑏)  =⋀𝑆(µ(𝑎), (µ(𝑏))  ≤  𝑆(µ(𝑎), (µ(𝑏)) 

ab 

 

and then 
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𝜇(𝑎𝑏)  ≤  𝑆(µ(𝑎), (µ(𝑏))                                                                                                                                                     (2) 

for all 𝑎, 𝑏 ∈ 𝑅. 

Also since µ ≤ µ 𝑜 𝜇𝑅 𝑜 µ so 

 

µ(𝑎𝑏𝑐) ≤  (µ o 𝜇𝑅 o µ)(𝑎𝑏𝑐) = ⋀ 𝑆((µ o 𝜇𝑅)(𝑎𝑏), µ(𝑐)) =⋀S(µ(a), µ(c)) ≤  𝑆(µ(𝑎), µ(𝑐))  

𝑎𝑐 (𝑎𝑏)𝑐 

   

and then 

µ(𝑎𝑏𝑐) ≤  𝑆(µ(𝑎), µ(𝑐))                                                                                                                                          (3)  

 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. 
Then from (1)-(3) we get that   𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(2) Let   

𝜇𝐵(𝑏) = {
0, 𝑥 ∈ 𝐵
1, 𝑥 ∉ 𝐵

  

be the anti characteristic function of 𝐵 . Let 𝐵  be a bi-ideal of semiring 𝑅  such that 𝑏1, 𝑏2 ∈ 𝐵 

and 𝑟 ∈ 𝑅. Then 𝑏1 + 𝑏2 ∈ 𝐵 and  𝑏1𝑏2 ∈ 𝐵 and 𝑏1𝑟𝑏2 ∈ 𝐵 and then  

𝜇𝐵(𝑏1 + 𝑏2)  =  0 ≤  0 =  𝑆(0, 0)  =  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2)) 

and 

𝜇𝐵(𝑏1𝑏2)  =  0 ≤  0 =  𝑆(0, 0)  =  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2)) 

and 

𝜇𝐵(𝑏1𝑟𝑏2) =  0 ≤  0 =  𝑆(0, 0) =  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2)). 

Then 𝜇𝐵 ∈  𝐴𝐹𝐵𝐼𝑆(𝑅). 

Conversely, let 𝜇𝐵  ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) and 𝑏1, 𝑏2 ∈ 𝐵 and 𝑟 ∈ 𝑅. 

As  

𝜇𝐵(𝑏1 + 𝑏2)  ≤  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2))  =  𝑆(0, 0)  =  0  

so 𝜇𝐵(𝑏1 + 𝑏2)  =  0 and then  𝑏1 + 𝑏2 ∈ 𝐵. Since  

𝜇𝐵(𝑏1𝑏2)  ≤  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2))  =  𝑆(0, 0)  =  0 

so 𝜇𝐵(𝑏1𝑏2)  =  0 and then 𝑏1𝑏2 ∈  𝐵. Finally 

𝜇𝐵(𝑏1𝑟𝑏2)  ≤  𝑆(𝜇𝐵(𝑏1), 𝜇𝐵(𝑏2))  =  𝑆(0, 0)  =  0 

 

so 𝜇𝐵(𝑏1𝑟𝑏2)  =  0 and then 𝑏1𝑟𝑏2 ∈  𝐵. Then 𝐵 is a bi-ideal of a semiring 𝑅. 

(3) Let 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) and 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then 

(𝜇 ∨ 𝜗)(𝑎 + 𝑏)  = 𝑆(𝜇(𝑎 + 𝑏), 𝜗(𝑎 + 𝑏)) 
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                               ≤  𝑆(𝑆(𝜇(𝑎), 𝜇(𝑏)), 𝑆(𝜗(𝑎), 𝜗(𝑏))) 

                                                                           = 𝑆(𝑆(𝜇(𝑎), 𝜗(𝑎)), 𝑆(𝜇(𝑏), 𝜗(𝑏))) 

                     = 𝑆((𝜇 ∨ 𝜗)(𝑎), (𝜇 ∨ 𝜗)(𝑏)) 

and so        

  (𝜇 ∨ 𝜗)(𝑎 + 𝑏) ≤ 𝑆((𝜇 ∨ 𝜗)(𝑎), (𝜇 ∨ 𝜗)(𝑏)).                                                                                                  (4)            

Also  

(𝜇 ∨ 𝜗)(𝑎𝑏)  = 𝑆(𝜇(𝑎𝑏), 𝜗(𝑎𝑏)) 

                           ≤  𝑆(𝑆(𝜇(𝑎), 𝜇(𝑏)), 𝑆(𝜗(𝑎), 𝜗(𝑏))) 

                                                                         = 𝑆(𝑆(𝜇(𝑎), 𝜗(𝑎)), 𝑆(𝜇(𝑏), 𝜗(𝑏))) 

                = 𝑆((𝜇 ∨ 𝜗)(𝑎), (𝜇 ∨ 𝜗)(𝑏)) 

thus  

        (𝜇 ∨ 𝜗)(𝑎𝑏) ≤  𝑆((𝜇 ∨ 𝜗)(𝑎), (𝜇 ∨ 𝜗)(𝑏)).                                                                                                 (5)       

