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A R T I C L E  I N F O  A B S T R A C T 

Data envelopment analysis (DEA) is an excellent method to evaluate the 

efficiency of homogeneous Decision Making Units (DMUs). This procedure 

considers the internal structure of DMUs as black box systems. In the real world, 

many systems are a combination of two stages that are connected with 

intermediate measures. In fact, intermediate measures are considered as the 

outputs of the first stage and the inputs of the second stage. To evaluate the 

efficiency of these systems, network DEA (NDEA) models are presented. In 

some cases, these systems may have shared inputs, and also part of the 

intermediate measures will be allocated as inputs of second-stage. We also 

frequently deal uncertain information such as stochastic data, fuzzy data and so 

on. Therefore, in practice, it is not easy to obtain the exact values of these inputs 

and assign them to each of the stages. Also, it is not possible to easily determine 

the use of the second stage of intermediate measures. Therefore, in this paper, we 

shall combine fuzzy DEA and NDEA models which introduce a model based on 

the multiplicative approach. To this end, we use the non-compensatory property 

of the multiplication operator and the   cut procedure. These models calculate 

the   cut interval of overall efficiency and efficiency of stages in the presence 

of triangular fuzzy numbers (TFNs). Also, specify the optimal portion of stages 

in the use of shared inputs and the portion of the second stage of intermediate 

measures is specified. Furthermore, the product of the upper (the lower) bound of 

the   cut of the stages efficiency is considered as the upper (the lower) bound 

overall efficiency. Finally, we will illustrate the proposed models by using a 

numerical example extracted from the extant literature.  
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1. Introduction 

   DEA was first introduced by Charnes et al. [2] which is a non-parametric tool for evaluating the efficiency 

of decision-making units (DMUs) (Also, see [1]). Afterward, numerous studies have been introduced that 

evaluate the efficiency of systems in a variety of applications. Recently, in order to stock evaluation and 

portfolio selection under data ambiguity a new optimistic and pessimistic fuzzy DEA procedure is resented by 

Peykani et al. [28]. Also, a new fuzzy stochastic DEA model is proposed by Golami [7] that measure the 

efficiency of DMUs in presence of undesirable outputs [23, 30, 32]. 

In the real-life problems, DMUs may have network structures. Hence, to assess the efficiency of such 

systems, conventional DEA models do not work well. Actually, these models treat DMUs as a black box system 

and ignore their internal structure. Therefore, the decision maker (DM) does not have comprehensive 

information about the internal factors that cause inefficiency. Hence, NDEA models were introduced to solve 

this problem. Two-stage systems as a special case of network system have very important in many applications 

such as banks, hospitals, airports, and others. For example, each bank branch can be viewed as a two-stage 

system which stage1 as the “attract resources” stage and the second stage as the “resources allocation” stage. In 

two-stage systems, the produced outputs of stage1 become the inputs for stage 2 which are named by 

intermediate measures. 

Recently, several models are presented in order to measure the efficiency of two-stage systems. Firstly, 

Seiford and Zhu [31], suggested models for measuring the efficiency of two-stage systems, independently. 

Based on the proposed model, the whole system may be efficient but stages1, 2 are not efficient that is a 

weakness. Hence, in order to overcome this weakness, Kao and Hwang [13] consider the relations of stages and 

introduced a model that measures the efficiency of system and stages simultaneously (under the constant returns 

to scale (CRS)). And the overall efficiency is the product of the efficiency of stages. Their model cannot 

measure the efficiency of two-stage systems under the variable returns to scale (VRS). Therefore, Chen et al. [3] 

presented the models that can evaluate the efficiency of two-stage systems under CRS and VRS. Also, a 

weighted average of the efficiencies of stages considered as the overall efficiency. 

After that, numerous studies focus on the extended structures of two-stage systems and suggested the 

models for evaluating these systems. In the subsequent years, based on multiplicative and additive approaches 

of NDEA, various researches have been conducted to evaluate the performance of extended two-stage systems. 

In many of these articles, using the DM’s point of view in choosing a cooperative and non-cooperative 

perspective, the efficiency of the system and its stages have been obtained. For example, Zha and Liang [41], 

using a cooperative approach, calculated the efficiency of two-stage systems in the presence of shared inputs. 

Also, Li et al. [20] in order to measure the efficiency of two-stage systems with additional input in the second 

stage, applied both cooperative and non-cooperative perspectives. They also used a heuristic algorithm to solve 

the derived (obtained) model from the cooperative approach. The efficiency of two-stage systems with shared 

inputs and free intermediate measures was evaluated by Jianfeng [11] using additive efficiency decomposition 

method. Li et al. [19] also calculated the efficiency of two-stage systems in the presence of shared inputs and 

shared outputs by using the additive decomposition approach. 

Toloo et al. [36] suggested a novel DEA model for measuring the efficiency of two-stage systems with 

shared inputs. Izadikhah et al. [10] measured the efficiency of systems with freely distributed initial inputs and 

shared intermediate outputs.  In order to evaluate the efficiency of multi-period two-stage systems, a model 

based on a slacks-based measure (SBM) was introduced by Esfidani et al. [5], in which the efficiency of 20 

branches of Mellat Bank was also evaluated. Nemati et al. [26], Considering the minor effects between inputs 

and outputs, evaluated the efficiency of systems that have several production lines with a two-stage network 

structure and each production line uses the inputs according to its needs.  

All the mentioned studies are limited to the use of crisp inputs and outputs and intermediate measures. 

