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Computer-assisted approaches might be seen as a bridge to novel medication discoveries. In 2014, the World 
Health Organization declared antibiotic resistance in microorganisms to be a major global threat due to which 
simple diseases that were formerly manageable have now become deadly infections. Microbial resistance is a 
form of drug resistance in which a microorganism may live even when antibiotics are present in the environ-
ment. Toxoplasmosis is a major worldwide parasitic infection caused by Toxoplasma gondii. Since Toxoplasma 
gondii is not capable of purine synthesis, the protein adenosine kinase (EC.2.7.1.20) is an important enzyme 
in its life pathway. Therefore, Toxoplasma gondii adenosine kinase has recently been considered a target for 
developing anti-Toxoplasma agents. This study aimed to develop a 3D QSAR model to predict the activity of 
adenosine kinase inhibitors in Toxoplasma gondii and to find new potent inhibitors. Acceptable values of 0.98, 
0.83, and 0.91 were observed for the goodness of fit (R2), internal cross-validation (Q2), and external cross-vali-
dation (R2pred) indices, respectively. The robustness of the model was confirmed by applying the Y-scrambling 
analysis, and values of ~ 0.18 and ~ 0.0025 were observed for R2intercept and Q2intercept, respectively. This 
confirmed that indices calculated for the original model were not based on the chance correlation between inde-
pendent and dependent variables. Following the structural virtual screening, new ligands were proposed using 
the SwissSimilarity web tool and the ZINC database. The SwissADME web tool was used to predict the phar-
macokinetic properties of the new compounds, and a promising compound was suggested for further research.
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1. Introduction
Toxoplasmosis, which is found all over the 

globe, is a serious parasitic infection caused by 
Toxoplasma gondii. It’s worth noting that it’s one 
of the most prevalent parasite infections of the 
central nervous system, as well as a serious public 
health issue affecting over a billion people world-
wide (Babaie et al., 2019). Toxoplasma gondii is 
an obligate intracellular parasite that has the po-
tential to cause infection in warm-blooded ani-
mals. Cats and feline cats are the only final hosts of 
this parasite that spread parasite oocysts through 
feces into the environment (Nicolle, 1908). 

In order to detect toxoplasmosis, the most 
commonly used methods include molecular, bi-
ochemical, histological, immunohistochemical, 
direct spread, or a combination of these methods 
(Sterkers et al., 2011). Medical history, physical 
examination (Lin et al., 2000), and blood tests 
(Hill & Dubey, 2002) are all used to determine 
the presence of an infection. Anti-Toxoplasma 
antibodies (IgM and IgG antibodies) are routine-
ly measured in the blood (Switaj et al., 2005). 
There are also polymerase chain reactions to de-
tect infection in blood, amniotic fluid, and cere-
bral spinal fluid (Elmore et al., 2010). Stool test-
ing for oocysts and serological testing are used 
to determine the presence of an infection in cats. 
Particularly important in terms of human health 
and infecting other intermediate host animals 
are kittens that are infected for the first time be-
cause of their lack of immunity with abundant 
oocyst excretion and environmental contamina-
tion (Zenner et al., 1999). Due to the importance 
of Toxoplasma gondii in medicine and veterinary 
medicine, the biological characteristics of this 
parasite can be predicted to some extent by using 
genotyping techniques, and the prevalence of in-
fection in human and animal populations can be 
reduced by using control and prevention meth-
ods, including DNA vaccine design (Homan et 
al., 2000). Treatments for toxoplasma have had 
poor results and a wide range of undesirable side 
effects. In addition, there is presently no vaccina-
tion to treat the disease. Due to such shortcom-
ings, the development of new, effective medi-
cations with fewer side effects is a critical and 

fundamental need for treating toxoplasmosis. 
Rational drug design depends on physiolog-

