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A R T I C L E I N F O  A B S T R A C T 

The rational interpolation sometimes gives better approximations than 

polynomial interpolation particularly for large sequence of points. In this paper, 

for the first time we provide a combination of rational interpolation and interval 

data. we present applied interval arithmetic in rational interpolation, when 

support points are interval-valued. First, we introduce the basic concepts of the 

algebraic theories to apply the interval methods to uncertainty analysis. Then 

the interpolation of interval coefficient is obtained and also the error of the 

proposed method is analysed and is proved by a theorem for different cases. 

Some different numerical examples are given to illustrate the proposed method 

and the results are recorded. 
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1. Introduction 

Interval analysis plays an important role in many fields such as fuzzy theory, statistics and probability 

theory, approximation theory, and computer science. Many people worked on bounding rounding using Moore’s 

book interval analysis [12] in the 1950’s, Hansen [4] provided an overview of the early publication by moor 

from its introduction in the late 1960’s. In 1991 the interval computations journal published the first article. In 

the last few decades there was an increase in the applications of interval analysis in a wide range of domains, 

from robotics to neural networks. Despite all these improvements in the number of these applications, a typical 

problem in biological applications interpolation involving interval data often arises. The main goal of this paper 

is to present interpolation by Rational Functions under Interval data. We summarize a rational interpolation: as 

Rational functions are sometimes superior to polynomials, roughly speaking, owing to their ability of modeling 

functions with poles, which is, zeroes of the denominate of equation. These poles might occur in real values of 

x. If the function is interpolated, it if has some poles. Such poles can themselves ruin a polynomial 
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approximation, even one restricted to real value of x, just as they can ruin the convergence of an infinite power 

series in x. A rational function approximation, by contrast, will stay ‘good’ as long as it has enough powers of x 

in its denominator to account for canceling any nearby poles. Gutknecht [7] presented a general homogeneous 

treatment of rational interpolation problem in the extended complex domain. Markov et al. [16] designed the 

linear interpolation under interval data. Hosseini and Jafari [10] presented an extended rational interpolation 

method. A typical with rational interpolation (unattainable data) was provided by Salazar Ceils et.al in 2008. In 

2014, application of interval, algebra operation in interpolation when the support points are intervals were 

computed interpolation polynomial by newton’ divided difference. In 2015, Markov studied some interpolation 

problems, involving interval data [11].  

Rational interpolant can produce satisfying shape-preserving interpolation. There are many effective 

methods for the construction of shape-preserving interpolant. In [1, 6, 15], rational cubic interpolation splines 

were constructed to visualize positive data. A united form of the classical Hermite interpolation and shape-

preserving interpolation is presented in [5]. In addition, in 2018, Arandiga [2] described an improvement on this 

nonlinear adaptive rational interpolator. There was a second order non-linear interpolation technique where the 

convex combination is given by the end-points of the interval. In Yun [8] proposed a new constructive 

piecewise interpolation method. Tyada et al. [17] introduced shape preserving rational cubic trigonometric 

fractal interpolation functions. 

Our paper is organized as follow. In Section 2, at first, we introduce a basic of interval arithmetic, then, we 

discuss its rational interpolation. In Section 3, we present our proposed method. In Section 4, some numerical 

examples are given to present a better illustration for proposed method and the conclusion is explained Section 

5.     

2. Preliminaries 

2.1: Interval number and interval arithmetic 

Interval analysis is the theory dealing with interval numbers and arithmetic operations.  

Definitions 1. An interval number [x] is defined as a set of all real number x which holds the conditions: 
[𝑥] = [𝑥, 𝑥] = {𝑥 ∈ 𝑅 , 𝑥 ≤ 𝑥 ≤ 𝑥} 

where 𝑥 𝑎𝑛𝑑 𝑥denote the lower and upper bounds of interval [x], respectively. Also, 𝑥  ≤ 𝑥, 𝑥 𝑎𝑛𝑑 𝑥are 
called infimum and supremum. These numbers are also called proper numbers.  

The basic computational operations of addition, subtraction, multiplication, and division are as follows:  

Definition 2. If [x] and [y] are interval then  

[𝑥] + [𝑦]  = [𝑥 + 𝑦, 𝑥 + 𝑦] 

[𝑥] − [𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦] 

[𝑥]. [𝑦] = [𝑚𝑖𝑛(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦) ,𝑚𝑎𝑥 (𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)] 

[𝑥]/[𝑦] = [𝑥]. [1/𝑦, 1/𝑦]                     if   0 ∉ 𝑦 

In the case that 0  [y], Hansen [4] has defined a set of extended rules for intervals [14]: 
  


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[𝑥]
[𝑦]⁄ =

{
 
 
 
 
 
 

 
 
 
 
 
 [ 𝑥 𝑦⁄  ,∞)               𝑖𝑓               𝑥 ≤ 0 𝑎𝑛𝑑 𝑦 = 0 

(−∞, 𝑥
𝑦⁄
]  ∪ [𝑥 𝑦⁄  ,∞)      𝑖𝑓       𝑥 ≤ 0 𝑎𝑛𝑑 𝑦  < 0 <   𝑦

(−∞, 𝑥
𝑦⁄
]    𝑖𝑓      𝑥 ≤ 0 𝑎𝑛𝑑 𝑦 = 0

(−∞,+∞)        𝑖𝑓       𝑥 < 0 < 𝑥

(−∞,+∞)        𝑖𝑓    𝑥 ≥ 0 𝑎𝑛𝑑 𝑥 = 0
 

(−∞,
𝑥
𝑦⁄
]  ∪ [

𝑥
𝑦⁄  ,∞)      𝑖𝑓       𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 < 0 <  𝑦

[ 
𝑥
𝑦⁄
 ,∞)               𝑖𝑓               𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 = 0 

 

    

Some properties of interval arithmetic operations:  

If [x], [y], and [z] are interval numbers then:   

(i) Associative properly is:  

1. ([𝑥] + [𝑦]) + [𝑧] = [𝑥] + ([𝑦] + [𝑧]) 
2. ([𝑥] ∗ [𝑦]) + [𝑧] = [𝑥] ∗ ([𝑦] ∗ [𝑧]) 

(ii) The sub distributive Laws are  

1 . [𝑥] ∗ ([𝑦] ± [𝑧] ⊆ [𝑥] ∗ [𝑦] ± [𝑥] ∗ [𝑧]) 