However, one of the major challenges in application problems with two-stage structure is to obtain quantities 

values for inputs, intermediate measures and outputs (Such as the quality of life, the quality of service, … or for 
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example, we cannot precisely measure the quality of life.). In other words, the data may be imprecise (uncertain) 

(for example stochastic data, fuzzy data, interval data and so on). Therefore, in the field of application, it is 

especially important to obtain the performance of these systems in the presence of uncertain data. In this regard, 

different formulations of conventional DEA models and NDEA models are suggested that measure the 

efficiency of systems in the presence of uncertain data. For example, Jiang et al. [12] used uncertainty theory 

and introduced new two-stage network models in which inputs, intermediate measures, and outputs are 

considered uncertain variables. Also, Esfidani et al. [6] evaluated the efficiency of two-stage systems with 

stochastic data. 

One way to deal with uncertain data is to use the fuzzy concept in DEA models. There are many studies that 

have discussed the efficiency of systems in the fuzzy environment. Firstly, Sengupta [31] suggested a fuzzy 

approach in order to solve fuzzy DEA models. Also, Hatami-Marbini [8] calculated the fuzzy efficiency of 

DMUs using an interactive method. Then, Hatami-Marbini et al. [9] presented classification schemes of fuzzy 

approaches. Among these approaches have widely used    cut technique to measure efficiency [4, 16, 17, 26]. 

Also, Kao and Liu [15] used the extension principle and suggested FNDEA models that calculate the    cut 

efficiency of two-stage systems. Furthermore, a new procedure was presented by Lozano [22] in which, firstly, 

   cut efficiency of two-stage systems are calculated. Then, the    cut efficiency of each stage is measured 

while the overall efficiency is unchanged. Liu [21] proposed a method for ranking the fuzzy efficiency of two-

stage systems. Soltani et al. [35] proposed two-stage fuzzy DEA model based on fuzzy arithmetic.  Ostovan et 

al. [27] suggested models to measure the average efficiency of two-stage networks using DEA and DEA-R with 

fuzzy data. In practice, fuzzy numbers (FN) have special computational efficiency. Among FNs, TFNs are 

widely used by researchers due to their simplicity in calculations. Existing researches focused on measuring the 

fuzzy efficiency of simple two-stage systems.   

Our motivation in this article is twofold. (1) We have considered the developed structure of two-stage 

systems in which part of the inputs of the second stage is freely determined by the DM and also part of the 

intermediate measures produced in the first stage are considered as final outputs of whole system. And a group 

of inputs is divided between the stages and the portion of stages of these inputs is determined by solving the 

proposed model. (2) In the real world, there are many cases where observations are very difficult to measure, 

such as qualitative data. In this case, the values used for this data are ambiguous. None of the presented papers 

evaluated the performance of two-stage systems developed in the presence of fuzzy data. Therefore, by 

combining these two modes, in this paper, a model based on the multiplicative approach is introduced to 

measure the efficiency of these systems in the presence of TFNs. In fact, this article uses triangular fuzzy 

numbers for simplicity in calculations and notation. The proposed approach can also be implemented on all 

fuzzy data. And also, for solving the proposed model, we will use the concept of   cut efficiency and non-

cooperative procedure. Actually, in this procedure, it is assumed that one of the stages is more important from 

the DM’s point of view and is selected as the leader stage and the other stage is considered as the follower stage. 

Then the efficiency of the first stage will be calculated, separately. Then, the efficiency of the second stage is 

also calculated while the efficiency of the leader stage is unchanged. Based on our suggested models, the lower 

(the upper) bound of   cut of the overall efficiency is equal to product of the lower (the upper) bounds of 

  cut of the efficiency of the stages. Therefore, it can be concluded that the whole system is efficient at the 

upper bound of   cut if and only if it is efficient in the upper bound  cut of the efficiency of the stages. 

Finally, the proposed models will be illustrated using a numerical example. 

The organization of this paper is as follows: In Section 2, firstly, we reviewed TFNs and then, two-stage 

DEA model is briefly reviewed that evaluates the efficiency of two-stage systems. In Section 3, firstly, the 

structure of an extended two-stage system is presented. Then, we suggested the models for measuring the 

efficiencies of this systems. And also, decompositions of the efficiencies based on the intervals of   cuts are 

presented. Finally, in Section 4, a numerical illustration of proposed fuzzy DEA models is exhibited. 

Conclusions of study, are inserted in Section 5. 
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2. Preliminaries 

In this section, firstly, the definitions of fuzzy set, fuzzy number and triangular fuzzy number are reviewed. 

Also, the two-stage DEA model of Kao and Hwang [13] is presented.  
 

1.1 Triangular Fuzzy Number (TFN) 

Suppose X is a universe set. A fuzzy set N  is defined as {( , ( )) }
N

N x x x X  where 0 ( ) 1
N

x  is the 

degree of membership of element x X to the set N X (Zimmermann [40]). And also, let ( )S N is as

( ) { ( ) 0}
N

S N x X x    that denote the support of N . The   cut set of N  is defined as

{ ( ) ( ) }
N

N x S N x     . 

Definition 1. Suppose N R be a fuzzy set. N is called FN, if the following conditions are hold: 

 N  is fuzzy set convex set if the membership function is fuzzy convex set:      

1 2 1 2 1 2,  ,  [0,1]:   ( (1 ) ) min{ ( ), ( )}
N N N

x x R x x x x             

 There is at least one x R such that ( ) 1
N

x   .  

 The membership ( )
N

x function is semi-continuous. 

 Definition 2.  A FN N R  is a TFN with membership function ( )
N

x  of the following form: 

-
,                                      

( )

,                                       

m l
m l m

N
m r

m m r

r

x x x
x x x x

l
x

x x x
x x x x

x



 
  


 

 
  

 

 Here, 
mx is called mean value and ,r lx x  called the right and the left spreads of membership function, 

respectively. We denote the TFN by ( , , )l m rN x x x .  