ical and biochemical differences between path-
ogen and host, and in the case of Toxoplasma 
gondii, the purine metabolism pathway is one of 
the most important goals in drug design studies 
against this pathogen (el Kouni, 2007). Toxo-
plasma gondii is not able to synthesize purines 
and depends on recovery pathways to meet its 
need for purines (Ngô et al., 2000). Adenosine 
kinase and adenosine monophosphate are the 
most important enzymes in the parasite’s need 
for purine in recovery pathways (Reddy et al., 
2008). Biochemical, metabolic, and molecular 
research on chemical performance and struc-
ture shows that Toxoplasma gondii adenosine 
kinase is an important and very suitable chemo-
therapy target for the treatment of toxoplasmosis 
(el Kouni, 2007). Toxoplasma gondii adenosine 
kinase is a monomeric protein with a length of 
363 residues and a weight of 39.3 kDa (Fig. 1), 
which uses the ATP y-phosphate group as a phos-
phate donor by phosphorylation of adenosine to 
adenosine 5’-monophosphate (AMP) (Al Safar-
jalani et al., 2008), and because purine is essen-
tial for Toxoplasma gondii and other parasites, 
inhibition of the salvage pathway could stop 
the growth of this parasite. Benzyl adenosine 
analogues, also known as invasive substrates, 
are metabolized to the nucleotide level and be-
come selectively toxic against this parasite but 
have no toxic effect on the host (el Kouni, 2007). 

Figure 1. 3D structure of Toxoplasma gondii adenosine kinase 
(PDB ID: 2a9y)
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Recently, 41 analogues of benzyl adenosine 
have been specified, which have been reported 
as invasive and, of course, potent substrates for 
Toxoplasma gondii adenosine kinase [el Kouni, 
2007; Kim et al., 2008). The 7-Deaza adenosine 
is also an excellent ligand for Toxoplasma gon-
dii adenosine kinase. Compared with 6-benzyl 
inosine and 7-Deaza inosine, the 7-Deaza-6-ben-
zylthioinosine analogues are better ligands for 
Toxoplasma gondii adenosine kinase (Kim et 
al., 2008). All 7-Deaza-6-benzylthioinosine ana-
logues showed a selective antitoxoplasmic effect 
against wild-type parasites. The proximity of the 
anti-toxoplasma and the toxic host with a distinct 
substitution on the aromatic ring enhances the 
proximity of Toxoplasma gondii adenosine ki-
nase compared to when N6-Benzyladenosine is 
non-substituted. The difference in the position of 
these substitutes on the aromatic ring is in the dif-
ferent degrees of strength and ability of anti-toxo-
plasma factors (Al Safarjalani et al., 2008). These 
results indicate that Toxoplasma gondii adenosine 
kinase is an excellent target for chemotherapy 
and its compounds are anti-Toxoplasma factors. 

Adenosine kinase inhibitors received much 
attention for drug production in the late 1990s 
and early 2000s because they prevent the se-
cretion of adenosine metabolism in the body, 
and therefore reduce side effects (Cook et al., 
2000). Therapeutic applications that include 
adenosine kinase-lowering performance mod-
ification include pharmacy (Singh et al., 1996), 
gene therapy, cell therapy, ketogenic diets, and 
transcriptional suppression (Cook et al., 2000). 
Prokaryotic and eukaryotic microorganisms usu-
ally have specific compatibility in their nucleo-
tides. Nucleotide metabolism in microorganisms 
is different from that of the host. This difference 
can be used to produce antiparasitic drugs that 
are specific to parasites but do not affect the host. 
Mycobacterium tuberculosis is a species of path-
ogenic bacterium that causes tuberculosis whose 
adenosine kinase was the first bacterial adeno-
sine kinase to be cloned. Currently, halogenated 
3-deaza-adenosine analogues can be considered 
as anti-tuberculosis agents (Vodnala et al., 2008). 

Traditional techniques of drug manufacture 
have long been a source of consternation and 

frustration for scientists due to their high produc-
tion costs and the perception that they would take 
an eternity to scale up (Johns Hopkins Bloomb-
erg School of Public Health, 2018). To this end, 
pharmaceutical companies have been looking 
for new and more accurate ways to spend mon-
ey and speed up the drug production process. 
Due to important and ubiquitous computer sci-
ence advances, initiatives to use this technolo-
gy in the medical area in order to greatly min-
imize the challenges faced have been made. In 
point of fact, computer-assisted methods have 
the potential to be seen as a pathway leading to 
the discovery of innovative medications. These 
techniques center mostly on compound modeling 
and information analysis, both of which are car-
ried out via the use of software calculations that 
are characterized by a high level of precision as 
well as an increased likelihood of accomplish-
ment. It was not until the 1960s that comput-
er-related methods for discovering and develop-
ing drugs were found to be potentially effective 
in making chemical compounds and inactivat-
ing inappropriate components and compounds. 