2 . [𝑥] − [𝑦] ⊆ ([𝑥] + [𝑦]) − ([𝑦] + [𝑧]) 

3.
[𝑥]

[𝑦]
⊆
[𝑥𝑧]

[𝑦𝑧]
 

All interval arithmetic operations are based on the inclusion principle, which has sometimes referred to the 

fundamental theorem of interval analysis, which states at the outcome of the operation on a subset of the input 

interval arguments is included in the outcome of the operation performed on the complete input interval the 

subsets can be smaller intervals or crisp numbers:  

𝑥1
∗ ∈ [𝑥1] , 𝑥2

∗ ∈ [𝑥2] , … , 𝑥𝑛
∗ ∈ [𝑥𝑛] ⇒ 𝑓(𝑥1

∗ , 𝑥2
∗ , … , 𝑥𝑛

∗) ⊂ [𝑓([𝑥1], [𝑥2],… , [𝑥𝑛])]. 
 

 2.2 Rational function interpolation  

Consider a given set of support points (𝑥𝑖, 𝑓𝑖)  , 𝑖 = 0,1,2,… . , 𝜇 + 𝑣. 

We can interpolate these points by using the following rational function:  

 

∅𝜇,𝑣(𝑥) =
𝑝𝜇(𝑥)

𝑞𝑣(𝑥)
=
𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝜇𝑥

𝜇

𝑏0 + 𝑏1𝑥 +⋯+ 𝑏𝑣𝑥
𝑣

 

 

The function ∅𝜇,𝑣(𝑥)is called rational interpolating function to support points (𝑥𝑖 , 𝑓𝑖)  , 𝑖 = 0,1,2,… . , 𝜇 + 𝑣, and 

the integers 𝜇 and  𝑣 are called the Maximum degrees of the polynomials in the numerator and de monitor 

respectively, such that satisfies the interpolation conditions:  

∅𝜇,𝑣(𝑥) =
𝑝𝜇(𝑥)

𝑞𝑣(𝑥)
=

𝑎0+𝑎1𝑥+⋯+𝑎𝜇𝑥
𝜇

𝑏0+𝑏1𝑥+⋯+𝑏𝑣𝑥
𝑣 = 𝑓𝑖   ,   𝑖 = 0,1,2,… , 𝜇 + 𝑣                                                                                   (1) 
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We denote the problem of calculating the rational function ∅𝜇,𝑣(𝑥)from (1) by𝐴𝜇,𝑣, since solving the above 

equations 𝐴𝜇,𝑣is difficult, we can solve the homogeneous system of linear equations  

 

𝑝𝜇,𝑣(𝑥𝑖) − 𝑓𝑖   ∅
𝜇,𝑣(𝑥𝑖) = 0 → (𝑎0 + 𝑎1𝑥𝑖 +⋯+ 𝑎𝜇𝑥𝑖

𝜇) − 𝑓𝑖   (𝑏0 + 𝑏1𝑥𝑖 +⋯+ 𝑏𝑣𝑥𝑖
𝑣) = 0  , 

 
𝑖 = 0,1,2,… , 𝜇 + 𝑣 

  

Denote this system by  𝑆𝜇,𝑣.   

The system, 𝑆𝜇,𝑣  , has always nontrivial solutions because it is a system with 𝜇 + 𝑣 + 1equations and  

𝜇 + 𝑣 + 2 unknowns . 

Theorem 1. The homogeneous linear system, 𝑆𝜇,𝑣, has always non trivial solutions. For each of such solutions,  

∅𝜇,𝑣(𝑥) =
𝑃𝜇,𝑣(𝑥)

𝑄𝜇,𝑣(𝑥)
, 𝜙µ,𝑣 ≠ 0  holds, i.e., all nontrivial define rational expressions [16]. 

Theorem 2. if   𝜑1 and 𝜑2 are both (nontrivial) solutions of the homogeneous linear system 𝑆𝜇,𝑣then they a  
are  𝜑1~𝜑2, that is, they determine the same rational function [16].  

It should be noted that the answer derived from 𝑆𝜇,𝑣 is not always correct in 𝐴𝜇,𝑣, of course, by satisfying 

each of the following conditions we can be sure that the result from 𝑆𝜇,𝑣is correct in 𝐴𝜇,𝑣( ∅𝜇,𝑣solves the system 

𝐴𝜇,𝑣) [16]: 

(i) If  𝑆𝜇,𝑣 has a solution as ∅𝜇,𝑣(𝑥) , which is prime too, then  ∅𝜇,𝑣(𝑥) will also solve 𝐴𝜇,𝑣 . 
 
 

(ii) If  ∅𝜇,𝑣(𝑥) is a solution from 𝑆𝜇,𝑣, ∅𝜇,𝑣(𝑥) ≡ ∅̃𝜇,𝑣(𝑥), and  
 
∅̃𝜇,𝑣(𝑥)is prime, then 𝐴𝜇,𝑣 is solvable if and only 

if ∅̃𝜇,𝑣(𝑥)
 
solves the system  𝑆𝜇,𝑣  . 

(iii) If  𝑆𝜇,𝑣  has the full rank, then 𝐴𝜇,𝑣is solvable if and only if the solution ∅𝜇,𝑣(𝑥) from  𝑆𝜇,𝑣  is prime.   