Moreover,   cut set of TFN is defined as follows that: 

 

[ , ] [( ) ,( ) ]L U m l l m r rN N N x x x x x x          . 

 

 

2.2 Two-stage DEA Model 

Suppose there are n DMUs with two-stage structure. Each ( 1,..., )jDMU j n , in stage 1 consumes inputs  

( 1,..., )ijx i m  to produce intermediate measures ( 1,..., )djz d D . Then, in stage2, these intermediate 

measures, are used to produce final outputs ( 1,..., )rjy r s .  The structure of this system is shown in Figure1. 

                                       
jx
                            jz

                           jy  

 

 
Figure 1. Two-stage production system 

        

 Stage2 2   Stage1 1 
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In order to measure the efficiency of oDMU ( DMU under evaluation), Kao and Hwang [13], proposed the 

following model: 

*

1

1

1 1

1 1

max   

.              1

                0                                         

                0

               , , 0     1,

s

o r ro

r

m

i io

i

D m

d dj i ij

d i

s D

r rj d dj

r d

r i d

E u y

s t v x

w z v x

u y w z

u v w r





 

 





 

 

 





 

 

...,   1,...,    1,...,s i m d D 

                                         (1) 

Suppose  
* * * ( , , )r i du v w  is an optimal solution of model (1). The overall efficiency (

*

oE ) and efficiency of stages 

( * *,o oE E  ) are as follows: 

** *

* * *11 1

* * *

1 1 1

,   ,   

Ds s

d dor ro r ro

dr r
o o om m D

i io i io d do

i i d

w zu y u y

E E E

v x v x w z

  

  

  
 

  
 

Theorem 1. oDMU is overall efficient (
* 1oE  ) if and only if

* * 1o oE E   .   

3. Proposed fuzzy two-stage models with TFNs 

In this section, firstly we indicate the structure of extended two-stage systems that were presented by Jianfeng 

[11]. Then, based on the formulation of the multiplicative efficiency decomposition model of (Kao and Hwang 

[13]), we will present the model to measure the efficiency of extended two-stage systems in presence of TFNs. 

Suppose we have n DMUs  with an extended two-stage structure where some inputs are shared between 

two-stages. In stage1, each 
jDMU produces intermediate measures ( 1,..., )djz d D  by consuming input

( 1,..., )ijx i m  and shared input ( 1,..., )hjx h H  . And also, stage2 consumes inputs ( 1,..., )fjx f F   (that are 

associated with stage2 directly), shared inputs ( 1,..., )hjx h H  and the part of intermediate measures

( 1,..., )djz d D to generate outputs ( 1,..., )rjy r s .The structure of an extended two-stage system is depicted 

in Figure 2.  

In this system, the contribution of each stage in the use of shared inputs is not known. Also, the portion of 

the second stage for using intermediate measures (as input) is not specified. Therefore, we use parameters

,hj dj   to identify the contribution of each stage. In this regard, we show the portion of stage1 of the i-th 

shared input with 
hj hjx  and the portion of the stage 2 with (1 )hj hjx  . And the portion of the second stage of 

d-th intermediate product is also displayed with dj djz . Note that, (1 )dj djz  is considered as the final output 

in the whole system. In order to better interpret of the results, it is assumed that , [0,1]hj dj   . 
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hjx  

hj hjx                                         (1 )hj hjx   

                                            
ijx                                dj djz                             

rjy  

 

                                               (1 )dj djz                              
fjx  

Figure 2. Extended two-stage system 

     Jianfeng [11] presented the additive efficiency decomposition models for evaluating the overall efficiency of 

these systems and stages.  Note that, in many practical problems, there are systems with imprecise information 

such as interval data, stochastic data, fuzzy number and so on. In many two-stage systems, the simultaneous 

presence of both stages in the final production is required. And the shortcoming of one stage is not compensated 

by another stage. In such circumstances (in such cases), it is of particular important for the DM to evaluate the 

performance of these systems. Therefore, considering these mentioned cases, we will use the non-compensatory 

property of the Multiplicative operator and suggest a multiplicative model that calculates the efficiency of these 

systems in the presence of triangular fuzzy numbers. Suppose all inputs, outputs and intermediate measures are 

TFN: 

( , , )  ,   ( , , )   ,    ( , , )

( , , )  ,   ( , , )

l m r l m r l m r

ij ij ij ij hj hj hj hj fj fj fj fj

l m r l m r

dj dj dj dj rj rj rj rj

x x x x x x x x x x x x

z z z z y y y y

         

 
 

In which, m represents the mean value and ,r l represent the right and left spreads corresponding to the data, 

respectively. Note that in this paper, ~ indicates that the inputs, intermediate measures and outputs are fuzzy. 

Also,  1 (1 ,1 ,1 ) (1,1,1)l m r  . The proposed model is as follows: 

* 1 1

1 1 1 1 1

1

1 1

max   

(1 )

.                                1,  

D s

d do r ro
s d r

o o o m H D H F

i io h ho ho d do do h ho ho f fo

i h d h f

D

d dj

d

m H

i ij h hj hj

i h

w z u y

E E E

v x p x w z p x c x

w z

s t

v x p x

  



   

    



 

   

       



 

 

    



 

1

1 1 1

                                    1,...,                  

                                   1,      1,...,

(1 )

                         

s

r rj

r

D H F

d dj dj h hj hj f fj

d h f

j n

u y

j n

w z p x c x 



  



 

    



  

        , [0,1],            1,...,   1,...,     1,...,  

                                 , , , , 0,      1,...,     1,...,    1,...,   1,...,    1,...,

hj dj

r i d h f

h H d D j n

u v w p c r s i m d D h H f F

     

     

                                      (2) 

Stage 1 Stage 2 



17                                                                                 M. Ziyae Berentin et al. / FOMJ 3(1) (2022) 11–28 

In this model, ,o oE E  represent the efficiency of the first and second stages, respectively. Also, the overall 

efficiency of the system (denoted by s

oE ) is considered as a product of the efficiency of the stages. Also, the first 

and second constraints set ensure that the efficiency of the stages (and whole system) lines to be at or under 

unity. Parameters ,dj hj  have been used to determine the portion of the second stage for the use of 

intermediate measure 
djz and both stages in the use of shared input

hjx , respectively. And, the corresponding 

weights of d  th intermediate measure in the stage1 and the stage2 are equally considered as dw . 