QSAR is one of the most widely used meth-
ods in chemometrics because it seeks to find a 
meaningful relationship between structure and 
function. This is accomplished through the ap-
plication of mathematical models such as mul-
tivariate linear regression, least squares regres-
sion, and other similar models (Brereton, 2003). 
The therapeutic and biological functions of a 
medicine are dependent not only on the bond-
ing angles between the atoms but also on the ca-
pacity of the molecule to pass through the cell 
membrane and disperse its electrical charges, 
as well as to make hydrogen bonds with other 
molecules, and so on, to the degree that it can 
be claimed that QSAR methods can predict new 
compounds from the chemical structure and bi-
ological activity of compounds (Burger, 1970).

The biological activity of drugs depends on 
the binding of the receptor protein or enzyme, 
which leads to the formation of the drug-recep-
tor complex. Structural properties determine the 
properties and activity of chemical compounds, 
and QSAR can show the relationship between 
the structural properties and the physical and 
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chemical properties of compounds well. In fact, 
QSAR can determine the relationship between 
the physico-chemical behavior of a molecule and 
its structural units. Thus, scientists can predict the 
behavior of molecules based on their structure. 
A variety of scientific disciplines are used in the 
process of designing drugs, as well as technolo-
gies such as QSAR, which play a significant part 
in the process of developing and perfecting com-
pounds. The QSAR approaches may be broken 
down into a few different classes, each of which 
describes descriptors according to structure 
(Göller et al., 2006) Taking into consideration the 
information presented above, the purpose of this 
research was to investigate the most effective way 
to inhibit adenosine kinase in Toxoplasma gondi 
by using the three-dimensional QSAR approach.
2. Methods
2.1 Data Selection 

The structures of inhibitory compounds 
along with their biological functions were ob-
tained from the BindingDB (Chen et al., 2001; 
Liu et al., 2007). The BindingDB is one of 
the most popular databases used for drug de-
sign research. Data were screened before 
modeling, and bad data were removed from 
the dataset based on the following criteria:
1)Data belonging to organisms other than hu-
mans.
2)Performances reported on scales other than Ki 
or with inaccurate values (e.g. Ki <1000).
3)Compounds for which more than one amount 
of biological performance (functioning) has been 
reported.

After screening, the biological performances 
of the remaining 87 compounds were returned to 
the pKi (log Ki × 10-9).
2.2 Calculating the Descriptors of 
Chemical Compounds

GRIND descriptors are one of the most im-
portant molecular descriptors for studying the 
structure and interaction of ligands. These de-
scriptions are 3D descriptors that represent the 
ability of the molecule to form appropriate in-
teractions with independent pharmacophoric 
groups. The production of these descriptors in-
cludes the calculation of molecular interaction 

field maps. These descriptors are independent of 
the alignment of structures and are therefore a 
good way to describe inhibitory molecules with 
different structures. Drawing and optimizing the 
structure of ligands has been conducted through 
the use of the Sybil software (version 7.3). The 
partial charge of the atoms was calculated by the 
extended Hückel method. Then, to calculate Grid 
Independent Descriptors (GRINDs), the AMAN-
DA algorithm (Duran et al., 2008; Wold et al., 
1993) was applied. The operation steps of the 
AMANDA algorithm are as follows:
1)Calculation of the MIFs (molecular-interaction 
fields) and identification of favorable interaction 
energies called nodes,
2)Node filtration (to find a set of regions with the 
most favorable interaction energies) and
3)Encoding of the final remaining nodes into the 
GRINDs descriptors. After multiplication of the 
interaction energy pairs, the greatest product is 
kept for each internode distance. 