 Further  

  (𝜇 ∨  𝜗)(𝑎𝑏𝑐) = 𝑆(𝜇(𝑎𝑏𝑐), 𝜗(𝑎𝑏𝑐)) 

                              ≤ 𝑆(𝑆(𝜇(𝑎), 𝜇(𝑐)), 𝑆(𝜗(𝑎), 𝜗(𝑐))) 

                              = 𝑆(𝑆(𝜇(𝑎), 𝜗(𝑎)), 𝑆(𝜇(𝑐), 𝜗(𝑐))) 

                               = 𝑆((𝜇 ∧  𝜗)(𝑎), (𝜇 ∧  𝜗)(𝑐)) 

then 

(𝜇 ∨  𝜗)(𝑎𝑏𝑐)  ≤   𝑆((𝜇 ∧  𝜗)(𝑎), (𝜇 ∧  𝜗)(𝑐)).                                                                                              (6) 

 

Then from (4)-(6) we get that 𝜇 ∨  𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(4) Let 𝜇, 𝜗 ∈  𝐴𝐹𝑆(𝑅) and let 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2  ∈  𝑅 such that 

𝑎1  =  𝑏1𝑐1, 𝑎2  =  𝑏2𝑐2, 𝑎3  = 𝑏3𝑐3, 𝑏1𝑐2  =  𝑏2𝑐1  =  0.  

Then  

and so 

(𝜇 𝑜 𝜗)(𝑎1 + 𝑎2)  ≤  S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎2)) .                                                                              (7) 

Also 

(𝜇 𝑜 𝜗)(𝑎1 + 𝑎2) = ⋀ 𝑆(𝜇(𝑏1 + 𝑏2), 𝜗(𝑐1 + 𝑐2))
(𝑎1+𝑎2)=(𝑏1+𝑏2)(𝑐1+𝑐2)

 

                                 = ⋀ 𝑆(𝜇(𝑏1 + 𝑏2), 𝜗(𝑐1 + 𝑐2))
(𝑎1+𝑎2)=𝑏1𝑐1+𝑏2𝑐2

 

                                 = ⋀ 𝑆(𝜇(𝑏1 + 𝑏2), 𝜗(𝑐1 + 𝑐2))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2

 



24 R. Rasuli / FOMJ 3(4) (2022) 17–31 

                                ≤ ⋀ S (S(𝜇(𝑏1), 𝜇(𝑏2)), S(𝜗(𝑐1), 𝜗(𝑐2)))𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2  

                                 = ⋀ S(S(𝜇(𝑏1), 𝜗(𝑐1)), S(𝜇(𝑏2), 𝜗(𝑐2)))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2

 

                                = S( ⋀ S(𝜇(𝑏1), 𝜗(𝑐1))

𝑎1=𝑏1𝑐1

, ⋀ S(𝜇(𝑏2), 𝜗(𝑐2))

𝑎2=𝑏2𝑐2

) 

                               = S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎2)) 

and 

(𝜇 𝑜 𝜗)(𝑎1𝑎2) = ⋀ 𝑆(𝜇(𝑏1𝑏2), 𝜗(𝑐1𝑐2))
(𝑎1𝑎2)=(𝑏1𝑏2)(𝑐1𝑐2)

= ⋀ 𝑆(𝜇(𝑏1𝑏2), 𝜗(𝑐1𝑐2))

(𝑎1𝑎2)=𝑏1𝑐1𝑏2𝑐2

= ⋀ 𝑆(𝜇(𝑏1𝑏2), 𝜗(𝑐1𝑐2))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2

≤ ⋀ S(S(𝜇(𝑏1), 𝜇(𝑏2)), S(𝜗(𝑐1), 𝜗(𝑐2)))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2

= ⋀ S(S(𝜇(𝑏1), 𝜗(𝑐1)), S(𝜇(𝑏2), 𝜗(𝑐2)))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2

= S( ⋀ S(𝜇(𝑏1), 𝜗(𝑐1))

𝑎1=𝑏1𝑐1

, ⋀ S(𝜇(𝑏2), 𝜗(𝑐2))

𝑎2=𝑏2𝑐2

) = S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎2))   

thus 

(𝜇 𝑜 𝜗)(𝑎1𝑎2)  ≤  S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎2)) .                                                                                        (8) 

Further 

(𝜇 𝑜 𝜗)(𝑎1𝑎2𝑎3) = ⋀ 𝑆(𝜇(𝑏1𝑏2𝑏3), 𝜗(𝑐1𝑐2𝑐3))
(𝑎1𝑎2𝑎3)=(𝑏1𝑏2𝑏3)(𝑐1𝑐2𝑐3)

 

                                 = ⋀ 𝑆(𝜇(𝑏1𝑏2𝑏3), 𝜗(𝑐1𝑐2𝑐3))
(𝑎1𝑎2𝑎3)=𝑏1𝑐1𝑏2𝑐2𝑏3𝑐3

 

                                 = ⋀ 𝑆(𝜇(𝑏1𝑏2𝑏3), 𝜗(𝑐1𝑐2𝑐3))

𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2,𝑎3=𝑏3𝑐3

 

                                ≤ ⋀ S(S(𝜇(𝑏1), 𝜇(𝑏3)), S(𝜗(𝑐1), 𝜗(𝑐3)))𝑎1=𝑏1𝑐1,𝑎2=𝑏2𝑐2,𝑎3=𝑏3𝑐3  

                                 = ⋀ S(S(𝜇(𝑏1), 𝜗(𝑐1)), S(𝜇(𝑏3), 𝜗(𝑐3)))

𝑎1=𝑏1𝑐1,𝑎3=𝑏3𝑐3
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                              = S( ⋀ S(𝜇(𝑏1), 𝜗(𝑐1))

𝑎1=𝑏1𝑐1

, ⋀ S(𝜇(𝑏2), 𝜗(𝑐2))

𝑎3=𝑏3𝑐3

) 

                             = S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎3)) 

 

and then 

(𝜇 𝑜 𝜗)(𝑎1𝑎2𝑎3) ≤ S((𝜇 o 𝜗)(𝑎1), (𝜇 o 𝜗)(𝑎3)).                                                                                             (9) 

Thus from (8)-(9) we obtain that 𝜇 𝑜 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

Proposition 2. Let 𝜇, 𝜗 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) and 𝑋, 𝑌 be two non-empty subsets of semiring 𝑅. 
(1) If 𝜇 ≥  𝜗, then 𝜇 𝑜 𝛽 ≥  𝜗 𝑜 𝛽 and 𝛽 𝑜 𝜇 ≥  𝛽 𝑜 𝜗. 

(2) 𝜇𝑋 o  𝜇𝑌 = 𝜇𝑋𝑌 . 

(3) 𝜇𝑋  ∨  𝜇𝑌  =  𝜇𝑋∩𝑌 . 

(4) 𝜇𝑋 + 𝜇𝑋 = 𝜇𝑋+𝑌 . 

Proof. Let 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

(1) As 𝜇 ≥  𝜗 so 𝜇(𝑦) ≥  𝜗(𝑦). Then 

(µ o β)(x) = ⋀ 𝑆(𝜇(𝑦), 𝛽(𝑧)) ≥ 

𝑥=𝑦𝑧 

⋀ 𝑆(𝜗(𝑦), 𝛽(𝑧)) = (𝜗o β)(𝑥) 

𝑥=𝑦𝑧 

 
 

 
and then µ o β ≥ 𝜗o β. Also as 𝜇 ≥  𝜗, then 𝜇(𝑧) ≥ 𝜗(𝑧) and 

(𝛽𝑜𝜇 )(𝑥) = ⋀ 𝑆(𝛽(𝑦), 𝜇(𝑧)) ≥ 

𝑥=𝑦𝑧 

⋀ 𝑆(𝛽(𝑦), 𝜗(𝑧)) = (𝛽𝑜𝜗)(𝑥)  

𝑥=𝑦𝑧 

 

and thus 𝛽 𝑜 𝜇 ≥  𝛽 𝑜 𝜗.  

(3) We know that  𝜇𝑋(𝑥) = {
0, 𝑥 ∈ 𝑋
1, 𝑥 ∉ 𝑋

  and   𝜇𝑌(𝑦) = {
0, 𝑦 ∈ 𝑌
1, 𝑦 ∉ 𝑌

   and  

 

𝜇𝑋𝑌(𝑧) = {
0,     𝑧 ∈ 𝑋𝑌
1,      𝑧 ∉ 𝑋𝑌

   =    {
0,     𝑧 = 𝑥𝑦 ∈ 𝑋𝑌
1,     𝑧 = 𝑥𝑦 ∉ 𝑋𝑌

   =    {
0,        𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌
1,     𝑥 ∉ 𝑋, 𝑦 ∉ 𝑌.

 

 

If 𝑥 ∈ 𝑋 and  𝑦 ∈ 𝑌, then 𝑥𝑦 ∈ 𝑋𝑌 therefore 

(𝜇𝑋𝑜 𝜇𝑋 )(𝑧)  = ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌(𝑦)) = 

𝑧=𝑥𝑦 

⋀ 𝑆(0,0) = 0 = 𝜇𝑋𝑌(z = xy).

𝑧=𝑥𝑦 

 

If 𝑥 ∈ 𝑋 and  𝑦 ∉ 𝑌, then 𝑥𝑦 ∉ 𝑋𝑌 and so 

(𝜇𝑋𝑜 𝜇𝑋 )(𝑧)  = ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌(𝑦)) = 

𝑧=𝑥𝑦 

⋀ 𝑆(0,1) = 1 = 𝜇𝑋𝑌(z = xy).

𝑧=𝑥𝑦 

 

If 𝑥 ∉ 𝑋 and  𝑦 ∈ 𝑌, then  𝑥𝑦 ∉ 𝑋𝑌 and then 
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(𝜇𝑋𝑜 𝜇𝑋 )(𝑧)  = ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌(𝑦)) = 

𝑧=𝑥𝑦 

⋀ 𝑆(1,0) = 1 = 𝜇𝑋𝑌(z = xy).

