بهبود بهرهوری استفاده از سیستمهای فتوولتائیک شناور در شمال ایران با استفاده از ساختار اینورتر چند-رشتهای دو-مرحلهای
الموضوعات :سینا سمسکنده 1 , مهرداد حجت 2 , محمد حسینی ابرده 3
1 - دانشکده برق و کامپیوتر- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
2 - دانشکده برق و کامپیوتر- واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
3 - دانشکده برق و کامپیوتر- واحد شاهرود، دانشگاه ازاد اسلامی، شاهرود، ایران
الکلمات المفتاحية: فتوولتائیک, تابش, اینورتر, شناور, روش اغتشاش و مشاهده,
ملخص المقالة :
سیستمهای فتوولتائیک شناور، رویکردی جدید برای استفاده از سیستمهای فتوولتائیک در آب است. این سیستم، فرصت جدیدی را برای افزایش ظرفیت تولید سیستمهای فتوولتائیک خورشیدی به ویژه در مناطق شمالی ایران که قیمت زمین زیاد است، ایجاد میکند. در این مقاله جهت افزایش بهرهوری بیشتر از اینورترهای متصل به شبکه سیستمهای خورشیدی شناور در مناطق شمالی کشور، ساختار اینورتر دو-مرحلهای با اینورتر چند-رشتهای ترکیب شده است. از طرفی دیگر، روش اغتشاش و مشاهده (P&O) یکی از متداولترین روشهای ردیابی حداکثر توان (MPPT) است که از معایب این روش میتوان به نوسانات الگوریتم در طول تغییرات ناگهانی تابش اشاره کرد. از آنجایی که مناطق شمالی ایران به دلیل ابری بودن هوا دارای این تغییرات ناگهانی در طول تابش هستند، جهت غلبه بر این مانع، با اضافه کردن پارامتر تغییر جریان، الگوریتم اصلاح شده اعتشاش و مشاهده پیشنهاد گردیده است. در واقع در این ساختار دو-مرحلهای مبدل زتا و الگوریتم پیشنهادی اعتشاش و مشاهده جهت افزایش سطح ولتاژ مناسب پنلها جهت روشن بودن اینورتر و ردیابی حداکثر توان استفاده می گردد و در مرحله دوم تبدیل توان DC به AC انجام میگیرد. جهت بررسی بهبود بهرهوری، اینورتر پیشنهادی با اینورتر متمرکز تک-مرحلهای مورد مقایسه قرار میگیرد. همچنین در این مطالعه اثر باد و دمای آب در میزان تولید سیستم فتوولتائیک شناور در نظر گرفته شده است. شبیه سازی سیستم با استفاده از نرم افزار متلب انجام گرفته است. نتایج شبیه سازی نشان میدهد که اینورتر پیشنهادی دو-مرحله ای چند-رشتهای، 88/18 کیلووات ساعت به طور متوسط توان تولید میکند که این میزان در مقایسه با اینورتر تک-مرحلهای متمرکز افزایش یافته است.
[1] A. Shahsavari, F. Yazdi, H. Yazdi, "Potential of solar energy in Iran for carbon dioxide mitigation", International Journal of Environmental Science and Technology, vol. 16, pp. 507-525, Jan. 2019 (doi: 10.1007/s13762-108-1779-7).
[2] S.H. Kim, S.C. Baek, K.B. Choi, S.J. Park, "Design and installation of 500-KW floating photovoltaic structures using high-durability steel", Energies, vol. 13, no. 19, Article Number: 4996, Sept. 2020 (doi: 10.3390/en13194996).
[3] M.H.M. Hariri, M.K.M. Desa, S. Masri, M.A.A.M. Zainuri, "Grid-connected PV generation system-components and challenges: A review", Energies, vol. 13, no. 17, Article Number: 4279, Aug. 2020 (doi: 10.3390/en13174279).
[4] M. Shayestegan, "Overview of grid-connected two-stage transformer-less inverter design", Journal of Modern Power Systems and Clean Energy, vol. 6, no. 4, pp. 642-655, July 2018 (doi: 10.1007/s40565-017-0367-z).
[5] K.S. Kummar, A. Kirubakaran, N. Subrahamanyam,"Bidirectional clamping-based H5, HERIC, and H6 transformerless inverter topologies with reactive power capability", IEEE Trans. on Industry Application, vol. 56, pp. 5119-5128, Sept./Oct. 2020 (doi: 10.1109/TIA.2020.2999552).
[6] H. Xia, "Overview of transformer-less photovoltaic grid-connected inverters", IEEE Trans. on Power Electronics, vol. 36, no. 1, pp. 533-548, Jan. 2021 (doi: 10.1109/TPEL.2020.3003721).