Herein, the molecular interaction field maps 
for N1, O, and DRY probes have been calculated 
by the grid software. These probes represented 
hydrophobic interactions, hydrogen bond accep-
tor groups, and hydrogen bond donor groups. A 
0.5 angstrom distance was obtained between the 
grid points. With six molecular interaction field 
maps and a smoothing window of 0.4 angstroms, 
1200 descriptors were calculated for each chem-
ical compound.
2.3 Variable Selection

Descriptors can determine the correctness or 
incorrectness of modeling. In other words, mod-
eling will not be designed properly if the choice 
of descriptors is inappropriate. This expresses the 
importance and value of descriptors. Therefore, 
their selection must be done very carefully to de-
pict the specific properties of the molecule. Given 
the problems raised, it is necessary to choose the 
appropriate variable to obtain useful and accurate 
information from the many descriptors that exist. 

Genetic algorithm is a type of natural evolution 
in which variables (different descriptors) play the 
role of genes in a particular species (Baroni et 
al., 1993; Leardi, 2000). Through selection, mu-
tation, and genetic crossover, better values than 
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the fitness function are sought. The population 
with the highest fitness function remains for the 
next generation. The genetic algorithm navigates 
the target space by randomly creating genetic 
mutations, combining variables in the process of 
genetic crossover, and combining variables in the 
process of genetic crossover. In fact, genetic al-
gorithms are used in optimization, which means 
that they affect the variables of a problem if in-
formation is not available from the nature of the 
problem, and this feature is unique to the genetic 
algorithm and therefore distinguishes this meth-
od from other methods. 
2.4 Multivariate Modeling

Using the Kennard–Stone method (Kennard 
et al., 1969), the whole dataset was partitioned 
into two groups—one for training, consisting 
of eighty percent of the data, and the other for 
testing, consisting of twenty percent. The ability 
to produce models¬ with high predictive power, 
even in the presence of perturbations, alignments, 
and redundant variables, has made the partial 
least squares (PLS) technique one of the most 
popular achievements in multivariate modeling. 
PLS is a more evolved approach than the prin-
cipal component analysis technique. In PLS, the 
descriptors and biological activities are simulta-
neously reflected on PLS components, which are 
also known as latent variables. This is done in 
order to understand the linear relationships that 
exist between the descriptors and biological ac-
tivities. The regression coefficients calculated by 
the output of the PLS show the direction and in-
tensity of the X effect on Y. For systems such as a 
protein-ligand complex system, the PLS regres-
sion equation can be expressed as Equation 1:

where       are the regression coefficients and 
D_l are the descriptors of the ligand. To build 
the PLS model presented in this study, the PLS 
Toolbox 3.5 software available in MATLAB was 
used.
2.5 Predicting, Evaluating the Validity, 
and Interpreting the Model

Normally, parameters are required for a model 

to be scientifically valid. In the normal case of a 
model with fewer independent variables, the cal-
culation of variables is naturally easier and more 
efficient than in other models. Also, a model 
whose standard error (mean square error) is low 
and whose correlation coefficient (R2) is closer 
to 1 will be a more appropriate model. Predic-
tive power is measured by predictive groups that 
have no role in the model development process. 
The cross-validation method is used to make a 
broad prediction of the model. That is, all avail-
able molecules will be predicted. The cross-vali-
dation method uses another parameter called Q2 
instead of the correlation coefficient (R2) (Gra-
matica, 2007). The validation parameter R2 in-
dicates the goodness of fit of the model. In fact, 
this parameter shows how well a regression mod-
el fits into the training set. R2 is the percentage 
of the total response variance explained by the 
regression model and calculated by the following 
equation:

where yi and           are the observed and 
estimated responses of the model, respectively. 
The value of ȳ is the average of the observed re-
sponse variables. The closer R2 is to 1, the better 
the quality of the model and the smaller the esti-
mation error. However, if the number of descrip-
tors is relatively large compared to the number 
of observations, the existence of a chance cor-
relation can lead to the development of simple 
models with good fit characteristics. In addition, 
the R2 parameter has nothing to do with the mod-
el’s ability to perform well on the forthcoming 
datasets, and the model training error is a poor 
estimate of the test set error. 

