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A R T I C L E  I N F O  A B S T R A C T 

The signelss Laplacian eigenvalues of a graph are the roots of characteristic 

polynomial of the signless Laplacian matrix of it. The energy of graph is the 

sum of the absolute value of its eigenvalues. The Laplacian energy of graph is 

defined the sum of the absolute value of its Laplacian eigenvalues and 2m/n. In 

this paper, we obtained signless Laplacian spectrum of some special subgraphs 

of complete graph and then estimated some bounds for signless Laplacian 

Energy of some graphs. 
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1. Introduction 

Let G be a graph of order n and with the vertex set {𝑣1, 𝑣2, … , 𝑣𝑛} and the edge set E(G). The first Zagreb 

index 𝑀1(𝐺) is defined as ∑ [𝑑(𝑢) + 𝑑(𝑣)]𝑒=𝑢𝑣∈𝐸(𝐺)  where d(u) is degree of vertix v in G [6, 8]. 

The adjacency matrix of G is an n×n matrix A(G) whose (i,j)-entry is 1 if 𝑣𝑖  is adjacent to 𝑣𝑗  and 0, 

otherwise. Assume that D(G) is the n×n diagonal matrix whose (i,i)-entry is the degree of 𝑣𝑖. The matrices L(G) 

= D(G) - A(G) and Q(G) = D(G) + A(G) are called the Laplacian matrix and signless Laplacian matrix of G, 

respectively[1, 2, 5, 7]. Since A(G), L(G) and Q(G) are symmetric matrices, their eigenvalues are real numbers. 

Let 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝑛be the eigenvalues of Q(G), i.e. the roots of 𝜑(𝐺, 𝑞) = det(𝑞𝐼𝑛 − 𝑄(𝐺)). It is easy to see 

[3,4]: 

              ∑𝑞𝑖 = 2𝑚 , ∑ 𝑞𝑖
2 = 2𝑚 +𝑀1(𝐺). 

The signless Laplacian energy of G defined as 𝑆𝐿𝐸(𝐺) = ∑ |𝑞𝑖 −
2𝑚

𝑛
| ,𝑛

𝑖=1 where n and m are the number of 

vertices and edges of G respectively. A matching of a graph G is a set of edges without common vertices in G 

[11, 12]. 
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At first we need the following theorems:  

Theorem 1 (Interalace) [2]. Let G be a graph and 𝑒 ∈ 𝐸(𝐺). Then  

q1(G − e) ≤ q1(G) ≤ q2(G − e) ≤ q2(G) ≤ ⋯ ≤ qn(G − e) ≤ qn(G). 
 

Theorem 2 [9]. If 𝑎𝑖 and 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛, are nonnegative real numbers, then 

∑ 𝑎𝑖
2𝑛

𝑖=1 ∑ 𝑏𝑖
2𝑛

𝑖=1 − (∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1 )2 ≤

𝑛2

4
(𝑀1𝑀2 −𝑚1𝑚2), 

      where 𝑀1 = 𝑚𝑎𝑥1≤𝑖≤𝑛𝑎𝑖, 𝑀2 = 𝑚𝑎𝑥1≤𝑖≤𝑛𝑏𝑖, 𝑚1 = 𝑚𝑖𝑛1≤𝑖≤𝑛𝑎𝑖and  𝑚2 = 𝑚𝑖𝑛1≤𝑖≤𝑛𝑏𝑖. 
 

Theorem 3 [10]. Suppose 𝑎𝑖 and 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛, are positive real numbers. Then 

∑ 𝑎𝑖
2𝑛

𝑖=1 ∑ 𝑏𝑖
2𝑛

𝑖=1 ≤
1

4
(√

𝑀1𝑀2

𝑚1𝑚2
+√

𝑚1𝑚2

𝑀1𝑀2
)
2

(∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1 )2, 

      where 𝑀1 = 𝑚𝑎𝑥1≤𝑖≤𝑛𝑎𝑖,  𝑀2 = 𝑚𝑎𝑥1≤𝑖≤𝑛𝑏𝑖, 𝑚1 = 𝑚𝑖𝑛1≤𝑖≤𝑛𝑎𝑖 and  𝑚2 = 𝑚𝑖𝑛1≤𝑖≤𝑛𝑏𝑖. 
 