 Weights ,i rv u  are assumed to be the i  th initial input weight of the stage1 and the r  th final output 

weight of the stage2, respectively. Also, the weights corresponding to the f  th input
fjx  and the h th shared 

input
hjx  are considered as ,f hc p . The proposed model is a nonlinear model that is not converted to a linear 

form by using Charnes-Cooper transformation [2].  

Therefore, we propose the leader-follower approach (non-cooperative approach) to solve this model. With 

no loss of without losing generality, the first stage is considered as the leader stage and the second stage as the 

follower stage. Hence, firstly, we calculate the efficiency of stage1 by solving the following model:  

                                

* 1

1 1

1

1 1

max  

.              1,         1,...,

               [0,1],            1,...,    1,...,     

             

D

d do

d

o m H

i io h ho ho

i h

D

d dj

d

m H

i ij h hj hj

i h

hj

w z

E

v x p x

w z

s t j n

v x p x

h H j n







 

 



 



 

 

 

   



 



 

  , , 0,       1,...,    1,...,   1,...,i d hv w p i m d D h H   

                          

(3) 

Now, we use   cut technique to solve this fuzzy model.  For this purpose,   cut intervals of inputs, 

intermediate measures and outputs are as follows [38]: 

( ) [ , ] [ (1 ), (1 )]   

( ) [ , ] [ (1 ), (1 )]

( ) [ , ] [ (1 ), (1 )

L U m l m r

ij ij ij ij ij ij ij

L U m l m r

hj hj hj hj hj hj hj

L U m l m r

fj fj fj fj fj fj fj

x x x x x x x

x x x x x x x

x x x x x x x

  

  

  

 

 

 

     

           

            ]                                     

( ) [ , ] [ (1 ), (1 )] 

( ) [ , ] [ (1 ), (1 )]   

L U m l m r

dj dj dj dj dj dj dj

L U m l m r

rj rj rj rj rj rj rj

z z z z z z z

y y y y y y y

  

  

 

 

     

     

                                                                 

(4) 

 Noted that   cut of fuzzy number 1  can be considered as interval [1,1] . By applying intervals (4) to 

model (3), the following interval model is obtained: 
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( )* ( )* 1

1 1

1

1 1

[ , ]

[ , ] max  

[ , ] [ , ]

[ , ]

.                              

[ , ] [ , ]

D
L U

d do do
L U d

o o m H
L U L U

i io io h ho ho ho

i h

D
L U

d dj dj

d

m
L U L U

i ij ij h hj hj hj

i h

w z z

E E

v x x p x x

w z z

s t

v x x p x x

 

   

 

   





  

 



 



  

  



 




[1,1],         1,...,      

                                [0,1],            1,...,    1,...,     

                                , , 0,       1,...,    1,...,   1,...,   

H

hj

i d h

j n

h H j n

v w p i m d D h H



 

   

   



                   

                                    (5) 

     In this model, the first constraint set ensures that the efficiency of stage1 does not exceed the value of one. 

This model is converted to a linear form using the following transformation. 

 Suppose

1 1

1
 

[ , ] [ , ]
m H

L U L U

i io io h ho ho ho

i h

t

v x x p x x   
 



   
. Then:    ,      ,       ,   i i h h h hj hj d dtv v tp p p q tw w        . 

Therefore, the following linear model is obtained: 

    

( )* ( )*

1

1 1

1 1 1

[ , ] max  [ , ]

.                      [ , ] [ , ] [1,1] 

[ , ] [ , ] [ , ]

D
L U L U

o o d do do

d

m H
L U L U

i io io ho ho ho

i h

D m H
L U L U L U

d dj dj i ij ij hj hj hj

d i h

E E w z z

s t v x x q x x

w z z v x x q x x

 

   

     

 



 

  



   

    



 

   0,          1,...,     

                                0            1,...,    1,...,     

                               , , 0,       1,...,     1,...,    1,...,                

hj h

i d h

j n

q p h H j n

v w p i m d D h H

 

   

              

 

                               (6) 

Interval model (6) is easily solved with an optimistic and pessimistic approach.  

To calculate the upper bound of the   cut for stage1 of oDMU  (
( )*U

oE 
), it is assumed that oDMU  has 

the most favorable conditions and other DMUs  have unfavorable conditions (or: the worst condition). In other 

words, oDMU consumes the lowest inputs ( ,L L

io hox x 
 ) for producing the largest output (

U

doz 
).  