More validations are needed to avoid models 
containing only chance correlation. One of the 
most popular techniques for estimating model 
prediction errors is the cross-validation method. 
For the model, the cross-validation (Q2) repre-
sents the variance as specified in the prediction 
and is calculated by the following equation:
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where yi and          the observed and the pre-
dicted responses during the cross-validation pro-
cess. ȳ is the average for the observed response 
variables. The venetian blind cross-validation 
technique was conducted on the training set (ap-
proximately 80% of the dataset), while the test 
set (approximately 20% of the dataset) was used 
to confirm the predictive power of the construct-
ed model. The Y-scrambling technique was used 
to evaluate the coherence of the model (Gramat-
ica, 2007; Tropsha et al., 2003). To perform the 
Y-scrambling technique, the observed data (Y) 
(biological performance) was randomly scram-
bled for 100 times while the X-matrix (descrip-
tors) was preserved intact. Then the values of R2 
and Q2 were calculated for 100 made models. 
Next, the graph of the values R2 and Q2 obtained 
for the reference model and the made models after 
Y-scrambling was plotted against the correlation 
coefficients between reference Ys and scrambled 
Ys.  Y-intercept points for R2 and Q2 (Q2 intercept 
and R2 intercept) were calculated by crossing a 
regression line through the data points. Previous 
studies have shown that any regression model 
with                   and                         can be consid-
ered as a coherent model (Eriksson et al., 2003).
2.6 Virtual Screening

Virtual screening is one of the methods that 
are widely used to identify powerful inhibitors. 
In this study, virtual screening was conducted by 
means of the SwissSimilarity web tool. Swiss-
Similarity’s small molecule database is divided 
into the following four categories:

1) Drug molecules extracted from the Drug 
Bank (Wishart et al., 2018). This set of com-
pounds has been classified as one of the sub-
groups related to approved drugs (1500 com-
pounds), laboratory drugs (4800 compounds), 
drugs under investigation (500 compounds), 
discarded drugs (160 compounds), illegal com-
pounds (170 compounds), and dietary supple-
ments (78 compounds).

2) Small bioactive molecules. From this 
group, we can refer to a set of ligands that are 
in complex with macromolecular structures in 
the protein database (PDB) (Burley et al., 2019). 
These ligands were retrieved from databases 

such as LigandExpo (19,500 combinations) (Li-
gandExpo, 2019), ChEMBL (177,000 combina-
tions) (Gaulton et al., 2019), and ChEBI (28,000 
combinations) (Hastings et al., 2016).

3) Commercially available compounds 
stored in the ZINC database (Irwin et al., 2012). 
This set of compounds is categorized in one of 
the subgroups related to drug-like molecules 
(10,600,000), lead-like molecules (4,300,000), 
fragment-like molecules (700,000) or com-
pounds grouped by sellers (9,700,000).

4) A collection of 205 million virtual com-
binations that can be easily synthesized by ex-
isting commercial agents. These compounds can 
be synthesized through a single-step chemical re-
action (Hartenfeller et al., 2012) and refined for 
chemical stability and non-toxicity.
2.7 Investigation of Pharmacokinetic 
Parameters and Drug-like Properties

To evaluate the pharmacokinetic parameters 
and drug-like properties of compounds obtained 
from the virtual screening stage, indicators such 
as molecular weight, lipid solubility, drug simi-
larity, polar surface area, and toxicological risk 
assessment (using the SwissADME web tool 
(http://www.swissadme.ch) were evaluated. 
3. Results and Discussion 
3.1 Data Selection

Since the growing phenomenon of antibiotic 
resistance is one of the most important concerns 
today and a serious threat to public health, ex-
tensive clinical efforts have been made to devel-
op new antibacterial agents to effectively treat 
bacterial infections. Since the adenosine kinase 
enzyme plays a very important role in the life cy-
cle of Toxoplasma gondii, it is recognized as an 
important target for the development of anti-tox-
oplasmosis compounds. Therefore, inhibition of 
adenosine kinase bioactivity by specific chemi-
cal inhibitors can be a powerful strategy to fight 
against the growing phenomenon of antibiotic 
resistance in related pathogens. The structures of 
inhibitory compounds along with the biological 
activities of these compounds, extracted from 
the BindingDB database, are shown in Table 1.
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1- Table 1. Structure and Biological Activities of Inhibitor Compounds Extracted from the BindingDB Database