2. Signless Laplacian eigenvalues of some subgraphs of complete graph 

       In this section, we obtain some new results on the eigenvalues of subgraphs of K𝑛. 

Lemma 1: If G is a subgraph of 𝐾𝑛with 𝑛1 < 𝑛 vertices such that 𝐾𝑛 − 𝜀(𝐺) is a bipartite graph. Then the 

signless Laplacian of 𝐾𝑛 − 𝜀(𝐺) are as follows: 

0, n − q1(G), n − q2(G),… , n − qn1(G), n, … , n⏟  
n−n1−1 times

 

Proof: Assume 𝐺𝑛 = 𝐺 ∪ {𝑉(𝐾𝑛) − 𝑉(𝐺)}. Then 𝐺𝑛̅̅̅̅ = 𝐾𝑛 − 𝜀(𝐺). By [3] 𝜑(𝐺𝑛, 𝑥) = 𝜑(𝐺, 𝑥). 𝑥
𝑛−𝑛1  and by 

[1] 𝜑(𝐺𝑛̅̅̅̅ , 𝑥) = (−1)
𝑛 𝑥

𝑥−𝑛
 𝜑(𝐺𝑛, 𝑛 − 𝑥). So 

𝜑(𝐺𝑛̅̅̅̅ , 𝑥) = (−1)
𝑛𝑥 𝜑(𝐺, 𝑛 − 𝑥). (𝑛 − 𝑥)𝑛−𝑛1−1 

Calculation of the roots of this polynomial implies the lemma. 

 

Theorem 4. The signless Laplacian eigenvalues of 𝐾𝑛,𝑛 − 𝑒 are computed as follows: 

0,
3𝑛 − 2 − √𝑛2 + 4𝑛 − 4

2
, 𝑛, … , 𝑛⏟  
𝑛−3 𝑡𝑖𝑚𝑒𝑠

,
3𝑛 − 2 + √𝑛2 + 4𝑛 − 4

2
 

Therefore, 𝑆𝐿𝐸(𝐾𝑛,𝑛 − 𝑒) = 𝑛 + 2 −
4
𝑛⁄ + √𝑛2 + 4𝑛 − 4. 

Proof: Because of 𝐾𝑛,𝑛 is a bipartite graph, its Laplacian and signless Laplacian eigenvalues are equal to each 

other [2], and we now that the signlessLaplacian eigenvalues of 𝐾𝑛,𝑛 are: 

0, n, n, … , n⏟      
n−2 times

, 2n 

By Theorem 1, the signless Laplacian eigenvalues of 𝐾𝑛,𝑛 − 𝑒 satisfy the following inequalities: 

0 = q1 ≤ q2 ≤ q3 = n = ⋯ = q2n−1 ≤ q2n. 

Since ∑qi = 2m , ∑qi
2 = 2m+M1(G),  𝑞2 + 𝑞2𝑛 = 3𝑛 − 2, 𝑞2

2 + 𝑞2𝑛
2 = 5𝑛2 − 4,  𝑞2𝑞2𝑛 = 2(𝑛 − 1)

2. 
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This concludes that  𝑞2 =
3𝑛−2−√𝑛2+4𝑛−4

2
,  𝑞2𝑛 =

3𝑛−2+√𝑛2+4𝑛−4

2
. 

For the second part, we notice that 𝑆𝐿𝐸(𝐾𝑛,𝑛 − 𝑒) = ∑ |𝑞𝑖 − 𝑛 +
1
𝑛⁄ | = 𝑛 + 2 −

4
𝑛⁄ + √𝑛2 + 4𝑛 − 42𝑛

𝑖=1 , 

proving the result. 

 

Theorem 5. Suppose G is a graph. Then |𝑆𝐿𝐸(𝐺 − 𝑒) − 𝑆𝐿𝐸(𝐺)| < 4 and 4 is the best possible bound. 