Moreover, in the other DMUs , the worst values of inputs ( ,U U

io hox x 
 ) are consumed to produce the lowest 

amount of output (
L

doz 
). Therefore, for obtaining

( )*U

oE 
, the following model is proposed: 

( )*

1

1 1

1 1 1

max  

.                  1                                          

                    0,

           

D
U U

o d do

d

m H
L L

i io ho ho

i h

D m H
U L L

d do i io hj ho

d i h

E w z

s t v x q x

w z v x q x



 

  





 

  



  

    



 

  

1 1 1

         0,          1,..., ( )    

                    0            1,...,    1,...,     

                    , , 0,       1,...,     

D m H
L U U

d dj i ij hj hj

d i h

hj h

i d h

w z v x q x j n j o

q p h H j n

v w p i m

  
  

      

   

   

  

1,...,    1,...,d D h H 

                                                                   

(7) 
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    Now to find the lower bound of the   cut for stage1 of oDMU  ( ( )*U

oE  ), we consider the most unfavorable 

conditions for oDMU . Indeed, oDMU  generates the smallest values of outputs by using the largest amount of 

inputs. And also, other DMUs consume the lowest amounts of inputs to produce the worst output values. Hence, 

can be obtained for solving the following model: 

 

 

 
 
 
 

                                                    (8) 

 

 

 

Therefore, the efficiency of stage1 (leader stage) is obtained as
( )* ( )*[ , ]L U

o oE E 
. 

Definition 3.  In stage1, oDMU is cut  efficient in the lower bound if and only if 
( )* 1L

oE  . 

Definition 4. In stage1, oDMU is efficient in the upper bound if and only if
( )* 1U

oE  . 

Now, in order to measure the follower stage (stage2) efficiency, the following model is suggested: 

* 1

1 1 1

1

1 1

max  

(1 )

.              1,                                 1,...,                  

            

s

r ro

r
o D H F

d do do h ho ho f fo

d h f

D

d dj

d

m H

i ij h hj hj

i h

u y

E

w z p x c x

w z

s t j n

v x p x

 



 

  



 



    

 

 



  



 

1

1 1 1

( )* ( )*1

1 1

    1,      1,...,

(1 )

               [ , ]

 , [0,1],            1,...,   1,..

s

r rj

r

D H F

d dj dj h hj hj f fj

d h f

D

d do
L Ud

o om H

i io h ho ho

i h

hj dj

u y

j n

w z p x c x

w z

E E

v x p x

h H d

 



 



  

 

 

 

    



 

   



  



 

.,     1,...,  

               , , , , 0,      1,...,     1,...,    1,...,   1,...,    1,...,r i d h f

D j n

u v w p c r s i m d D h H f F



     

                                        

(9) 

Now, by applying intervals (4) to model (9), the following interval model is obtained: 

( )*

1

1 1

1 1 1

max  

.                  1                                          

                    0,

           

D
L L

o d do

d

m H
U U

i io ho ho

i h

D m H
L U U

d do i io hj ho

d i h

E w z

s t v x q x

w z v x q x



 

  





 

  



  

    



 

  

1 1 1

        0,          1,..., ( )    

                   0            1,...,    1,...,     

                   , , 0,       1,...,     1

D m H
U L L

d dj i ij hj hj

d i h

hj h

i d h

w z v x q x j n j o

q p h H j n

v w p i m d

  
  

      

   

    

  

,...,    1,...,D h H
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( )* ( )* 1

1 1 1

1

[ , ]

[ , ] max  

[ , ] (1 )[ , ] [ , ]

[ , ]

.                                

[ ,

s
L U

r ro ro
L U r

o o D H F
L U L U L U

d do do do h ho ho ho f fo fo

d h f

D
L U

d dj dj

d

L

i ij

u y y

E E

w z z p x x c x x

w z z

s t

v x

 

     

 



 

  

  





      



  



1 1

1

1 1 1

[1,1],       1,...,

] [ , ]

[ , ]

        [1,1],   1,...,      

[ , ] (1 )[ , ] [ , ]

m H
U L U

ij h hj hj hj

i h

s
L U

r rj rj

r

D H F
L U L U L U

d dj dj dj h hj hj hj f fj fj

d h f

j n

x p x x

u y y

j n

w z z p x x c x x

  

 

     



 

 



  

 

  

 

      

 



  

( )* ( )*1

1 1

   

[ , ]

                                  [ , ]

[ , ] [ , ]

                              , [0,1],            1,...,   1

D
L U

d do do
L Ud

o om H
L U L U

i ij ij h ho ho ho

i h

hj dj

w z z

E E

v x x p x x

h H d

 

   

 

 

 



  

   



 

,...,     1,...,  

                               , , , , 0,      1,...,     1,...,    1,...,   1,...,    1,...,         

             

          

r i d h f

D j n

u v w p c r s i m d D h H f F



     

      

(10) 

Note that in this model, the efficiency of stage 2 is calculated while the efficiency of the leader stage 

(stage1) is unchanged. Also, the first and second constraints set also ensure that the efficiency of the first and 

second stages does not exceed the value of one.   

By using transformation 

1 1 1

1
   

[ , ] (1 )[ , ] [ , ]
D H F

L U L U L U

d do do do h ho ho ho f fo fo

d h f

t

w z z p x x c x x      
  



        
 , 

   ,      ,     ,   ,       i i h h h hj hj d d d dj dj f f r rtv v tp p p q tw w w w tc c tu u                , model (10) can be 

converted into the following linear form: 
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( )* ( )*

1

1 1 1

[ , ] max  [ , ]

.                     [ , ] ( [ , ] [ , ]) [ , ] [1,1]

                    

s
L U L U

o o r ro ro

r

D H F
L U L U L U L U

do do do h ho ho ho ho ho f fo fo

d h f

E E u y y

s t w z z p x x q x x c x x

 

       

 



  



           



  

1

1 1

1

1

[ , ]

   [1,1],     1,...,        

[ , ] [ , ]

[ , ]

                     

[ , ] ( [ , ] [

D
L U

d dj dj

d

m H
L U L U

i ij ij hj hj hj

i h

s
L U

r rj rj

r

D
L U L U

dj dj dj h hj hj hj

d

w z z

j n

v x x q x x

u y y

w z z p x x q

 