3. The interval rational interpolation 

Given finite interval-valued data                                                  

(𝑋𝑖 ,[𝑓𝑖   , 𝑓𝑖   ])             𝑖 = 0,1,… , 𝑛 

We consider the problem of interval rational interpolation 

∅(𝑥 ;  �̃�0 , … , �̃�𝑛) =∑�̃�𝑗∅𝑗

𝑛

𝑗=0

(𝑥) 

such that satisfies the interpolation conditions: 
                             

∅(𝑥 ;  �̃�0 , … , �̃�𝑛) = [𝑓𝑖   , 𝑓𝑖  ]                𝑖 = 0,… , 𝑛                                                                                                             (2) 

         
�̃�𝜇(𝑥𝑖)

�̃�𝑣(𝑥𝑖)
= [𝑓𝑖   , 𝑓𝑖  ]  

 

where:  

{
 
 

 
 �̃�𝜇(𝑥𝑖; 𝑎0̃, … , 𝑎�̃�) =∑�̃�𝑗𝑃𝑗(𝑥𝑖)

𝑛

𝑗=0 

�̃�𝜇(𝑥𝑖; 𝑏0̃, … , 𝑏�̃�) =∑�̃�𝑗𝑄𝑗(𝑥𝑖)

𝑛

𝑗=0

 

Based on the right side of equation it is clear that: 

[∅𝑖, ∅𝑖] = [𝑓𝑖, 𝑓𝑖] 

∅(𝑥𝑖; 𝐶0̃, … , 𝐶�̃�) = [∅𝑖, ∅𝑖] 
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where, 

{

∅𝑖 = min{𝑢 | ∅𝑖 ≤ 𝑢 ≤ ∅𝑖}
 

∅𝑖 = max {𝑢 | ∅𝑖 ≤ 𝑢 ≤ ∅𝑖}
 

 
According to the equality of intervals: 
               

𝐿 ∶  ∅(𝑥𝑖; 𝐶0̃, … , 𝐶�̃�) = 𝑓𝑖                                                                                                                                         (3)                  

                      

𝑈 ∶  ∅(𝑥𝑖; 𝐶0̃, … , 𝐶�̃�) = 𝑓𝑖             𝑖 = 0,… , 𝑛                                                                                                   (4) 

 

Considering the problem of interpolation:                             

 

{
 
 

 
 𝑃𝜇,𝑣(𝑥; 𝑎0̃, … , 𝑎�̃�) =∑�̃�𝑗𝑃𝑗(𝑥)

𝑛

𝑗=0 

𝑄𝜇,𝑣(𝑥; 𝑏0̃, … , 𝑏�̃�) =∑�̃�𝑗𝑄𝑗(𝑥)

𝑛

𝑗=0

 

It can be written as follow: 
      

[∅, ∅] = ∅(𝑥 ; 𝐶0̃, … , 𝐶�̃�) =
𝑃𝜇,𝑣(𝑥;𝑎0̃,…,𝑎�̃�)

𝑄𝜇,𝑣(𝑥;𝑏0̃,…,𝑏�̃�)
                                                                                          (5) 

For any i, the problems (IRI)  (3) and (4) are considered, thus two  systems with (n+1)-order will be 

obtained. We rewrite (2) as follows: 

∅(𝑥 ; 𝐶0̃, … , 𝐶�̃�) =∑𝐶𝑗∅𝑗(𝑥)

𝑛

𝑗=0

 

From (4) we have: 

𝑃 (𝑥 ; 𝑎0, … , 𝑎𝑛) =∑𝑎𝑗𝑃𝑗(𝑥)

𝑛

𝑗=0

=∑𝑎𝑗𝑃𝑗(𝑥)

𝑛

𝑗=0

 

where: 

 

𝑎𝑗𝑃𝑗(𝑥) = {

𝑎𝑗𝑃𝑗(𝑥)              𝑃𝑗(𝑥) ≥ 0   
 

𝑎𝑗𝑃𝑗(𝑥)              𝑃𝑗(𝑥) < 0 
, 

and 

𝑄 (𝑥 ; 𝑏0, … , 𝑏𝑛) =∑𝑏𝑗𝑄𝑗(𝑥)

𝑛

𝑗=0

=∑𝑏𝑗𝑄𝑗(𝑥)

𝑛

𝑗=0

 

where: 

𝑏𝑗𝑄𝑗(𝑥) = {

𝑏𝑗𝑄𝑗(𝑥)              𝑄𝑗(𝑥) ≥ 0   
 

𝑏𝑗𝑄𝑗(𝑥)              𝑄𝑗(𝑥) < 0 
, 
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So it can be written as follow: 

𝑃 (𝑥 ; 𝑎0, … , 𝑎𝑛) = ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)

𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

 

𝑄 (𝑥 ; 𝑏0, … , 𝑏𝑛) = ∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)

𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

 

Remark 1. The coefficients  𝑎0 , … . , 𝑎𝜇 , 𝑏0 , … , 𝑏𝑣 are interval values. 

 

On the other hand, 

∅(𝑥 ; 𝐶0̃, … , 𝐶�̃�) =∑𝐶𝑗∅𝑗(𝑥)

𝑛

𝑗=0

 

From (4) we get: 

𝑃 (𝑥 ; 𝑎0, … , 𝑎𝑛) =∑𝑎𝑗𝑝𝑗(𝑥)

𝑛

𝑗=0

=∑𝑎𝑗𝑝𝑗(𝑥)

𝑛

𝑗=0

 

where: 

𝑎𝑗𝑃𝑗(𝑥) = {

𝑎𝑗𝑃𝑗(𝑥)              𝑃𝑗(𝑥) ≥ 0   
 

𝑎𝑗𝑃𝑗(𝑥)𝑎𝑗              𝑃𝑗(𝑥) < 0 
, 

and, 

𝑄 (𝑥 ; 𝑏0, … , 𝑏𝑛) =∑𝑏𝑗𝑄𝑗(𝑥)

𝑛

𝑗=0

=∑𝑏𝑗𝑄(𝑥)

𝑛

𝑗=0

 

where: 

𝑏𝑗𝑄𝑗(𝑥) = {

𝑏𝑗𝑄𝑗(𝑥)              𝑄𝑗(𝑥) ≥ 0   
 

𝑏𝑗𝑄𝑗(𝑥)𝑎𝑗              𝑄𝑗(𝑥) < 0 
, 

So we get: 

𝑃(𝑥 ; 𝑎0, … , 𝑎𝑛) = ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)

𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

 

𝑄 (𝑥 ; 𝑏0, … , 𝑏𝑛) = ∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)

𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

 

We introduce the problem of the interval interpolation (L) as follow: 

 

∅𝜇,𝑣(𝑥𝑖) =
𝑃𝜇,𝑣(𝑥𝑖)

𝑄
𝜇,𝑣
(𝑥𝑖)

= 𝑓𝑖     , ∅(𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) =   
𝑃(𝑥𝑖 ; 𝑎0, … , 𝑎𝑛)

𝑄(𝑥𝑖 ; 𝑏0, … , 𝑏𝑛)
 =  𝑓𝑖    

Therefore, the system  is as below:  

 

𝐴𝜇,𝑣 ∶ ∅ (𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) = 𝑓𝑖 ⇒ 
 

∅ (𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) =
∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

= 𝑓𝑖  

 We denote the following homogeneous system by𝑆𝜇,𝑣: 

  𝑆𝜇,𝑣 ∶ ∅ (𝑥𝑖  ; 𝑐0, … , 𝑐𝑛 ) = 

, vA 
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 = ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0 − 𝑓𝑖 (∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0 ) = 0                        (6)  

 

Here, 0̃ = (0, 0). 