𝑧=𝑥𝑦 

 

If 𝑥 ∉ 𝑋 and 𝑦 ∉ 𝑌, then  𝑥𝑦 ∉ 𝑋𝑌 then 

(𝜇𝑋𝑜 𝜇𝑋 )(𝑧)  = ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌(𝑦)) = 

𝑧=𝑥𝑦 

⋀ 𝑆(1,1) = 1 = 𝜇𝑋𝑌(z = xy).

𝑧=𝑥𝑦 

 

Thus 𝜇𝑋 𝑜 𝜇𝑋 = 𝜇𝑋𝑌. 

(4) We have that 

𝜇𝑋∩𝑌(𝑧) = {
0,     𝑧 ∈ 𝑋 ∩ 𝑌
1,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   =    {
0,     𝑧 ∈ 𝑋, 𝑧 ∈ 𝑌
1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

If 𝑧 ∈ 𝑋 and 𝑧 ∈ 𝑌, then 𝑧 ∈ 𝑋 ∩ 𝑌 then 

 

(𝜇𝑋⋁𝜇𝑌 )(𝑧) =  𝑆(𝜇𝑋(𝑧), 𝜇𝑌 (𝑧)) =  𝑆(0, 0) =  0 =  𝜇𝑋∩𝑌 (𝑧). 

 

If 𝑧 ∈ 𝑋 and 𝑧 ∉ 𝑌, then 𝑧 ∉ 𝑋 ∩ 𝑌 so 

 

 

(𝜇𝑋⋁𝜇𝑌 )(𝑧) =  𝑆(𝜇𝑋(𝑧), 𝜇𝑌 (𝑧)) =  𝑆(0, 1) = 1 =  𝜇𝑋∩𝑌 (𝑧). 

 

If 𝑧 ∉ 𝑋 and 𝑧 ∈ 𝑌, then 𝑧 ∉ 𝑋 ∩ 𝑌 then 

 

(𝜇𝑋⋁𝜇𝑌 )(𝑧) =  𝑆(𝜇𝑋(𝑧), 𝜇𝑌 (𝑧)) =  𝑆(1, 0) = 1 =  𝜇𝑋∩𝑌 (𝑧). 

 

If 𝑧 ∉ 𝑋 and 𝑧 ∉ 𝑌, then 𝑧 ∉ 𝑋 ∩ 𝑌 thus 

 

(𝜇𝑋⋁𝜇𝑌 )(𝑧) =  𝑆(𝜇𝑋(𝑧), 𝜇𝑌 (𝑧)) =  𝑆(1, 1) = 1 =  𝜇𝑋∩𝑌 (𝑧). 

Then 𝜇𝑋⋁𝜇𝑌  = 𝜇𝑋∩𝑌. 

 

(1) We get that 

 

𝜇𝑋+𝑌(𝑧) = {
0,     𝑧 ∈ 𝑋 + 𝑌
1,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    =    {
0,    𝑧 = 𝑥 + 𝑦 ∈ 𝑋 + 𝑌
1,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 =    {
0,     𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌
1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

If 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then 𝑥 + 𝑦 ∈ 𝑋 + 𝑌 thus 

(𝜇𝑋 + 𝜇𝑌)(𝑧) =  ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌 (𝑦)) =  ⋀  

𝑧=𝑥+𝑦

𝑆(0, 0) = 0 =  𝜇𝑋+𝑌 (𝑧 = 𝑥 + 𝑦).  

𝑧=𝑥+𝑦 

 

If 𝑥 ∈ 𝑋 and 𝑦 ∉ 𝑌, then 𝑥 + 𝑦 ∉ 𝑋 + 𝑌 so 

(𝜇𝑋 + 𝜇𝑌 )(𝑧) =  ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌 (𝑦)) =  ⋀  

𝑧=𝑥+𝑦

𝑆(0, 1) = 1 =  𝜇𝑋+𝑌 (𝑧 = 𝑥 + 𝑦).  

𝑧=𝑥+𝑦 
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If 𝑥 ∉ 𝑋 and 𝑦 ∈ 𝑌, then 𝑥 + 𝑦 ∉ 𝑋 + 𝑌 then 

(𝜇𝑋 + 𝜇𝑌)(𝑧) =  ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌 (𝑦)) =  ⋀  

𝑧=𝑥+𝑦

𝑆(1, 0) = 1 =  𝜇𝑋+𝑌 (𝑧 = 𝑥 + 𝑦).  

𝑧=𝑥+𝑦 

 

If 𝑥 ∉ 𝑋 and 𝑦 ∉ 𝑌, then 𝑥 + 𝑦 ∉ 𝑋 + 𝑌 then  

(𝜇𝑋 + 𝜇𝑌)(𝑧) =  ⋀ 𝑆(𝜇𝑋(𝑥), 𝜇𝑌 (𝑦)) =  ⋀  

𝑧=𝑥+𝑦

𝑆(1, 1) = 1 = 𝜇𝑋+𝑌 (𝑧 = 𝑥 + 𝑦).  