Comp. X1 X2 Z R1 R2 R3 R4 R5 pKi

M1* O N S H H H H H 5.62
M2 O N S Cl H H H H 5.85
M3 O N S CH3 H H H H 5.82
M4 O N S H NO2 H H H 5.52
M5* O N S H CH3 H H H 5.88
M6 O N S H CF3 H H H 5.54
M7 O N S H H F H H 5.92
M8 O N S H H Cl H H 5.68
M9 O N S H H Br H H 5.12
M10 O N S H H CN H H 6.04
M11 O N S H H NO2 H H 5.96
M12 O N S H H CH3 H H 5.48
M13 O N S H H OCH3 H H 5.58
M14* O N S H H OCF3 H H 3.85
M15 O N S H H t-Bu H H 3.95
M16* O N S H H cooc

H3
H H 4.02

M17 O N S Cl H Cl H H 6.15
M18 O N S H Cl Cl H H 5.60
M19 O N S Cl H H H F 4.42
M20 O N S CH3 H CH3 H CH3 3.82
M21 O N NH H H H H H 3.74
M22 O N NH F H H H H 4.29
M23 O N NH Cl H H H H 4.92
M24 O N NH NO2 H H H H 4.43
M25 O N NH OCH3 H H H H 4.95

M26* O N NH H F H H H 4.08
M27 O N NH H CH3 H H H 4.60
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M28* O N NH H H F H H 4.28
M29 O N NH H H Cl H H 4.09
M30 O N NH H H CN H H 4.74
M31 O N NH H H CF3 H H 4.00
M32 O N NH H H CH3 H H 4.57
M33 O N NH H H i-Pr H H 4.33
M34 O N NH H H cooc

H3
H H 4.05

M35 O N NH H H OCH3 H H 5.00
M36 O N NH F H F H H 4.91
M37 O N NH Cl H Cl H H 4.69
M38 O N NH H Cl Cl H H 4.45
M39 O N NH F H NO2 H H 3.77
M40 O N NH Cl H CN H H 4.27
M41 O N NH F H OCH3 H H 4.59
M42 O N NH OCH3 H OCH3 H H 4.56
M43* O CH S H H H H H 4.55
M44 O CH S F H H H H 4.23
M45* O CH S Cl H H H H 4.44
M46 O CH S Br H H H H 3.97
M47 O CH S CH3 H H H H 3.64
M48* O CH S H NO2 H H H 4.34
M49 O CH S H CF3 H H H 4.66
M50 O CH S H CH3 H H H 5.07
M51 O CH S H H F H H 4.42
M52* O CH S H H Cl H H 4.96
M53 O CH S H H Br H H 3.60
M54 O CH S H H NO2 H H 4.45
M55 O CH S H H CN H H 5.28
M56 O CH S H H CO2CH3 H H 5.15
M57 O CH S H H CH3 H H 4.72
M58 O CH S H H t-Bu H H 4.62
M59 O CH S H H H H 3.74
M60 O CH S H H OCF3 H H 4.45
M61 O CH S H H OCH3 H H 5.24
M62 O CH S F H F H H 4.79
M63 O CH S Cl H Cl H H 4.58
M64 O CH S H Cl Cl H H 4.55
M65 O CH S F H H H Cl 5.14
M66 O C-I S H H H H H 4.08