Similarly, the problem (U) will be as follows:      

∅
𝜇,𝑣
(𝑥𝑖) =

𝑃
𝜇,𝑣
(𝑥𝑖)

𝑄𝜇,𝑣(𝑥𝑖)
= 𝑓𝑖    , ∅(𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) =   

𝑃(𝑥𝑖 ; 𝑎0, … , 𝑎𝑛)

𝑄(𝑥𝑖 ; 𝑏0, … , 𝑏𝑛)
 =  𝑓𝑖    

So, we get the systems  , and , respectively: 

    

∅(𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) =
∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

= 𝑓𝑖 

And, 

𝑆
𝜇,𝑣

∶ ∅(𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) = 

= ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0 − 𝑓𝑖 (∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0 ) = 0                         (7)    

      

As a result: 

𝐿 ∶  ∅ (𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) = ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)

𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

− 𝑓𝑖 ( ∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)

𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

) = 0 

𝑈 ∶ ∅(𝑥𝑖 ; 𝑐0, … , 𝑐𝑛 ) = ∑ 𝑎𝑗𝑃𝑗(𝑥) + ∑ 𝑎𝑗𝑃𝑗(𝑥)

𝑃𝑗(𝑥)<0𝑃𝑗(𝑥)≥0

− 𝑓𝑖 ( ∑ 𝑏𝑗𝑄𝑗(𝑥) + ∑ 𝑏𝑗𝑄𝑗(𝑥)

𝑄𝑗(𝑥)<0𝑄𝑗(𝑥)≥0

) = 0 

By applying (6), and (7), we can say that ∅,∅ are interval values constantly, in this case, we obtain two 

types of the interval rational interpolation (L), (U), respectively. Which should be unique either, and (L) 

interpolates support points (𝑥𝑖, 𝑓𝑖), in a similar manner, (𝑥𝑖, 𝑓𝑖) is interpolated by (U). Hence, here instead of an 

interpolation function, a strip of the function of rational interpolation is obtained. 

Therefore, it is figured that each set of points (𝑥𝑖 , 𝑓𝑖), and (𝑥𝑖 , 𝑓𝑖)make a function for any i=0,…,n , and the 

corresponding interpolation problem of them will be introduced, and defined the problem interpolation 

correspond to them. 

Now, if we define 𝑃𝑗(𝑥) = 𝑥
𝑗 , 𝑗 = 0,… , 𝑛  , 𝑄𝑠(𝑥) = 𝑥

𝑠 ,       𝑠 = 0 , … , 𝑣  , the interval rational 

interpolation (L), (U), is defined as: 

𝐿 ∶  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗 + ∑ 𝑎𝑗𝑥
𝑗

𝑥𝑗<0𝑥𝑗≥0

∑ 𝑏𝑠𝑥
𝑠 + ∑ 𝑏𝑠𝑥

𝑠
𝑥𝑠<0𝑥𝑠≥0

 

              (8) 
                                                                                                 

𝑈 ∶  𝜓(𝑥)  =
∑ 𝑎𝑗𝑥

𝑗+∑ 𝑎𝑗𝑥
𝑗

𝑥𝑗<0𝑥𝑗≥0

∑ 𝑏𝑠𝑥
𝑠+∑ 𝑏𝑠𝑥

𝑠
𝑥𝑠<0𝑥𝑠≥0

                                          

 It is obvious that considering the i-th power of x both as odd and even can be written: 

 

𝐿 ∶  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗
𝑗=2𝑘 +∑ 𝑎𝑗𝑥

𝑗
𝑗=2𝑘+1

∑ 𝑏𝑠𝑥
𝑠 +∑ 𝑏𝑠𝑥

𝑠
𝑠=2𝑘+1𝑠=2𝑘

                                𝑥 < 0 

, vA  , vS 
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𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝝁
𝒋=𝟎

∑ 𝑏𝑠𝑥
𝑠𝒗

𝒔=𝟎

                         𝑘 = 0,… , [
𝑛

2
]                    𝑥 ≥ 0 

   

and: 

𝑈 ∶  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗
𝑗=2𝑘 + ∑ 𝑎𝑗𝑥

𝑗
𝑗=2𝑘+1

∑ 𝑏𝑠𝑥
𝑠 + ∑ 𝑏𝑠𝑥

𝑠
𝑠=2𝑘+1𝑠=2𝑘

                                𝑥 < 0 

  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝜇
𝑗=0

∑ 𝑏𝑠𝑥
𝑠𝑣

𝑠=0
                         𝑘 = 0,… , [

𝑛

2
]                    𝑥 ≥ 0 

The following states can be considered for the system (8): 

Case (1): If for all𝑥 , 𝑗 , 𝑎𝑛𝑑 𝑠 , 𝑥𝑗𝑎𝑛𝑑 𝑥𝑠 are non- negative. 

 In this case: 

𝐿 ∶  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝝁
𝒋=𝟎

∑ 𝑏𝑠𝑥
𝑠𝒗

𝒔=𝟎

 

𝑈 ∶ 𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝝁
𝒋=𝟎

∑ 𝑏𝑠𝑥
𝑠𝒗

𝒔=𝟎

 

Case (2): If for all 𝑥 , 𝑗 , 𝑎𝑛𝑑 𝑠 , 𝑥𝑗𝑎𝑛𝑑 𝑥𝑠 are negative, (however, this will never occur due to the constant 

coefficient). Thus, we have: 

𝐿 ∶  𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝝁
𝒋=𝟎

∑ 𝑏𝑠𝑥
𝑠𝒗

𝒔=𝟎

 

𝑈 ∶ 𝜓(𝑥) =
∑ 𝑎𝑗𝑥

𝑗𝝁
𝒋=𝟎

∑ 𝑏𝑠𝑥
𝑠𝒗

𝒔=𝟎

 

Case (3):  if for some  𝑥 , 𝑗 , 𝑎𝑛𝑑 𝑥𝑗  are non-negative, and for some  𝑥 , 𝑗 , 𝑎𝑛𝑑 𝑥𝑗   are negative (for 
some 𝑥 , 𝑗 , 𝑎𝑛𝑑 𝑥𝑗 are negative) for some 𝑥 , 𝑠 , 𝑎𝑛𝑑 𝑥𝑠 are non-negative ( for some 𝑥 , 𝑠 , 𝑎𝑛𝑑 𝑥𝑠 are negative) 
hence, the system (8) yields the same. 