𝑧=𝑥+𝑦 

 

2. 4. Prime, strongly prime,  semiprime, irreducible and strongly irreducible of 𝑨𝑭𝑩𝑰𝑺(𝑹) 
 

Definition 9. Let µ ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 
(1) 𝜇 is called a prime if for any 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), if 𝛼 𝑜 𝛽 ≥  𝜇, then 𝛼 ≥ 𝜇 or 𝛽 ≥ 𝜇. 

(2) 𝜇 is called a strongly prime if for any 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), if (𝛼 𝑜 𝛽)  ∨ (𝛽 𝑜 𝛼) ≥ µ, then 𝛼 ≥ 𝜇 or 𝛽 ≥ 𝜇.   

(3) 𝜇 is called idempotent if  𝜇 =  𝜇 𝑜 𝜇 =  𝜇2. 

(4) 𝜇 is said to be a semiprime if 𝛼 𝑜 𝛼 =  𝛼2 ≥ 𝜇 implies 𝛼 ≥ 𝜇 for every 𝛼 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 

(5) 𝜇 is said to be an irreducible if for any 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), if 𝛼 ∨  𝛽 = 𝜇, then 𝛼 = 𝜇 or 𝛽 = 𝜇.                    

(6) 𝜇 is said to be a strongly irreducible if for any 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), if 𝛼 ∨  𝛽 ≥  𝜇, then 𝛼 ≥ 𝜇 or 𝛽 ≥ 𝜇.    

Proposition 3. We have the following assertions. 

(1) Let 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)be strongly prime then it will be prime. 

(2) If 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) be prime, then it will be semiprime. 

(3) Let 𝜇1, 𝜇2 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) be prime. Then  𝜇1 ∨ 𝜇2  will be semiprime. 

(4) Let 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)be strongly irreducible semiprime then it willbe strongly prime. 

Proof. Let 𝜇, 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 
(1) Let 𝜇 be strongly prime and 𝛼 𝑜 𝛽 ≥  𝜇 then (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥  𝜇, and so 𝛼 ≥ 𝜇 or 𝛽 ≥ 𝜇.   This 

implies that 𝜇 will be prime. 

(2) Let 𝜇  be prime and 𝛼 𝑜 𝛼 ≥  𝜇  then 𝛼 ≥ 𝜇  and then 𝜇  is semiprime. 

(3) Let 𝜇1  and 𝜇2  be primes and α o β ≥𝜇1  ∨  𝜇2 . Then 𝛼 𝑜 𝛽 ≥  𝜇1  or 𝛼 𝑜 𝛽 ≥ 𝜇2 . This implies that 

𝛼 ≥  𝜇1 or 𝛽 ≥  𝜇1and 𝛼 ≥ 𝜇2  or 𝛽 ≥  𝜇2. Thus 𝛼 ≥  𝜇1 ∨ 𝜇2 and 𝛽 ≥ 𝜇1 ∨ 𝜇2. Therefore 𝜇1 ∨ 𝜇2will be 

prime. 

(4) Let 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) be  strongly irreducible semiprime such that (𝛼 𝑜 𝛽)  ∨ (𝛽 𝑜 𝛼)  ≥  𝜇. As 𝛼 ∨  𝛽 ≥
 𝛼 and 𝛼 ∨ 𝛽 ≥ 𝛽 so 

(𝛼 ∨ 𝛽)𝑜(𝛼 ∨  𝛽) = (𝛼 ∨  𝛽)2 ≥  𝛼𝑜𝛽. 

 

 Also 𝛼 ∨ 𝛽 ≥ 𝛽 and 𝛼 ∨ 𝛽 ≥  𝛼 so 

 

(𝛼 ∨  𝛽) 𝑜 (𝛼 ∨ 𝛽) =  (𝛼 ∨  𝛽)2 ≥  𝛽 𝑜 𝛼. 

Thus 

(𝛼 ∨  𝛽)2 ≥ (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥ 𝜇. 

 

Since 𝜇 is a semiprime so 𝛼 ∨  𝛽 ≥ 𝜇. Now since 𝜇 is a strongly irreducible then 𝛼 ≥ 𝜇 or  𝛽 ≥ 𝜇. Hence 𝜇 

is a strongly prime. 

 

Proposition 4. Let 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) with 𝜇(𝑎) = 𝜀 > 0 for all 𝑎 ∈ 𝑅 and  𝜀 ∈ (0, 1]. Then there exists an 

irreducible 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) such that µ ≤ 𝛽 and 𝛽(𝑎) = 𝜀 for all 𝑎 ∈ 𝑅 and 𝜀 ∈ (0, 1]. 
 