Proof. Define 𝑞𝑖
′ = 𝑞𝑖(𝐺 − 𝑒). By Theorem 1, 𝑞𝑖 − 𝑞𝑖

′ ≥ 0and ∑ (𝑞𝑖 − 𝑞𝑖
′) = 2𝑛

𝑖=1 . So, there exists i, 1 ≤ 𝑖 ≤ 𝑛, 

such that 𝑞𝑖 − 𝑞𝑖
′ > 0. This impolies that 

∑ |𝑞𝑖 − 𝑞𝑖
′ −

2

𝑛
| <∑ (|𝑞𝑖 − 𝑞𝑖

′| +
2

𝑛
)

𝑛

𝑖=1

𝑛

𝑖=1
 

Thus, we have: 

|𝑆𝐿𝐸(𝐺 − 𝑒) − 𝑆𝐿𝐸(𝐺)| = |∑|𝑞𝑖 − 2
𝑚

𝑛
| − |𝑞𝑖′ − 2

𝑚 − 1

𝑛
|

𝑛

𝑖=1

| 

                                                  = |∑(|𝑞𝑖 − 2
𝑚

𝑛
| − |𝑞𝑖′ − 2

𝑚 − 1

𝑛
|)

𝑛

𝑖=1

| 

                                              ≤ ∑||𝑞𝑖 − 2
𝑚

𝑛
| − |𝑞𝑖′ − 2

𝑚 − 1

𝑛
||

𝑛

𝑖=1

 

             ≤ ∑|𝑞𝑖 − 𝑞𝑖
′ −

2

𝑛
|

𝑛

𝑖=1

 

                                                                              < ∑ (|𝑞𝑖 − 𝑞𝑖
′| +

2

𝑛
)𝑛

𝑖=1 = ∑ (𝑞𝑖 − 𝑞𝑖
′ +

2

𝑛
)𝑛

𝑖=1 = 4. 

To complete the argument we construct a sequence {𝐺𝑛}𝑛≥2 of graphs such that |𝑆𝐿𝐸(𝐺 − 𝑒) − 𝑆𝐿𝐸(𝐺)| → 4. 

Define 𝐺𝑛 = 𝐾𝑛̅̅̅̅ + 𝑒 . Then 𝑆𝐿𝐸(𝐺𝑛) = 4 −
4

𝑛
 and 𝑆𝐿𝐸(𝐺𝑛 − 𝑒) = 0  and so |𝑆𝐿𝐸(𝐺𝑛 − 𝑒) − 𝑆𝐿𝐸(𝐺𝑛)| = 4 −

4

𝑛
→ 4. This completes the argument. 

3. Bounds on the signless Laplacian Energy of graphs  

In this section, we get some bounds on the signless Laplacian Energy of graphs. 

Theorem 6. Suppose zero is not eigenvalue of G. Then 

𝐸(𝐺) ≥
2√2𝑚𝑛√𝑎1𝑎𝑛

𝑎1+𝑎𝑛
, 

       where 𝑎1 and 𝑎𝑛 are minimum and maximum values of the set {|𝜆𝑖|| 1 ≤ 𝑖 ≤ 𝑛 }.  In particular, if  G is 

bipartite and k-regular, then 

𝑆𝐿𝐸(𝐺) = 𝐸(𝐺) ≥
2𝑛𝑘√2𝑎1

𝑎1+𝑘
. 

Proof. Suppose 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛, are the eigenvalue of G. We also assume that 𝑎𝑖 = |𝜆𝑖|, where 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤
𝑎𝑛 and 𝑏𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛. Apply Theorem 3 to show that 
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∑ |𝜆𝑖|
2𝑛

𝑖=1 ∑ 12𝑛
𝑖=1 ≤

1

4
(√

|𝜆𝑛|

|𝜆1|
+√

|𝜆1|

|𝜆𝑛|
)

2

(∑ |𝜆𝑖|
𝑛
𝑖=1 )2. 

Therefore, by ∑ |𝜆𝑖|
2𝑛

𝑖=1 = 2𝑚 and a simple calculation, 

𝐸(𝐺) ≥
2√2𝑚𝑛√𝑎1𝑎𝑛

𝑎1+𝑎𝑛
. 

To prove the second part, it is enough to notice that 𝑎𝑛 = 𝑘 and 2m=nk for k-regular graphs.  