Definition 3.  Let {(𝑎𝑖, 𝑎𝑖) , 1 ≤ 𝑖 ≤ 𝜇} and {(𝑏𝑗, 𝑏𝑗) , 1 ≤ 𝑗 ≤ 𝑣}  denote the coefficients of polynomial 

(𝑃(𝑥),  𝑃(𝑥))  , (𝑄(𝑥),  𝑄(𝑥)) , respectively. The interval-valued coefficient 𝑉 = { (𝑉𝑖, 𝑉𝑖)  , 1 ≤ 𝑖 ≤ 𝜇}  

corresponding to 𝑃(𝑥),  𝑃(𝑥) is defined by: 

𝑉𝑖 = min {𝑎0, … , 𝑎𝜇 , 𝑎0, … , 𝑎𝜇} 

𝑉𝑖 = max {𝑎0, … , 𝑎𝜇 , 𝑎0, … , 𝑎𝜇} 

It is called interval coefficients of the interval polynomial, 𝑃(𝑥),  𝑃(𝑥).  

In a similar manner, 𝑈{ (𝑈𝑗, 𝑈𝑗)  , 1 ≤ 𝑗 ≤ 𝑣}  corresponds to 𝑄(𝑥),  𝑄(𝑥) ,which are denoted by: 

𝑈𝑗 = min {𝑏0, … , 𝑏𝑣 , 𝑏0, … , 𝑏𝑣} 

𝑈𝑗 = max {𝑏0, … , 𝑏𝑣 , 𝑏0, … , 𝑏𝑣} 

It is called interval coefficients of the interval polynomial, 𝑄(𝑥),  𝑄(𝑥).  

If {(𝑎𝑖, 𝑎𝑖) , 1 ≤ 𝑖 ≤ 𝜇}   , {(𝑏𝑗 , 𝑏𝑗) , 1 ≤ 𝑗 ≤ 𝑣}  are all interval coefficients which 𝑉𝑖 = 𝑎𝑖 , 𝑉𝑖 = 𝑎𝑖 . 

Similarly,𝑈𝑗 = 𝑏𝑗, 𝑈𝑗 = 𝑏𝑗 , 1 ≤ 𝑖 ≤ 𝜇,   1 ≤ 𝑗 ≤ 𝑣 then U, V are called a robust interval coefficient as a result, 

rational interpolator corresponds to the robust. Otherwise, U and V are called weak interval rational interpolator 

corresponding to the weak. 
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3.2. The Error of the interval interpolation  

Since the error in the numerical method is inevitable, we are going to analyze the error in this method of the 

rational interpolation under interval data.  

Theorem 3. Consider (𝑥𝑖 , [𝑓𝑖 , 𝑓𝑖])  , 𝑖 = 0,… , 𝑛   the support points (𝑥𝑖, 𝑓𝑖)   for function [𝑓𝑖, 𝑓𝑖] , and  

[𝜓𝑖(𝑥), 𝜓𝑖(𝑥)] , rational interpolation, be the corresponding to [𝑓𝑖, 𝑓𝑖] . We suppose that the derivatives of   

functions, f(x) , f(x) , up to (n+1)-th order in the domain of definition are continuous and they exist,          

respectively then: 

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
+ 𝑅(𝑥) 

where: 

𝑅(𝑥) =
(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

𝑄(𝑥) . 𝑞(𝑥) . 𝑛!
. [
𝑑𝑛

𝑑𝑥𝑛
(𝑄(𝑥). 𝑓(𝑥). 𝑞(𝑥))]𝜂 

Similarly, for 𝑅(𝑥) we have: 

𝑅(𝑥) =
(𝑥−𝑥1)…(𝑥−𝑥𝑛)

𝑄(𝑥) .𝑞(𝑥) .𝑛!
. [
𝑑𝑛

𝑑𝑥𝑛
(𝑄(𝑥). 𝑓(𝑥). 𝑞(𝑥))]𝜂. 

  
Proof: Suppose 𝛼1, … . , 𝛼𝑡e is inaccessible points in[𝑎, 𝑏] with iterated order 𝑟1, … . , 𝑟𝑡 where: 
  

          𝜑(𝑥) = (𝑥 − 𝛼1)
𝑟1 … (𝑥 − 𝛼𝑡)

𝑟𝑡                              deg (𝑞(𝑥)) ≥ 𝑚 , ∑ 𝑟𝑖
𝑚
𝑖=1 = 𝑚. 

So, 𝑓(𝑥). 𝜑(𝑥)  , 𝑓(𝑥). 𝜑(𝑥) , 𝑓(𝑥). 𝜑(𝑥) 𝑎𝑛𝑑 𝑓(𝑥). 𝜑(𝑥)  are defined on [𝑎, 𝑏] . 𝑇(𝑥)  is determined as 

following : 

      

𝑄(𝑥) = {
𝑇(𝑥). 𝜑(𝑥)

𝑇(𝑥). 𝜑(𝑥)
𝑜𝑟          , deg(𝑄(𝑥)) = deg (𝑞(𝑥))    

On the other hand, 𝛼1, … . , 𝛼𝑠 are inaccessible points in [𝑎, 𝑏] with iterated order 𝑟1, … . , 𝑟𝑠  whereas, 

 

𝜑(𝑥) = (𝑥 − 𝛼1)
𝑟1 … (𝑥 − 𝛼𝑠)

𝑟𝑠                              deg (𝑞(𝑥)) ≥ 𝑛 , ∑ 𝑟𝑖
𝑚
𝑖=1 = 𝑛. . 