M67* CH2 N S H H H H H 3.98

M68* CH2 N S F H H H H 4.26
M69 CH2 N S Cl H H H H 4.62
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M70 CH2 N S CH3 H H H H 4.60
M71* CH2 N S H NO2 H H H 4.57
M72 CH2 N S H CF3 H H H 4.66
M73 CH2 N S H CH3 H H H 4.57
M74 CH2 N S H H F H H 4.49
M75* CH2 N S H H Cl H H 4.79
M76 CH2 N S H H Br H H 4.68
M77 CH2 N S H H NO2 H H 4.03
M78 CH2 N S H H CN H H 3.89
M79 CH2 N S H H CO2CH3 H H 4.39
M80* CH2 N S H H CH3 H H 5.12
M81 CH2 N S H H SO2CH3 H H 4.13
M82 CH2 N S H H OCF3 H H 4.18
M83 CH2 N S H H OCH3 H H 4.21
M84* CH2 N S Cl H Cl H H 4.21
M85 CH2 N S H Cl Cl H H 4.77
M86* CH2 N S F H H H H 4.51
M87 CH2 N S CH3 H CH3 H H 4.20

*: test set
3.2 3D QSAR Modeling and Validation 
of the Model

Structure-dependent descriptors were de-
scribed by the AMANDA algorithm and molecu-
lar interaction fields from DRY, N1, and O probes 
to calculate the GRIND descriptors. Prior to 
modeling, the feature selection process to find the 
most appropriate structure-dependent descriptors 
was performed. The relationships between the 
descriptors related to the selected structures and 
bioactivity (pKi) were investigated using PLS 
modeling. Figure 2 shows the diagram of the ex-
perimental pKi versus the pKi predicted by the 3D 
QSAR model. Acceptable values of 0.98, 0.83, 
and 0.91 were observed for the goodness of fit 
(R2), internal cross-validation (Q2), and external 
cross-validation (R2pred) indices, respectively.

The robustness of the model was also con-
firmed according to the results obtained from the 
scrambling analysis and the observed values for 
R2intercept and Q2intercept, which were ~0.18 
and ~0025/0, respectively (Fig. 3). The results 
of R2intercept and Q2intercept showed that the 
optimal indices calculated for the original mod-
el were not based on the chance relationship be-
tween independent and dependent variables.

3.3 Virtual Screening
Virtual screening was performed using the 

SwissSimilarity web tool to search for chemi-
cal compounds that have the potential to inhibit 
the adenosine kinase enzyme. The ZINC data-
base was selected for screening, and the search 
parameters were set to default. The most active 
chemical compound in the adenosine kinase 
inhibitor group (Table 1) was used as the input 
compound for the screening process. At the end 
of the screening process, 400 compounds that 
were most similar to the input compound in terms 
of structural parameters were extracted from the 
ZINC database.

In order to predict the inhibitory potential of 
database-derived compounds for adenosine ki-
nase, the performance of these compounds was 
predicted in the test group by the constructed 
3D QSAR model. Among the 400 compounds 
extracted from the ZINC database, those com-
pounds that showed more activity than the input 
compound were nominated as compounds with 
inhibitory potential for adenosine kinase (Table 
2). Then the pharmacokinetic parameters and 
drug-like properties of the candidate compounds 
were further studied.
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Figure 2. Plot of Experimental pKi Values Versus Predicted pKi Values for Training and Testing Datasets

Figure 3. Y-scrambling plot of pKi for the QSAR model. The Y-axis represents R2 (green) and Q2 (violet) coefficients for 
the original model and 100 models built based on randomly scrambled response data. The X-axis represents the correla-
tion coefficient between the original and permuted response data.
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Table 2. Compounds with Inhibitory Potential for Adenosine Kinase