Proof. Let 𝑃 = {𝛼 ∶  𝛼 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅): 𝜇 ≤  𝛼 ∶ 𝛼(𝑎) = 𝜀 > 0}. As 𝜇 ∈ 𝑃 so 𝑃 ≠ ∅. Let 
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𝐻 = { ℎ𝑖 ∶  ℎ𝑖 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅): ℎ𝑖(𝑎) = 𝜀 ∶  µ ≤ ℎ𝑖 ∶ ∀𝑖 ∈ 𝐼 }  
 

be  any totally ordered subset of 𝑃. Now we prove that ⋁ ℎ𝑖𝑖∈𝐼  ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) such that 𝜇 ≤ ⋁ ℎ𝑖𝑖∈𝐼 . Assume 

that 𝑎, 𝑏, 𝑐 ∈ 𝑅 and as ℎ𝑖  ∈  𝐴𝐹𝐵𝐼𝑆(𝑅) then 

 

(1) 

(⋁)

𝑖∈𝐼

ℎ𝑖(𝑎 + 𝑏) =⋁(ℎ𝑖(𝑎 +  𝑏))

𝑖∈𝐼

≤⋁𝑆(ℎ𝑖(𝑎), ℎ𝑖(𝑏))

𝑖∈𝐼

= 𝑆(⋁ℎ𝑖(𝑎)

𝑖∈𝐼

,⋁ℎ𝑖(𝑏)

𝑖∈𝐼

). 

 

(2) 

(⋁)

𝑖∈𝐼

ℎ𝑖(𝑎𝑏)  =⋁(ℎ𝑖(𝑎 𝑏))

𝑖∈𝐼

≤⋁𝑆(ℎ𝑖(𝑎), ℎ𝑖(𝑏))

𝑖∈𝐼

= 𝑆(⋁ℎ𝑖(𝑎)

𝑖∈𝐼

,⋁ℎ𝑖(𝑏)

𝑖∈𝐼

). 

 

(3) 

(⋁)

𝑖∈𝐼

ℎ𝑖(𝑎𝑏𝑐)  =  ⋁(ℎ𝑖(𝑎 𝑏𝑐))

𝑖∈𝐼

≤⋁𝑆(ℎ𝑖(𝑎), ℎ𝑖(𝑐))

𝑖∈𝐼

= 𝑆(⋁ℎ𝑖(𝑎)

𝑖∈𝐼

,⋁ℎ𝑖(𝑐)

𝑖∈𝐼

). 

 

Thus (⋁ )𝑖∈𝐼 ℎ𝑖 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅).  
Since 𝜇 ≤  ℎ𝑖  for all 𝑖 ∈ 𝐼  then 𝜇 ≤ (⋁ )𝑖∈𝐼 ℎ𝑖.  Also (⋁ )𝑖∈𝐼 ℎ𝑖(𝑎) = ⋁ (ℎ𝑖)𝑖∈𝐼 (𝑎) = 𝜀  with 𝜀 ∈ (0, 1]. 
Therefore ⋁ (ℎ𝑖)𝑖∈𝐼  ∈ 𝑃  and  ⋁ (ℎ𝑖)𝑖∈𝐼   is  an upper bound of 𝐻. Now by Zorn’s lemma, there exists a
𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) which is maximal with respect to the property 𝜇 ≤  𝛽 and 𝛽(𝑎) = 𝜀. Now we show that 𝛽 

is an irreducible. Let 𝛽1, 𝛽2 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) such that 𝛽1  ∨  𝛽2 =  𝛽 then 𝛽 ≥  𝛽1 and 𝛽 ≥ 𝛽2. We claim that 

𝛽 = 𝛽1 or 𝛽 = 𝛽2. By the contrary, assume that 𝛽 ≠ 𝛽1 and 𝛽 ≠  𝛽2. This implies 𝛽 >  𝛽1 and 𝛽 >  𝛽2. So 

𝛽(𝑎) ≠ 𝛽1(𝑎) and 𝛽(𝑎) ≠ 𝛽2(𝑎). Hence (𝛽1  ∨  𝛽2)(𝑎) = 𝛽(𝑎) =  𝜀. Which is a contradiction to the fact 

that (𝛽1 ∨  𝛽2)(𝑎) = 𝛽(𝑎) ≠ 𝜀. Hence either 𝛽 = 𝛽1 or 𝛽 = 𝛽2. 

 

Proposition 5. Let 𝑆  be idempotent s-norm. Then for a semiring 𝑅  the following assertions 

are hold: 

(1) If 𝑅  is both regular and intra-regular, then 𝜇 𝑜 𝜇 = 𝜇   for every 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅 . 

(2) If 𝜇 𝑜 𝜇 = 𝜇  for every 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅), then 𝛼 ∨ 𝛽 = (𝛼𝑜𝛽) ∨ (𝛽𝑜𝛼)  for all 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). 
Proof. (1) Let 𝑅 be both regular and intra-regular and 𝑎 ∈ 𝑅. Then there exist elements 𝑥, 𝑦𝑖 , 𝑧𝑖 ∈ 𝑅 such 

that 𝑎 = 𝑎𝑥𝑎 and 𝑎 = ∑  𝑛
𝑖=1 𝑦𝑖𝑎

2𝑧𝑖  and   then  

 

𝑎 = 𝑎𝑥𝑎 = 𝑎𝑥𝑎𝑥𝑎 = 𝑎𝑥 (∑  
𝑛

𝑖=1
𝑦𝑖𝑎

2𝑧𝑖) 𝑥𝑎 =∑  
𝑛

𝑖=1
(𝑎𝑥𝑦𝑖𝑎)(𝑎𝑧𝑖𝑥𝑎). 