   

 

   



 







 

  



     



 




1 1

( )* ( )*1

1 1

[1,1],      1,...,

, ]) [ , ]

[ , ]

   [ , ]

[ , ] [ , ]

           0 q ,               

H F
L U L U

hj hj f fj fj

h f

D
L U

d do do
L Ud

o om H
L U L U

i io io h ho hj hj

i h

hj h

j n

x x c x x

w z z

E E

v x x p x x

p

   

 

   

 

 

 

 

  





  

 

 



 

  1,...,       1,...,

                    0 ,                1,...,     1,...,   

                   , , , , 0,      1,...,     1,...,    1,...,   1,...,    1,...,

dj d

r i d h f

h H j n

w w d D j n

u v w p c r s i m d D h H f F

 

    

          

                 

                                    (11) 

         Similarly, the upper bound of the  -cut for stage 2 of oDMU  is obtained from solving the following 

model: 

( )*

1

1 1 1

1 1 1

max  

.                    z ( ) 1

                       z 0,   

                  z z

s
U U

o r ro

r

D H F
L L

do do h ho ho f fo

d h f

D m H
L L

d do i io ho ho

d i h

L

dj

E u y

s t w p q x c x

w v x q x



 

 







  

  



       

    





  

  

z ,        1,...,       1,...,

                 0 q ,                1,...,      1,...,

                 0 ,               1,...,     1,...,   

                 , ,

U

dj dj

hj h

dj d

r i d

d D j n

p h H j n

w w d D j n

u v w

  

   

    

   , , 0,      1,...,     1,...,    1,...,   1,...,    1,...,                                      

 

h fp c r s i m d D h H f F       

(12) 

Actually, in order to calculate
( )*U

oE
, the efficiency of stage 1 is in the best conditions (i.e.,

( )*U

oE 
). Also, 

similar to model (7), the most favorable condition is considered for oDMU . In this model, it must be noted that 

intermediate measures are used as an interval (   z z zL U

dj dj dj   ). Actually, the data are as interval and 

intermediate measures are the output of the first stage and the inputs of the second stage. Hence, we consider 

  z z zL U

dj dj dj   as a constraint and solve this model to obtain the optimal value for intermediate measures.      

Now, we use transformation ˆ ˆ z   ,  zd dj dj dj dj djw w w w    .  The constraints can be transformed to

ˆ ˆ z z   ,   z zL U L U

d dj dj d dj dj dj dj dj djw w w w w w   
        . Hence, the following model is obtained: 
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( )*

1

1 1 1

1 1 1

max  

ˆ.                  ( ) 1

ˆ                     0,                                      

s
U U

o r ro

r

D H F
L L

do h ho ho f fo

d h f

D m H
L L

do i io ho ho

d i h

E u y

s t w p q x c x

w v x q x



 

 





  

  



       

   



  

  

1 1 1

1 1 1 1

     

ˆ                     0,                1,..., ( )

ˆ                     ( ) 0,  

             

D m H
U U

dj i ij hj hj

d i h

s D H F
U L L

r ro do h hj ho f fo

r d h f

w v x q x j n j o

u y w p q x c x

 

  

  

   

     

         

  

   

1 1 1 1

( )*

1 1 1

ˆ       ( ) 0,      1,..., ( )

ˆ                   ( )

ˆ               z z

s D H F
L U U

r rj dj h hj hj f fj

r d h f

D m H
U L L

do o i io ho ho

d i h

L U

d dj dj d dj

u y w p q x c x j n j o

w E v x q x

w w w

  

 

 

   



  

           

   

  

   

  

,        1,...,       1,...,

ˆ                   z z ,        1,...,       1,...,

                  0 q ,                1,...,      1,...,

                  0

L U

dj dj dj dj dj

hj h

d

d D j n

w w w d D j n

p h H j n

w

 

 

     

   

 ,               1,...,     1,...,

ˆ ˆ                  , 0,                1,...,     1,...,  

                 , , , , 0,      1,...,     1,...,    1,...,   1,...,

j d

dj dj

r i d h f

w d D j n

w w d D j n

u v w p c r s i m d D h H

  

   

             1,...,f F

 
                             (13) 

Therefore, if 
* * * * * * * * *ˆ ˆ( , , , , ,q , ,  , )r i d h f ho do do dou v w p c w w w        be an optimal solution of model (13), the upper bound of 

the   cut for whole system corresponding to oDMU is defined as follows: 

( )* ( )* ( )*U U U

o o oE E E    

Definition 5.  In stage2, oDMU is efficient in the upper bound if and only if
( )* 1U

oE  . 

Definition 6. oDMU is overall efficient in the upper bound if and only if
( )* 1U

oE  . 

Also, model (13) calculates the lower bound of the  -cut for stage 2 of oDMU : 
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( )*

1

1 1 1

1 1 1

max  

.                  z ( ) 1

                     z 0,                                 

s
L L

o r ro

r

D H F
U U

do do h ho ho f fo

d h f

D m H
U U

d do i io ho ho

d i h

E u y

s t w p q x c x

w v x q x



 

 





  

  



       

    



  

  

1 1 1

1 1 1 1

     

                    z 0,                1,..., ( )

                    z ( ) 0,  

         

D m H
L L

d dj i ij hj hj

d i h

s D H F
L U U

r ro do do h hj ho f fo
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     It should be noted that the efficiency of stage 1 is considered in the worst status (i.e.,
( )*L

oE
). Also, oDMU

has the most unfavorable conditions. Also, we use the transformation ˆ ˆ z   ,  zd dj dj dj dj djw w w w    for 

linearization of model (14): 
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     And also, if 
* * * * * * * * *ˆ ˆ( , , , , ,q , ,  , )r i d h f ho do do dou v w p c w w w        be an optimal solution of model (15), the lower bound 

of the   cut for whole system of oDMU  is defined as follows: 

( )* ( )* ( )*L L L

o o oE E E    

Definition7.  In stage2, oDMU is efficient in the lower bound if and only if ( )* 1L

oE  . 