ZINC ID Similarity% pKi (calc.)
ZINC00057394 0.575 6.30
ZINC01668084 0.601 7.05
ZINC01669236 0.67 6.28
ZINC01675226 0.564 6.63
ZINC01675229 0.564 6.47
ZINC01689682 0.564 6.73
ZINC02044304 0.564 6.37
ZINC04311911 0.637 7.10
ZINC04311912 0.637 7.10
ZINC04945807 0.601 6.79
ZINC04945809 0.601 7.06
ZINC04964106 0.564 6.23
ZINC04964109 0.564 7.26
ZINC04964111 0.564 6.25
ZINC04964113 0.564 6.30
ZINC08715601 0.675 6.23
ZINC11616454 0.579 6.49
ZINC12958408 0.583 6.38
ZINC13454269 0.665 6.53
ZINC13547650 0.556 6.91
ZINC13597424 0.64 6.37
ZINC13829362 0.554 6.188
ZINC16382910 0.579 6.492
ZINC16923286 0.584 6.36
ZINC16951688 0.569 6.58
ZINC16951904 0.753 6.21
ZINC16952556 0.564 7.79
ZINC16953141 0.577 6.44
ZINC16953833 0.585 6.26
ZINC16970549 0.64 6.70
ZINC16990186 0.721 6.23
ZINC16990189 0.723 6.22
ZINC16990363 0.756 6.45
ZINC16990703 0.737 6.63
ZINC17020182 0.564 6.71
ZINC17021040 0.596 6.44
ZINC20150163 0.637 7.87
ZINC20150164 0.637 7.10
ZINC44069525 0.583 6.80
ZINC95921563 0.554 6.33
ZINC98091587 0.554 6.18
ZINC98091589 0.554 6.18
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One of the essential issues that should be con-
sidered in the field of drug design is the analysis 
of pharmacokinetic properties such as absorp-
tion, distribution, metabolism, excretion, and 
toxicity of new drug-like compounds before en-
tering the synthesis stage. Since this process is a 
multi-step and very time-consuming and costly 
process, and the existence of favorable interac-
tions between the ligand and the target molecule 
is not a guarantee that the ligand is drug-like, so 
virtual evaluation and prediction of the pharma-
cokinetics feature for designed compounds can 
be extremely useful. Therefore, in this study, 
the total level of polarity and the Lipinski’s rule
of five (i.e., a molecule with a molecular mass  

< 500 Da, hydrogen bond donors < 5, hydrogen 
bond acceptors < 10, and a log P (octanol-wa-
ter partition coefficient) < 5) were used as the 
basis for analyzing the pharmacokinetic prop-
erties of candidate drug-like compounds (Table 
2). Of the 42 compounds studied, 5 are given 
in Table 3 as the most optimal pharmacokinetic 
conditions according to Lipinski’s rule of five, 
calculated by the SwissADME web tool (http://
www.swissadme.ch). From a pharmacokinetic 
point of view, since a total level of polarity great-
er than 140 is not desirable, among the 5 final 
candidates listed in Table 3, the first combina-
tion (ZINC ID: ZINC16951904) is introduced as 
the final candidate to enter the synthesis stage. 

ZINC ID
Molecular 
Weight

Hydrogen 
Bond Ac-
ceptors

Hydrogen 
Bond 
Donors

Total 
Level Of 
Polarity

Lipo-
philicity

ZINC16951904 298.32 7 3 138.82 0.09

ZINC16990186 355.41 7 4 164.84 0.76

ZINC16990189 403.46 7 4 164.84 1.47

ZINC16990363 341.39 7 4 164.84 0.31

Table 3. Five Compounds with the Most Optimal Pharmacokinetic Conditions According to Lipinski’s Rule of Five
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4. Conclusion
The main goal of pharmaceutical chemists 

is to find new compounds showing desirable 
performance, selectivity, and pharmacokinetic 
properties for a specific target. The aim of this 
study was to propose a 3D QSAR model, con-
structed by alignment independent descriptors 
termed GRINDs, to predict the inhibitory activ-
ity of new compounds against the adenosine ki-
nase of Toxoplasma gondii, and to find new po-
tent inhibitors. Since GRINDs-based 3D QSAR 
models provide chemically interpretable data, 
they were applied for QSAR modeling. New 
ligands were then suggested based on virtual 
screening. SwissSimilarity and ZINC databases 
were used as web tools and data banks for vir-
tual screening. The pharmacokinetic properties 
of drug-like molecules are major contributors to 
the design and development of new drugs. There-
fore, compounds selected by virtual screening 
were subjected to the SwissADME web tool for 
pharmacokinetic properties calculation. Finally, 
based on pharmacokinetic properties, a lead-
ing compound was proposed as a potent inhib-
itor of adenosine kinase of Toxoplasma gondii.
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