 

Theorem 7. Let G be a connected graph nonbipartite with the small stand largest positive signless Laplacian 

eigenvalues q1and qn, respectively. Then  

𝑞𝑛
𝑞1⁄ +

𝑞1
𝑞𝑛⁄ + 2 ≥

𝑛

𝑚2 (2𝑚 +𝑀1(𝐺)). 

If G is a bipartite graph, then  
𝑞𝑛
𝑞2⁄ +

𝑞2
𝑞𝑛⁄ + 2 ≥

𝑛−1

𝑚2 (2𝑚 +𝑀1(𝐺)). 

where 𝑞2 is the smallest nonzero signless Laplacian eigenvalue of G. 

In particular, if G is an n-vertex tree, then 

𝑞𝑛
𝑞2⁄ +

𝑞2
𝑞𝑛⁄ ≥ 3. 

Proof. Suppose 𝑎𝑖 = 1and 𝑏𝑖 = 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑛. Apply Theorem 2 to show that, 

∑12∑𝑞𝑖
2 ≤

1

4
(√
𝑞𝑛
𝑞1⁄ + √

𝑞1
𝑞𝑛⁄ )

2

(∑ 𝑞𝑖)
2. 

Since ∑𝑞𝑖
2 = 2𝑚 +𝑀1(𝐺),  

√𝑞𝑛 𝑞1⁄ +√
𝑞1
𝑞𝑛⁄ ≥ (√𝑛 𝑚⁄ )√2𝑚 +𝑀1(𝐺). 

  
Thus 

𝑞𝑛
𝑞1⁄ +

𝑞1
𝑞𝑛⁄ + 2 ≥

𝑛

𝑚2 (2𝑚 +𝑀1(𝐺)). 

If G is a bipartite graph then 𝑞1 = 0. In this case, the signless Laplacian eigenvalues of a graph are equal to 

Laplacian eigenvalues of that graph. Then by [4] the result is proved. When G is a tree with at least three 

vertices, 𝑑(𝑢) + 𝑑(𝑣) ≥ 3, we have 𝑀1(𝐺) ≥ 3(𝑛 − 1) as desired. 

 
Corollary 1. With notation of Theorem 7, when G is an n-vertex tree, then 

𝑞𝑛
𝑞2⁄ +

𝑞2
𝑞𝑛⁄ ≥ 4 −

4

𝑛
. 

Theorem 8. Suppose G is a graph. Then  

𝑆𝐿𝐸(𝐺) ≥ √𝑀1 + 2𝑚 −
4𝑚2

𝑛
+ 2(

𝑛
2
) √𝜙(𝐺,

2𝑚

𝑛
)2

𝑛
,                                    (1) 

With equality if and only if G is an empty graph. In particular, if G is a non-empty graph, then 

𝑆𝐿𝐸(𝐺) > √2𝑚 + 2(
𝑛
2
) √𝜙(𝐺,

2𝑚

𝑛
)2

𝑛
.                                       (2) 
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Moreover, if T is an n-vertex tree, n ≥ 3, then 

𝑆𝐿𝐸(𝐺) ≥ √𝑀1(𝑇) + (
𝑛−1

𝑛
) (−2𝑛 + 5).                        (3) 

Proof. Let 𝑥 = ∑ |𝑞𝑖 −
2𝑚

𝑛
|𝑛

𝑖=1 .then by the arithmetic mean inequality, 

𝑥2 =∑|𝑞𝑖 −
2𝑚

𝑛
|
2𝑛

𝑖=1

+ 2 ∑ |𝑞𝑖 −
2𝑚

𝑛
|

𝑖≠𝑗,𝑖,𝑗=1,2,…,𝑛

|𝑞𝑗 −
2𝑚

𝑛
|

= 𝑀1 + 2𝑚 −
8𝑚2

𝑛
−
4𝑚2

𝑛
+ 2 ∑ |𝑞𝑖 −

2𝑚

𝑛
|

𝑖≠𝑗,𝑖,𝑗=1,2,…,𝑛

|𝑞𝑗 −
2𝑚

𝑛
| 

               ≥ 𝑀1 + 2𝑚 −
4𝑚2

𝑛
+ 2(

𝑛
2
)(∏|𝑞𝑖 −

2𝑚

𝑛
|
2(𝑛−1)𝑛

𝑖=1

)