 

Now  

(𝜇𝑜 𝜇)(𝑎) = (𝜇 𝑜 𝜇)( ∑  𝑛
𝑖=1 (𝑎𝑥𝑦𝑖𝑎)(𝑎𝑧𝑖𝑥𝑎)) 

 

              = ∑  𝑛
𝑖=1 (𝜇𝑜 𝜇)(𝑎𝑥𝑦𝑖𝑎)(𝑎𝑧𝑖𝑥𝑎)) 

 

                 = ∑  𝑛
𝑖=1 ⋀𝑆(𝜇(𝑎𝑥𝑦𝑖𝑎), 𝜇(𝑎𝑧𝑖𝑥𝑎)) 

 

                                       ≤ ∑  
𝑛

𝑖=1
𝑆 (𝑆(𝜇(𝑎), 𝜇(𝑎)), 𝑆(𝜇(𝑎), 𝜇(𝑎))) 

 

         =∑  
𝑛

𝑖=1
𝑆(𝜇(𝑎), 𝜇(𝑎)) 

 

=∑  
𝑛

𝑖=1
𝜇(𝑎) 
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= 𝜇(𝑎). 
 

Thus 𝜇 𝑜 𝜇 ≤ 𝜇.  

Also as 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) so by Proposition 1 (part 1) we get that 𝜇 𝑜 𝜇 ≥ 𝜇. 

Thus 𝜇 𝑜 𝜇 = 𝜇.  
(2) Let 𝛼, 𝛽 ∈  𝐴𝐹𝐵𝐼𝑆(𝑅) then by Proposition 1 (part 3)we have that 𝛼 ∨  𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅).  Thus by 

hypothesis, we have 𝛼 ∨ 𝛽 = (𝛼 ∨ 𝛽) 𝑜 (𝛼 ∨ 𝛽). As 𝛼 ∨ 𝛽 ≥ 𝛼 and 𝛼 ∨ 𝛽 ≥ 𝛽 so 

 𝛼 ∨ 𝛽 = (𝛼 ∨  𝛽) 𝑜 (𝛼 ∨ 𝛽) ≥ 𝛼 𝑜 𝛽. Similarly, 𝛼 ∨ 𝛽 ≥ 𝛽 𝑜 𝛼. Then  

 

𝛼 ∨  𝛽 ≥  (𝛼 𝑜 𝛽)  ∨ (𝛽 𝑜 𝛼).                                                                                                                      (10) 
 

Now from Proposition 1 (part 4) we have that 𝛼 𝑜 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)  and 𝛽 𝑜 𝛼 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)  and by 

Proposition 1 (part 3)  we get that (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). Thus by hypothesis, we have  

 
(𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) = [(𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼)] 𝑜 [(𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼)] 

 

                                          ≥ (𝛼 𝑜 𝛽)𝑜 (𝛽 𝑜 𝛼) = 𝛼 𝑜 𝛽 𝑜 𝛽⏟  
𝛽

𝑜𝛼 = α o 𝛽⏟
≥𝜇𝑅

oα 

                     ≥αo𝜇𝑅 oα≥α =  ∑  𝑛
𝑖=1 𝜇(𝑎) = 𝜇(𝑎).                          

 
Similarly, (𝛼 𝑜 𝛽)  ∨ (𝛽 𝑜 𝛼)  ≥  𝛽 and then   

 

(𝛼 𝑜 𝛽)  ∨ (𝛽 𝑜 𝛼)  ≥  𝛼 ∨  𝛽.                                          (11) 
 

Then from (10) and (11) we get that (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼)𝛼 ∨ 𝛽. 
 

Corollary 1. Let 𝑅 be a regular and intra-regular semiring and µ ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). Then 𝜇 is a strongly prime if 

and only if  𝜇 be a strongly irreducible. 

Proof. Let 𝑅 be a regular and intra-regular semiring and 𝜇, 𝛼, 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅). Then from Proposition 5  we get 

that 𝛼 ∨ 𝛽 = (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼). Now if 𝜇 be a strongly prime, then 𝛼 ∨ 𝛽 = (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥ 𝜇 and then α≥

𝜇 or 𝛽 ≥  𝜇 and so 𝜇 will be a strongly irreducible. Conversely, if 𝜇 is a strongly irreducible, then (𝛼 𝑜 𝛽)  ∨

(𝛽 𝑜 𝛼) = 𝛼 ∨ 𝛽 ≥  𝜇 wich means that α≥𝜇 or 𝛽 ≥ 𝜇 and then 𝜇 is a strongly prime.  

Corollary 2. Let 𝑅 be a regular and intra-regular semiring. If the set 𝐴 = {µ ∶  µ ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) }  is  totally 

ordered by inclusion (≤), then each 𝜇 ∈ 𝐴 is a strongly prime.  