Definition8. oDMU is overall efficient in the lower bound if and only if ( )* 1L

oE  . 

Finally, we can conclude that the following theorems: 

Theorem 2. oDMU is overall efficient in the upper bound ( ( )* 1U

oE  ) if and only if ( )* ( )* 1U U

o oE E   .   

Theorem3. oDMU is overall efficient in the lower bound ( ( )* 1L

oE  ) if and only if ( )* ( )* 1L L

o oE E   . 

 If stage 2 is the most important stage from the point of view of DM, we can use the similar procedure for 

stage 2 and calculate the efficiency of stage 1 while the efficiency of stage 2 is unchanged.  

It must be noted that, this paper, for the first time, used extended two-stage systems (Figure 2) in the 

presence of triangular fuzzy data.  

Actually, in practice, many systems have an internal structure, it is appropriate to use this proposed 

approach in evaluating the efficiency of extended two-stage systems (Figure 2) (which are the triangular fuzzy 

type). The portion of stages in the use of these inputs and outputs is also determined using these models.  

 

4. Case study 

 In this section, we will explain proposed models (7), (9), (13) and (15). For this, we use the data of 15 

Chinese industrial sectors [11].  Note that each real number can be considered as a TFN. Hence, we consider 

data have TFN structure. Each company ( DMU ) viewed as two-stage system with shared inputs, the part of 

intermediate measure as input of stage2 and additional inputs in stage2. In this evaluation, stage 1 use input “the 

intramural expenditure on R&D” and shared input “the full time equivalent of R&D personnel” to produce “the 

projects for new product” and “the number of patents in force” as intermediate measures. Then, stage 2 consume 

the part of these intermediate measures, additional input “expenditure on new products development” and 

shared inputs to produce the final output “the gross industrial output value of new products”. Therefore, we will 

illustrate proposed models by applying these inputs, outputs and intermediate measures. For this, we firstly, 

calculate the intervals of the  -cut corresponding to inputs, outputs and intermediate measures. Suppose that

0.25  . We consider each real number as ( , , )l m rx x x . In this case, the  -cut interval is defined as

( (1 ), (1 ))m l m rx x x x     .Then; we calculate these intervals of inputs, intermediate measures and 

outputs. Then, we apply these intervals in models (7) and (8). Hence, the lower and upper bounds of the 

efficiency of the stage1 (leader stage) are reported in Table1: 

In Table 1, the first column indicates the number of each DMU. And also, the columns 2 and 3 indicate the 

lower and the upper bounds of the efficiency of stage1. Intervals of the efficiency of stage1 are reported in 

column 4. Based on this table, 9 13,DMU DMU are efficient in the upper and the lower bound. Hence, thence 

are efficient. Also, 5DMU is efficient in the upper bound of the efficiency. Other DMUs  are inefficient.  

Among inefficient DMUs , 2DMU  has the worst efficiency score in the upper (and the lower) bound of the 

efficiency. Also, the best upper (and the best lower) bound of the efficiency is belongs to 10DMU . Then, we 
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calculated the efficiencies of the stage 2 (follower stage) while the efficiencies of the leader stage is unchanged. 

Therefore, the final results are reported in Table 2. 

Table 1. The efficiencies of the stage 1 

   

  

 

 

                                                         

 

 

 

 

 

 

 

 

 

 

Table 2. The efficiencies of the stage 2 

 

Table 2 indicates the upper and the lower bounds of the efficiency corresponding to stage 2. Note that the 

upper (and the lower) bound of the efficiency of the whole system is the product of the upper (and the lower) 

bound of the efficiency of the stages i.e.,
( )* ( )* ( )*L L L

o o oE E E    and 
( )* ( )* ( )*U U U

o o oE E E   . And also, the 

whole system is efficient if and only if each of the stages is efficient. Therefore, according to the obtained 

intervals efficiency of the stage 1 and stage 2, intervals
( )* ( )*[ , ]L U

o oE E  are obtained. These results are listed in the 

column 4 of Table 2. Based on this table, in stage 2 (follower stage) 7 10,DMU DMU  are efficient in the upper 

bound. All of other DMUs  are inefficient. Between inefficient DMUs in stage2, in the upper bound, the best 

efficiency and the worst efficiency belongs to 8 1,DMU DMU  with scores 0.7687 and 0.4340, respectively. 

1 10,DMU DMU  have the worst and the best efficiency in the lower bound of the efficiency, with scores 