 

Therefore, 𝑓(𝑥). 𝜑(𝑥)  , 𝑓(𝑥). 𝜑(𝑥) , 𝑓(𝑥). 𝜑(𝑥) 𝑎𝑛𝑑 𝑓(𝑥). 𝜑(𝑥)  are defined on [𝑎, 𝑏] .  𝑇(𝑥)   determine 

such that: 

𝑄(𝑥) = {
𝑇(𝑥). 𝜑(𝑥)

𝑇(𝑥). 𝜑(𝑥)
𝑜𝑟          , deg (𝑄(𝑥)) = deg (𝑞(𝑥)) 

We consider the following two cases: 
 

       Case (1): 𝑛 = 2ℎ ⇒ 𝜇 + 𝑣 + 1 = 2ℎ ⇒ 𝜇 + 𝑣 = 2ℎ − 1.   

Hence, in the rational interpolation, 
𝑝(𝑥)

𝑞(𝑥)
  , 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝(𝑥) 𝑎𝑛𝑑 𝑞(𝑥) 𝑎𝑟𝑒 ℎ 𝑎𝑛𝑑 ℎ − 1, respectively. So 

we can say that, deg (𝑝(𝑥). 𝑄(𝑥)) = 2ℎ − 1 = 𝑛 − 1. 
 

       Case (2):  𝑛 = 2ℎ + 1 ⇒ 𝜇 + 𝑣 + 1 = 2ℎ + 1 ⇒ 𝜇 + 𝑣 = 2ℎ. 

In the case, degree of  𝑝(𝑥)and 𝑞(𝑥)  are h. In addition, we will have:  

deg (𝑝(𝑥). 𝑄(𝑥)) = 2ℎ = 𝑛 − 1 

Now, we define as follows: 
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𝑅(𝑥) = 𝑘 .
(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

𝑄(𝑥) . 𝑞(𝑥)
 

      𝑓(𝑡) =
𝑝(𝑡)

𝑓(𝑡)
+ 𝑘 .

(𝑡−𝑥1)…(𝑡−𝑥𝑛)

𝑄(𝑡) .𝑞(𝑡)
                                                                                                                  (9) 

By using (1), we get: 

𝑤(𝑡) = 𝑓(𝑡). 𝑄(𝑡). 𝑞(𝑡) − 𝑝(𝑡). 𝑄(𝑡) − 𝑘. (𝑡 − 𝑥1)… (𝑡 − 𝑥𝑛) 

We can find a constant k such that 𝑤(𝑡)has zeros, 𝑥0, … , 𝑥𝑛, 𝑥 , by Rolle’s theorem, repeatedly, 𝑤′(𝑡) has at 

least n  zeros,
 
𝑤"(𝑡) at least 1n   zeros and finally 𝑤𝑛(𝑡) at least one zeros. If the same zero is denoted by 𝜂. 

Since 𝑤𝑛(𝜂)=0 . 

𝑤𝑛(𝜂) = [
𝑑𝑛

𝑑𝑡𝑛
(𝑓(𝑡). 𝑄(𝑡). 𝑞(𝑡))]𝜂 − 0 − 𝑘. 𝑛! = 0         (10) 

                                                          
Thus, from (9), (10), we have: 

𝑅(𝑥) =
(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

𝑄(𝑥) . 𝑞(𝑥) . 𝑛!
. [
𝑑𝑛

𝑑𝑥𝑛
(𝑄(𝑥). 𝑓(𝑥). 𝑞(𝑥))]𝜂 

 Furthermore, similar 𝑅(𝑥), we obtain: 

𝑅(𝑥) =
(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)

𝑄(𝑥) . 𝑞(𝑥) . 𝑛!
. [
𝑑𝑛

𝑑𝑥𝑛
(𝑄(𝑥). 𝑓(𝑥). 𝑞(𝑥))]𝜂 

The proof is complete.                                  

4. Numerical example 

In this section we solve examples to illustrate our approach.  

Example 1. Consider the points given in Table 1. 

                  Table 1. Data of Example 1 

𝑥i 0 1 2 3 

[𝑓𝑖, 𝑓𝑖] [-0.5,1] [-1.5] [-1,0.5] [8,9.5] 

 Here,     
𝜇 + 𝑣 = 3      𝜇 = 2  ,   𝑣 = 2 

By using case (1) the interval rational expression 

∅2,1(𝑥𝑖) =
𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖

2

𝑏0 + 𝑏1𝑥𝑖
= 𝑓𝑖 

From (3), we have the homogeneous system 𝑆2,1 

𝑆2,1 ∶  𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 − 𝑓𝑖(𝑏0 + 𝑏1𝑥𝑖) = 0 

𝑎0 + 0.5𝑏0 = 0

𝑎0 + 𝑎1 + 𝑎2 + 1.5𝑏0 + 1.5𝑏1 = 0

𝑎0 + 2𝑎1 + 4𝑎2 + 𝑏0 + 2𝑏1 = 0

𝑎0 + 3𝑎1 + 9𝑎2 − 8𝑏0 + 24𝑏1 = 0

 

∅2,1(𝑥𝑖) =
𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖

2

𝑏0 + 𝑏1𝑥𝑖
= 𝑓𝑖 
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Similarly: 

𝑆2,1 ∶ 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥𝑖) = 0 

 

𝑎0 − 𝑏0 = 0

𝑎0 + 𝑎1 + 𝑎2 = 0

𝑎0 + 2𝑎1 + 4𝑎2 − 0.5𝑏0 − 𝑏1 = 0

𝑎0 + 3𝑎1 + 9𝑎2 − 9.5𝑏0 − 28.5𝑏1 = 0

 

[
 
 
 
 
 
 
 
1
1
1
1
0
0
0
0

    

0
1
2
3
0
0
0
0

     

0
1
4
9
0
0
0
0

  

0
0
0
0
0
0
−1
−28.5

    

0
0
0
0
1
1
1
1

     

0
0
0
0
0
1
2
3

     

0
0
0
0
0
1
4
9

    

0
1.5
2
−24
0
0
0
0

   

]
 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
 
𝑎0
𝑎1
𝑎2

𝑏1

𝑎0
𝑎1
𝑎2

𝑏1]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
−1
−3
−2
16
0.5
0
0.25
4.75]

 
 
 
 
 
 
 

 

𝑏0 = [0.5 ,2] 

Now, solving the above systems 𝑆2,1 , 𝑆2,1yields the coefficients: 

  

𝑎 = [
−1

−2.40196
1.22549

]                    ,                    𝑎 = [
0.5

−0.806373
0.306373

] 

𝑏 = [
0.5

−0.137255
]                    ,                    𝑏 = [

2
−0.54902

] 

The fact that𝑎2 , 𝑏2 are interval coefficients and in this case are weak interval coefficients given by 

 

 𝑉 = [
−1

−2.40196
0.306373

]                    ,                    𝑉 = [
0.5

−0.806373
1.22549

] 

𝑈 = [
0.5

−0.54902
]                    ,                    𝑈 = [

2
−0.137255

] . 