[7] M.N.H. Khan, M. Forouzesh, Y. Siwakoti, L. Li, T. Kerekes, F. Blaabjerg, "Transformerless inverter topologies for single-phase photovoltaic systems: a comparative review", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 805-835, Mar. 2019 (doi: 10.1109/JESTPE.2019.2908672).
[8] K.V.G. Raghavendra, Z. Kamran, K. Zeb, A. Muthusamy, T.N.V. Krishna, S.V.S.V. Prabhudeva Kumar, D. Kim, M. Kim, H. Cho, H. Kim, "A comprehensive review of dc-dc converter topologies and modulation strategies with recent advances in solar photovoltaic system", Electronics, vol. 9, no. 1, Article Number: 31, Dec. 2019 (doi: 10.3390/electronics9010031).
[9] N.H. Baharudin, T.M.N. Mansur, F.A. Hamid, R. Ali, M.I. Misrun, "Topologies of dc-dc converter in solar PV applications", Indonesian Journal of Electrical Engineering and Computer Science, vol. 8, no.2, pp. 368-374, Nov. 2017 (doi: 10.11591/ijeecs.v8.i2.pp368-374).
[10] M.R. Banaei, H.A.F. Bonab, "A high efficiency nonisolated buck-boost converter based on ZETA converter", IEEE Trans. on Industrial Electronics, vol. 67, no. 3, pp. 1991-1998, Mar. 2020 (doi: 10.1109/TIE.2019.2902785).
[11] K. Harini, S. Syama, "Simulation and analysis of incremental conductance and perturb and observe MPPT with DC-DC converter topology for array", Proceeding of the IEEE/ICECCT, pp. 1-5, Coimbatore, India, Mar. 2015 (doi: 10.1109/ICECCT.2015.7225989).
[12] D. Sera, L. Mathe, T. Kerekes, S.V. Spataru, R. Teodorescu, "On the perturb-and-observe and incremental conductance MPPT methods for PV systems", IEEE Journal of Photovoltaics, vol. 3, no.3, pp. 1070-1078, July 2013 (doi: 10.1109/Jphotov.2013.2261118).
[13] A.K. Gupta, R. Saxena, "Review on widely-used MPPT techniques for PV applications", Proceeding of the IEEE/CICCS, pp. 270-273, Greater Noida, India, Feb. 2016 (doi: 10.1109/ICICCS.2016.7542321).
[14] A. Safari, S. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter", IEEE Trans. on Industrial Electronics, vol. 58, no. 4, pp. 1154-1161, April 2011 (doi: 10.1109/TIE.2010.2048834).
[15] R.M. Asif, M.A.B. Siddique, A.U. Rehman, M.T. Sadiq, A. Asad, "Modified fuzzy logic MPPT for PV system under severe climatic profiles", Pakistan Journal of Engineering and Technology, vol. 4, no. 2, pp. 49-55, 2021.
[16] M. Fereshtehpour, R. Javidi Sabbaghian, A. Farrokhi, E.B. Jovein, E.E. Sarindizaj, "Evaluation of factor governing the use of floating solar system: A study on Iran's important water infrastructures", Renewable Energy, vol. 171, pp. 1171-1187, Dec. 2021 (doi: 10.51846/vol4iss2pp49-55).
[17] A.S. Pasalic, A. Aksamovic, S. Avdakovic, "Floating photovoltaic plants on artificial accumulations-example of jablanica lake", Proceeding of the IEEE/ENERGYCON, pp. 1-6, Limassol, Cyprus, June 2018 (doi: 10.1109/ENERGYCON.2018.8398765).
[18] S.H. Kim, S.J. Yoon, W. Choi, K.B. Choi, "Application of floating photovoltaic energy generation systems in South Korea", Sustainability, vol. 8, no. 12, Article Number: 1333, Dec. 2016 (doi: 10.3390/su8121333).
[19] S.K. Sahoo, S. Sukchai, F. Yanine, "Review and comparative study of single-stage inverters for a PV system", Renewable and Sustainable Energy Reviews, vol. 91, pp. 962-986, 2018 (doi: 10.1016/j.rser.2018.04.063).
[20] P. R. Babu, S.R. Prasath, R. Kiruthika, "Simulation and performance analysis of CCM ZETA converter with PID controller", IEEE International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], pp. 1-7, Nagercoil, India, 2015 (doi: 10.1109/ICCPCT.2015.7159506).