Proof. Let 𝛼, 𝛽, 𝜇 ∈ 𝐴 and we prove that 𝜇 will be a strongly prime. Since the set of 𝐴 is totally ordered by 

inclusion so 𝛼 ≤ 𝛽 or 𝛽 ≤ 𝛼 and this gets that 𝛼 ∨ 𝛽 = 𝛼 or 𝛼 ∨ 𝛽 = 𝛽. As 𝑅 be a regular and intra-regular 

semiring so from Proposition 5 we get that 𝛼 ∨ 𝛽 = (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼). Now let (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥ 𝜇  then  

𝛼 =  𝛼 ∨  𝛽 = (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥ 𝜇 

or 

𝛽 = 𝛼 ∨ 𝛽 = (𝛼 𝑜 𝛽) ∨ (𝛽 𝑜 𝛼) ≥ 𝜇 

and this implies that 𝜇 will be a strongly prime.  

Corollary 3. Let 𝑅 be a regular and intra-regular semiring. If the set 𝐴 = {𝜇 ∶ 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)} is totally ordered 

by inclusion (≤), then each 𝜇 ∈  𝐴 is a prime.  
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Proof. Let 𝛼, 𝛽, 𝜇 ∈ 𝐴 and we prove that 𝜇 will be a prime. Since the set of 𝐴 is totally ordered by inclusion so 

from Proposition 5 we get that 𝛼𝑜𝛼 = 𝛼 and 𝛽𝑜𝛽 = 𝛽. Now let 𝛼 𝑜 𝛽 ≥ 𝜇 and as the set of 𝐴 is totally ordered 

by inclusion so 𝛼 ≥ 𝛽  or 𝛽 ≥ 𝛼 . If 𝛼 ≥ 𝛽 , then 𝛼 = 𝛼 𝑜 𝛼 ≥ 𝛼 𝑜 𝛽 ≥ 𝜇  and if 𝛽 ≥  𝛼 , then 𝛽 =  𝛽 𝑜 𝛽 ≥

 𝛼 𝑜 𝛽 ≥ 𝜇. Thus 𝛼 ≥ 𝜇 or 𝛽 ≥ 𝜇 and then 𝜇 will be a prime.  

Proposition 6. Let 𝑅 be a semiring. Then the following assertions are equivalent: 

(1) Set 𝐴 = {𝜇 ∶ 𝜇 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅)} is totally ordered by inclusion (≤). 

(2) Each 𝜇 ∈ 𝐴 is strongly irreducible. 

(3) Each 𝜇 ∈ 𝐴 is an irreducible.  

Proof. (1) ⇒ (2) Let 𝛼, 𝛽, 𝜇 ∈ 𝐴 and we prove that 𝜇 will be a strongly irreducible. Since the set of 𝐴 is totally 

ordered by inclusion so 𝛼 ≥ 𝛽 or 𝛽 ≥ 𝛼 and then 𝛼 ∨ 𝛽 = 𝛼 or 𝛼 ∨ 𝛽 = 𝛽. Now let 𝛼 ∨ 𝛽 ≥ 𝜇 then 𝛼 = 𝛼 ∨

 𝛽 ≥ 𝜇 or  𝛽 = 𝛼 ∨ 𝛽 ≥ 𝜇. Thus  𝛼 ≥ 𝛽 and 𝛽 ≥ 𝜇 and then 𝜇 will be a strongly irreducible.  

(2) ⇒ (3) Let 𝛼, 𝛽, 𝜇 ∈ 𝐴 and let 𝜇 be a strongly irreducible. Let 𝛼 ∨ 𝛽 = 𝜇. Since 𝛼 ∨ 𝛽 ≥ 𝛼 and 𝛼 ∨ 𝛽 ≥ 𝛽 so 

𝜇 ≥α and 𝜇 ≥ 𝛽. Also since 𝜇 is a strongly irreducible so 𝛼 ∨ 𝛽 = 𝜇 ≥ 𝜇 and then 𝛼 ≥ 𝜇 and 𝛽 ≥ 𝜇. Therefore 

we obtain that 𝛼 = 𝜇 or 𝛽 = 𝜇  and this implies that 𝜇 is irreducible.  

(3) ⇒ (1)  Let 𝛼, 𝛽 ∈ 𝐴  and we must prove that 𝛼 ≥ 𝛽  or 𝛽 ≥ 𝛼 . By Proposition 1  (part 3 ) we have that 

𝛼 ∨ 𝛽 ∈ 𝐴𝐹𝐵𝐼𝑆(𝑅) and then will be an irreducible. As 𝛼 ∨ 𝛽 = 𝛽 ∨ 𝛼 then 𝛼 = 𝛼 ∨ 𝛽 or  𝛽 = 𝛼 ∨  𝛽 and so 

𝛼 ≥ 𝛽 or 𝛽 ≥ 𝛼. This means that the set of 𝐴 is totally ordered by inclusion (≤).  

5. Conclusion 
In this study, we define the notion of anti fuzzy bi-ideals in semirings with respect to s-norms and we and 

investigate some properties of them. Next we introduce anti prime fuzzy bi-ideals, anti strongly prime fuzzy bi-

ideals, anti semiprime fuzzy bi-ideals, anti irreducible fuzzy bi-ideals, anti strongly irreducible fuzzy bi-ideals  

with respect to  s-norms and obtained some results  about them and we investigate them  under regular and intra-

regular semirings. We characterize them under totally ordered by inclusion. Now one can define anti fuzzy bi-

rings with respect to s-norms  and investigate them as we did for bi-ideals and this can be an open problem. 
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