 

Finally, we obtain the interval rational interpolation as belows: 

 

𝜓(𝑥) =
−1 − 2.402 𝑥 + 0.306𝑥2

2 − 0.137 𝑥
 

 

𝜓(𝑥) =
−0.5−0.806 𝑥+1.225𝑥2

0.5−0.549 𝑥
  . 

Example 2. Consider the following points given in Table 2. 

                  Table 2. Data of Example 2 

𝑥𝑖 0 1 2 3 

[𝑓𝑖, 𝑓𝑖] [0.5,1.5] [2.3] [6.5,7.5] [19.5,20.5] 

 

Here, 𝜇 + 𝑣 = 3 , 𝜇 = 2 , 𝑣 = 1. 
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By using case (1) the interval rational expression 

∅2,1(𝑥𝑖) =
𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖

2

𝑏0 + 𝑏1𝑥𝑖
= 𝑓𝑖 

From (3), we have the homogeneous system 𝑆2,1 

 

𝑆2,1 ∶  𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 − 𝑓𝑖(𝑏0 + 𝑏1𝑥𝑖) = 0 

𝑎0 − 0.5𝑏0 = 0

𝑎0 + 𝑎2 − 2𝑏1 = 1.5

2𝑎1 + 4𝑎2 − 13𝑏1 = 6

3𝑎1 + 9𝑎2 − 58.5𝑏1 = 19

 

∅2,1(𝑥𝑖) =
𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖

2

𝑏0 + 𝑏1𝑥𝑖
= 𝑓𝑖 

Similarly: 

𝑆2,1 ∶  𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥𝑖) = 0 

𝑎0 − 1.5𝑏0 = 0

𝑎1 + 𝑎2 − 3𝑏1 = 1.35

2𝑎1 + 4𝑎2 − 15𝑏1 = 5.4

3𝑎1 + 9𝑎2 − 61.5𝑏1 = 17.1

 

𝑏0 = [0.9,1] 

Solving the above systems 𝑆2,1, 𝑆2,1 yields the coefficients: 

  

𝑎 = [
0.5

0.539216
0.529412

]                    ,                    𝑎 = [
1.35

0.291176
0.476471

] 

𝑏 = [
0.9

−0.194118
]                    ,                    𝑏 = [

1
−0.215686

]  

The fact that  𝑎1 , 𝑎2, 𝑏2 are not interval coefficients and we can modify the following weak interval 

coefficients:2 

𝑉 = [
0.5

0.291176
0.476471

]                    ,                    𝑉 = [
1.35

0.539216
0.529412

] 

𝑈 = [
0.9

−0.215686
]                    ,                    𝑈 = [

1
−0.194118

] . 

Therefore, we get the following interval rational interpolation  

𝜓(𝑥) =
−0.5 + 0.291 𝑥 + 0.476𝑥2

1 − 0.194 𝑥
 

𝜓(𝑥) =
1.35−0.539 𝑥+0.529𝑥2

0.9−0.216 𝑥
 . 

Example 3. Consider the points given Table 3. 

                  Table 3. Data of Example 3 

2 1 0 -1 -2 𝑥𝑖 

[0.5,1.5] [-0.5,0.5] [-0.5,0.5] [1.5,2.5] [0.5,1.5] [𝑓𝑖 , 𝑓𝑖] 
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Here,   𝜇 + 𝑣 = 4    , 𝜇 = 2   , 𝑣 = 2 

 

{
 
 

 
 𝜓(𝑥) = ∑ 𝑎𝑗𝑥

𝑗 + ∑ 𝑎𝑗𝑥
𝑗 − 𝑓𝑖 (∑ 𝑏𝑠𝑥

𝑠 + ∑ 𝑏𝑠𝑥
𝑠

𝑠=2𝑘+1𝑠=2𝑘

) = 0                𝑥 < 0           

𝑗=2𝑘+1𝑗=2𝑘

𝜓(𝑥) =∑𝑎𝑗𝑥
𝑗

𝜇

𝑗=0

− 𝑓𝑖 (∑𝑏𝑠𝑥
𝑠

𝑣

𝑠=0

) = 0                                      𝑥 ≥ 0                                                   

 

{
𝜓(𝑥) = 𝑎0 + 𝑎1𝑥

1 + 𝑎2𝑥
2 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥

1 + 𝑏2𝑥
2) = 0          𝑥 < 0 

𝜓(𝑥) = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 − 𝑓𝑖(𝑏0 + 𝑏1𝑥
1 + 𝑏2𝑥

2) = 0          𝑥 ≥ 0
 

𝑎0 − 2𝑎1 + 4𝑎2 − 0.5𝑏0 + 𝑏1 − 2𝑏2 = 0

𝑎0 − 𝑎1 + 𝑎2 − 1.5𝑏0 + 1.5𝑏1 − 1.5𝑏2 = 0

𝑎0 + 0.5𝑏0 = 0

𝑎0 + 𝑎1 + 𝑎2 + 0.5𝑏0 + 0.5𝑏1 + 0.5𝑏2 = 0

𝑎0 + 2𝑎1 + 4𝑎2 − 0.5𝑏0 − 𝑏1 − 2𝑏2 = 0

 

{
 
 

 
 𝜓(𝑥) = ∑ 𝑎𝑗𝑥

𝑗 + ∑ 𝑎𝑗𝑥
𝑗 − 𝑓𝑖 (∑ 𝑏𝑠𝑥

𝑠 + ∑ 𝑏𝑠𝑥
𝑠

𝑠=2𝑘+1𝑠=2𝑘

) = 0         𝑥 < 0                            

𝑗=2𝑘+1𝑗=2𝑘

𝜓(𝑥) =∑𝑎𝑗𝑥
𝑗

𝜇

𝑗=0

− 𝑓𝑖 (∑𝑏𝑠𝑥
𝑠

𝑣

𝑠=0

) = 0     𝑘 = 0,… , [
𝑛

2
]                  𝑥 ≥ 0                                                   

 