[21] M. Ngan, C.W. Tan, "A study of maximum power point tracking algorithm for stand-alone photovoltaic systems", IEEE Applied Power Electronics Colloquium, pp. 1-6, Johor Bahru, Malaysia, Apr. 2011 (doi: 10.1109/IAPEC.2011.5779863).
[22] S. Tahir, J. Wang, M.H. Baloch, G.S. Kaloi, "Digital control techniques based on voltage source inverters in renewable energy applications: a review", Electronics, vol. 7, no. 2, Article Number: 18, Feb. 2018 (doi: 10.3390/electronics7020018).
[23] K. Dezelak, P. Bracinik, K. Sredensek, KS. Seme, "Proportional-integral controllers performance of a grid-connected solar PV system with particle swarm optimization and Ziegler-Nichols tuning method", Energies, vol. 14, no. 9, Article Number: 2516, April. 2021 (doi: 10.3390/en14092516).
[24] C. Buccella, C. Cecati, H. Latafat, K. Razi, "Multi string grid-connected PV system with LLC resonant DC/DC converter", Intelligent Industrial Systems, vol. 1, pp. 37-49, May. 2015 (doi: 10.1007/s40903-015-0006-9).
[25] Z. Salam, A. Rahman, "Efficiency for photovoltaic inverter: a technological review", IEEE Conference on Energy Conversion [CENCON], Johor Bahru, Malaysia, Oct. 2014 (doi: 10.1109/CENCON.2014.6967497).
[26] A. Omar, M. Hussin, S. Shaari, K. Sopian, "Energy yield calculation of the grid connected photovoltaic power system", Computer Applications in Environmental Sciences and Renewable Energy, pp. 162-167, 2014.
[27] A.P. Sukarso, KN. Kim, "Cooling effect on the floating solar PV: performance and economic analysis on the case of west Java province in Indonesia", Energies, vol. 13, no. 9, 2020 (doi: 10.3390/en/3092126).
[28] D. Mittal, B. Saxena, K. Rao, "Floating solar photovoltaic systems: an overview and their feasibility at Kota in Rajasthan", Proceeding of the IEEE/ICCPCT, PP. 1-7, Kollam, India, Apr. 2017 (doi: 10.1109/ICCPCT.2017.8074182).
[29] E. Torres, "Work in progress: Using RETScreen expert software for authentic assessment", Proceeding of the IEEE/EDUNINE, pp. 1-3, Bogota, Colombia, March 2020 (doi: 10.1109/EDUNINE48860.2020.9149494).
[30] M. Sandeep, M. J Sathik, U. Yaragatti, V. Krishnasamy, A.K. Verma, H.R. Pota, "Common-grid type five-level transformerless inverter topology with full dc-bus utilization", IEEE Trans. on Industry Applications, vol. 56, no. 4, pp. 4071-4080, July/Aug. 2020 (doi: 10.1109/TIA.2020.2996152).
[31] N.M. Kumar, J. Kanchikere, P. Mallikarjun, "Floatvoltaics: towards improved energy efficiency, land and water management", International Journal of Civil Engineering and Technology, vol. 9, no. 7, pp. 1089-1096, July 2018.
[32] J. Jiang, S. Pan, J. Gong, "A leakage current eliminated and power oscillation suppressed single-phase single-stage nonisolated grid-tied inverter and improved control strategy", IEEE Trans. on Power Electronics, vol. 36, pp. 6738-6749, Jun. 2021 (doi: 10.1109/TPEL.2020.3035033).
[33] H. Li, Y. Zeng, B. Zhang, T.Q. Zheng, R. Hao, Z. Yang, "An improved H5 topology with low common-mode current for transformerless PV grid-connected inverter", IEEE Trans. on Power Electronics, vol. 34, no. 2, pp. 1254-1265, Feb. 2019 (doi: 10.1109/TPEL.2016.2018.2833144).
[35] H. Shahsavari, S.M.M Mirtalaei, "Design and implementation of a non-isolated multi-part converter with high voltage gain", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 46, pp. 33-48, Sept. 2021 (dor: 20.1001.1.23223871.1400.12.2.3.1).
[36] O. Sharifiyana, M. Dehghani, G. Shahgholian, S.M.M Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 1-29, Dec. 2021 (dor: 20.1001.1.23223871.1400.12.48.6.6).
[37] S. Farhang, S. Zanjani, B. Fani, "Analysis and simulation of inverter-based microgrid droop control method in island operation mode", Signal Processing and Renewable Energy, vol. 6, no. 1, pp. 65-81, March 2022 (dor: 20.1001.1.25887327.2022.6.1.4.0).
_||_