( )* ( )*[ , ]L U

o oE E 
 

( )*U

oE 
 

( )*L

oE
 

DMU 

[0.4927,0.5673] 0.5673 0.4927 1 

[0.2472,0.3830] 0.3830 0.2472 2 

[0.3163,4514] 0.4514 0.3163 3 

[0.3841,0.4446] 0.4446 0.3841 4 

[0.7653,1] 1 0.7653 5 

[0.5073,0.6058] 0.6058 0.5073 6 

[0.4213,0.5244] 0.5244 0.4213 7 

[0.6647,0.7424] 0.7424 0.6647 8 

[1,1] 1 1 9 

[0.7332,0.8617] 0.8617 0.7332         10 

[0.5420,0.5988] 0.5988 0.5420 11 

[0.6501,0.8201] 0.8201 0.6501 12 

[1,1] 1 1 13 

[0.3393,0.4781] 0.4781 0.3393 14 

[0.4791,0.4832] 0.4832 0.4791 15 

2o  1o  1o  
( )* ( )*[ , ]L U

o oE E  
( )* ( )*[ , ]L U

o oE E 
 

( )*U

oE
 

( )*L

oE
 

DMU 

0.5355 0.3673 0.4652 [0.0857,0.2898] [0.1740,0.5110] 0.5110 0.1740 1 

0.7668 0.5892 0.3733 [0.0461,0.2305] [0.1866,0.6020] 0.6020 0.1866 2 

0.4328 0.6627 0.7335 [0.0734,0.3141] [0.2321,0.6960] 0.6960 0.2321 3 

0.5348 0.6472 0.5392 [0.1208,0.1394] [0.3147,0.5634] 0.5634 0.3147 4 

0.5240 0.3746 0.5048 [0.2399,0.7687] [0.3136,0.7687] 0.7687 0.3136 5 

0.6155 0.5733 0.6084 [0.1257,0.3450] [0.2479,0.5659] 0.5695 0.2479 6 

0.6643 0.5918 0.4396 [0.2690,0.5244] [0.6386,1] 1 0.6386 7 

0.7327 0.4150 0.5521 [0.2622,0.3222] [0.3946,0.4340] 0.4340 0.3946 8 

0.5626 0.7342 0.6654 [0.6719,0.7660] [0.6719,0.7660] 0.7660 0.6719 9 

0.7315 0.5520 0.4893 [0.5515,0.8617] [0.7522,1] 1 0.7522 10 

0.5578 0.6620 0.7043 [0.2706,0.4326] [0.4993,0.7225] 0.7225 0.4993 11 

0.4825 0.4597 0.5372 [0.2233,0.6049] [0.3436,0.7377] 0.7377 0.3436 12 

0.6537 0.6509 0.6735 [0.2362,0.7496] [0.2362,0.7496] 0.7496 0.2362 13 

0.5088 0.6036 0.5172 [0.1187,0.2198] [0.3501,0.4599] 0.4599 0.3501 14 

0.6266 0.7138 0.3968 [0.2048,0.3076] [0.4791,0.6369] 0.6369 0.4275 15 
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0.1740, 0.7522 respectively. Hence, in stage2, 1DMU has the worst efficiency in the upper and the lower 

bound. 

Therefore, based on this table, we can conclude that all DMUs are inefficient in the upper and the lower 

bound of the efficiency in whole system. The highest and the lowest efficiency of the lower bound of the 

efficiency is belongs to 9DMU , 2DMU , respectively. Also, 4 10,DMU DMU has the worst and the best 

efficiency in the upper bound of the efficiency with scores 0.1394 and 0.8617, respectively.  

Also, the optimal values of the parameters 1o , 1o  and 2o to determine the portion of each stage in the use 

of shared inputs and also the portion of the second stage in the use of intermediate measures (produced by the 

stage1) are listed in columns 5, 6 and 7. Also, in stage2, the value of the parameter 1o for efficient DMUs  in 

upper bound, 7 10,DMU DMU  are 0.4396, 0.4893, respectively. Also, for these DMUs , the values of the 

parameters ( 1o , 2o ) are (0.5918, 0.6643), (0.5520, 0.7315), respectively. 

The highest value of the parameter 1o belongs to 2DMU  . Note that this values for stage 2 is considered as

1(1 )o  . Also, 9 1,DMU DMU have the highest and the lowest value of the parameter 1o  (Which is the 

portion of stage1 in the production of intermediate measures as the final outputs), respectively. The highest and 

lowest values of the parameter 2o belong to 2 3,DMU DMU . It should be noted that values 1o , 2o for stage2, 

as the portion of stage 2 in use of the intermediate measures.  

5. Conclusion 

    In real world, there are many production systems with internal structure such as network systems. Two-stage 
systems as special case of network systems are important in real life applications. For example, each bank 
branch can be considered as a two-stage system that stage 1 is considered as “attract resources” and stage 2 as” 
resources allocation”. NDEA models are introduced to evaluate the efficiency of these systems in deterministic 
environment. One of the most important approaches in evaluating the performance of these systems is the 
cooperative and non-cooperative procedure. Also, in manufacturing processes, observations of inputs and 
outputs and intermediate measures may be in the form of fuzzy data. Hence, FNDEA models have been 
introduced to evaluate the performance of two-stage systems in the presence of fuzzy data. TFNs are especially 
importance due to the simplicity of calculations between fuzzy data. Therefore, in this paper, we focused on 
TFNs, and   cut approach to evaluate the efficiency of two-stage systems with shared inputs, the part of 
intermediate measures as inputs of stage2 and additional inputs in stage2. In order to solve the proposed non-
linear model, by introducing a non-cooperative approach and assuming that one of the stages is more important 
(leader stage) from the manager's point of view, the efficiency of this stage was calculated. Since the data are 
interval, in order to calculate the upper efficiency of the stage1, oDMU considered in the best condition and 
other DMUs  in the worst conditions. Also, in the calculation of the lower bound of the efficiency, oDMU was 
considered in the worst status. Then, we obtained the upper and lower bounds of the efficiency of the follower 
stage while the efficiency of the leader stage was unchanged. Finally, the geometric mean of the upper (lower) 
bound efficiency of stages was considered as the upper (lower) bound of the overall efficiency. Finally, we used 
the data of 15 Chinese industrial sectors [20] to illustrate presented models. For future study, this technique can 
be applied to two-stage systems in presence of intuitionistic FNs.  Also, the proposed approach can also be used 
in non-radial models to evaluate the efficiency of extended two-stage systems in presence of fuzzy data. 
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