{
𝜓(𝑥) = 𝑎0 + 𝑎1𝑥

1 + 𝑎2𝑥
2 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥

1 + 𝑏2𝑥
2) = 0          𝑥 < 0 

𝜓(𝑥) = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥
1 + 𝑏2𝑥

2) = 0          𝑥 ≥ 0
 

𝑎0 − 2𝑎1 + 4𝑎2 − 1.5𝑏0 + 3𝑏1 − 6𝑏2 = 0

𝑎0 − 𝑎1 + 𝑎2 − 2.5𝑏0 + 2.5𝑏1 − 2.5𝑏2 = 0

𝑎0 − 0.5𝑏0 = 0

𝑎0 + 𝑎1 + 𝑎2 − 0.5𝑏0 − 0.5𝑏1 − 0.5𝑏2 = 0

 

𝑎 = [
−1
4.875
−3.875

]                    ,                    𝑎 = [
0.25
−4.875
4.625

] 

𝑏 = [
0.5
−3.75
3.25

]                    ,                    𝑏 = [
2
3.75
−5.75

] 

The fact that 𝑎1, 𝑏2 are not interval coefficients and we can modify the following weak interval coefficients: 

𝑉 = [
−1

−4.875
−3.875

]                    ,                    𝑉 = [
0.25
4.875
4.625

] 

𝑈 = [
0.5
−3.75
−5.75

]                    ,                    𝑈 = [
2
3.75
3.25

]. 

Also, we have: 
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{
𝜓(𝑥) =

−1+4.875 𝑥−3.875𝑥2

2−3.75 𝑥+3.25𝑥2
                               𝑥 < 0

𝜓(𝑥) =
−1−4.875 𝑥−3.875𝑥2

2+3.75 𝑥+3.25𝑥2
                              𝑥 ≥ 0

, 

{
𝜓(𝑥) =

0.25−4.875 𝑥+4.625𝑥2

0.5+3.75 𝑥−5.75𝑥2
                               𝑥 < 0

𝜓(𝑥) =
0.25+4.875 𝑥+4.625𝑥2

0.5−3.75 𝑥−5.75𝑥2
                              𝑥 ≥ 0

. 

 

Example 4. Consider the following point given in Table 4. 

                  Table 4. Data of Example 4 

𝑥𝑖 -2 -1 1 

[𝑓𝑖 , 𝑓𝑖] [-10,-8] [-37,-35] [-37,-35] 

 

Here, 𝜇 + 𝑣 = 2  , 𝜇 = 1 ,    𝑣 = 1 

       {
𝜓(𝑥) = 𝑎0 + 𝑎1𝑥

1 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥
1) = 0          𝑥 < 0 

𝜓(𝑥) = 𝑎0 + 𝑎1𝑥
1 − 𝑓𝑖(𝑏0 + 𝑏1𝑥

1) = 0          𝑥 ≥ 0
 

{
𝜓(𝑥) = 𝑎0 + 𝑎1𝑥

1 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥
1) = 0          𝑥 < 0 

𝜓(𝑥) = 𝑎0 + 𝑎1𝑥
1 − 𝑓𝑖 (𝑏0 + 𝑏1𝑥

1) = 0          𝑥 ≥ 0
 

𝑎0 − 2𝑎1 + 10𝑏0 − 20𝑏1 = 0

𝑎0 − 𝑎1 + 37𝑏0 − 37𝑏1 = 0

𝑎0 + 𝑎1 + 37𝑏0 + 37𝑏1 = 0

 

𝑎0 − 2𝑎1 + 8𝑏0 − 16𝑏1 = 0

𝑎0 − 𝑎1 + 35𝑏0 + 35𝑏1 = 0

𝑎0 + 𝑎1 + 35𝑏0 + 35𝑏1 = 0

 

𝑎 = [
−793

256.5
]                    ,                    𝑎 = [

729
−256.5

] 

𝑏 = [
0

−13.5
]                    ,                    𝑏 = [

1
13.5

]. 

The fact that 𝑎1 are not interval coefficients and we can modify the following weak interval coefficients: 

 

𝑉 = [
−793
−256.5

]                    ,                    𝑉 = [
729
256.5

] 

𝑈 = [
0

−13.5
]                    ,                    𝑈 = [

1
13.5

]. 

Now, we get: 

 

{
𝜓(𝑥) =

−793+256.5 𝑥

1−13.5 𝑥
                               𝑥 < 0

𝜓(𝑥) =
−793−256.5 𝑥

1+13.5 𝑥
                              𝑥 ≥ 0

, 

{
𝜓(𝑥) =

729−256.5 𝑥

13.5 𝑥
                               𝑥 < 0

𝜓(𝑥) =
729+256.5 𝑥

−13.5 𝑥
                              𝑥 ≥ 0

. 
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Remark 2: It is important to note that in example 1, 𝑥𝑖  are positive and 𝑓𝑖  are intervals both positive and 

negative.  𝑥𝑖s are positive in the second example and 𝑓𝑖 intervals include positive numbers. There are 𝑥𝑖 and 𝑓𝑖 

intervals both positive and negative numbers in the third example. In example 4, both positive and negative 

numbers are included in 𝑓𝑖  intervals, and 𝑥𝑖  are all negative. In all of the above examples, we obtain weak 

interval coefficients. Therefore, the corresponding rational interpolator will also be weak, so we have to pick the 

interval carefully and delicately (support interval). Currently, the proposed method has several advantages.  

5. Conclusion 

The innovation in rational interpolation under interval data makes this study unique. However, this method 

has some limitations, including weak interval coefficients and weak interpolators as a result. The intervals to be 

considered must be carefully and delicately chosen. Using this method, it is important that the distance between 

intervals be small. In order to compensate for this shortcoming, the authors suggest including whether 

appropriate intervals can be found to implement this method, and the interpolator responds to interval 

coefficients with robustness. A second suggestion is to consider the interval interpolation of the poles. 

Therefore, we can find intervals, there were in the corresponding rational interpolator, without poles, so that we 

can achieve better approximations.  
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