1 𝑛(𝑛−1)⁄

 

                                   = 𝑀1 + 2𝑚 −
4𝑚2

𝑛
+ 2(

𝑛
2
)(∏(𝑞𝑖 −

2𝑚

𝑛
)

𝑛

𝑖=1

)

2 𝑛⁄

    

                                   = 𝑀1 + 2𝑚 −
4𝑚2

𝑛
+ 2(

𝑛
2
) √𝜙(𝐺,

2𝑚

𝑛
)2

𝑛
.                    (4) 

Equation (1) is a direct consequence of (4) with equality if and only if |𝑞𝑖 − 2
𝑚

𝑛
| |𝑞𝑗 − 2

𝑚

𝑛
| = |𝑞𝑟 − 2

𝑚

𝑛
| |𝑞𝑠 −

2
𝑚

𝑛
| , 2 ≤ 𝑖, 𝑗 ≤ 𝑛, 2 ≤ 𝑟, 𝑠 ≤ 𝑛.  

We claim that these equalities hold if and only if 𝑞2 = 𝑞3 = ⋯ = 𝑞𝑛 = 2
𝑚

𝑛
. To prove this, we assume that 

one of qi is equal to 2
𝑚

𝑛
. 

Then by a simple calculation, q1 = q3 = ⋯ = qn = 2
m

n
. Otherwise, qi ≠ 2

m

n
, 1 ≤ i ≤ n. If qi, qj ≥ 2

m

n
or 

qi, qj ≤ 2
m

n
, then qi = qj. Otherwise qi + qj = 4

m

n
. Thus signless Laplacian eigenvalues of G are: 

𝑞1, … , 𝑞1⏟    
 𝑘1 𝑡𝑖𝑚𝑒𝑠

, 𝑞2, … , 𝑞2⏟    
 𝑘2 𝑡𝑖𝑚𝑒𝑠

 

       where k1 +  k2 = n and q1 + q2 = 4
m

n
.  

Since ∑qi = 2m,  k1 q1 +  k2 q2 = 2m, Thus 

𝑞1 = 2
𝑚

𝑛
(
2 𝑘1−𝑛

2 𝑘1−𝑛
) = 2

𝑚

𝑛
. 

Since q1 > 2
m

n
, a contradiction. Thus in Equation (1) equality holds if and only if 𝑞1 = 𝑞3 = ⋯ = 𝑞𝑛 =

2
𝑚

𝑛
 if and only if G is an empty graph. It is a well-known fact that 𝑀1 ≥

4𝑚2

𝑛2
. The next Equation is now derived 

from Equation (1) by this inequality. 

To prove (3), suppose𝜙 (𝐺,
2𝑚

𝑛
) = 0. Thus 

2𝑚

𝑛
 is a signless laplacian eigenvalueand so it is an algebraic 

integer. So by a well-known result in algebraic number theory 
2𝑚

𝑛
 is an integer. But for a tree we have 

2𝑚

𝑛
=

2(𝑛−1)

𝑛
, a contradiction. Thus 𝜙 (𝐺,

2𝑚

𝑛
) ≠ 0 . Now, suppose 𝜙(𝐺, 𝑥) = 𝑥𝑛 + 𝑏𝑛−1𝑥

𝑛−1 +⋯+ 𝑏1𝑥 . Then 

𝜙 (𝐺,
2𝑚

𝑛
) =

2𝑚

𝑛

𝑛
+ 𝑏𝑛−1

2𝑚

𝑛

𝑛−1
+⋯+ 𝑏1

2𝑚

𝑛
≠ 0. 

This implies that 𝑛𝑛 |𝜙 (𝐺,
2𝑚

𝑛
)| is an integer and so |𝜙 (𝐺,

2𝑚

𝑛
)| ≥

1

𝑛𝑛
. This completes the third part of the 

Theorem. 

4. Conclusion 
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In this study, we obtained signless Laplacian spectrum of some special subgraphs of complete graph and 

then estimated some bounds for signless Laplacian Energy of some graphs. We conclude that 2𝑚/𝑛  is not a 

Laplacian characteristic polynomial root. Also, future studies can deal with both stochastic and fuzzy graphs. 

Conflict of interest: The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 
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