کنترل تطبیقی سیستم های غیرخطی تاخیردار با در نظر گرفتن محدودیت های خروجی
الموضوعات :فاطمه محمدزمانی 1 , مهناز هاشمی 2 , غضنفر شاهقلیان 3
1 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
الکلمات المفتاحية: کنترل تطبیقی, قیود خروجی, سیستمهای غیرخطی تاخیردار, پارامترهای نامعین, عیوب عملگر,
ملخص المقالة :
کنترل سیستمها در فرآیندهای صنعتی در معرض مشکلاتی مثل وجود محدودیت بر سیگنالهای سیستم، نامعینی پارامترها، تأخیر زمانی و عیب عملگرها هستند. طراحی کنترل کنندهای که بتواند درضمن ارضای قیود، سیستم را کنترل، با این اثرات مقابله و آنها را جبران کند، توجه زیادی را به خود جلب کرده است. از سوی دیگر، مسئله تأخیر زمانی تا حدی جدی و تاثیرگذار است، که قادر اسهت سیستم را ناپایدار کرده و فرآیند را دچار اختلال کند. بسیاری از ادوات موجود در سیستمها همچون حسگرها و عملگرها ممکن است دچار عیب شوند که در این میان، عیوب عملگر از اهمیت ویژهای برخوردار است. نکته ی حائز اهمیت این است که، هر کدام از موارد فوق و یا حتی پارامترهای سیستم ممکن است نامعین باشند. شناسایی، تخمین و رفع اثرات مخرب مشکلات ذکر شده بر عهده کنترل کننده سیستم میباشد.روش کنترلی پیشنهادی برای سیستمهای غیرخطی در حضور نامعینی پارامتری، تاخیر و عیوب نامعین در عملگرها است و هیچ نیازی به کران پارامترها، تاخیرها و عیوب عملگر ندارد. این روش تطبیقی قادر است کرانداری کلی تمام سیگنالهای سیستم حلقه بسته و همگرایی خطای ردیابی به یک همسایگی کوچک حول مبدا را تضمین کند. در انتها نتایج شبیه سازی کارایی روش کنترلی پیشنهادی را نشان میدهند.
[1] E. Aghadavoodi, G. Shahgholian, "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, Vol. 133, pp. 381-395, March 2018 (doi: 10.1016/j.applthermaleng.2018.01.075).
[2] S. E. Razavi, P. Poursoltani, N. Pariz, "Optimal observer path planning in tracking two targets using side angle measurements", Journal of Intelligent Procedures in Electrical Technology, Vol. 10, No. 38, pp. 33-42, Summer 2019.
[3] B. Ahmadzade, G. Shahgholian, F. Mogharrab-Tehrani, M. Mahdavian, "Model predictive control to improve power system oscillations of SMIB with fuzzy logic controller", Proceeding of the IEEE/ICEMS, pp. 1-5, Beijing, China, Aug. 2011 (doi: 10.1109/ICEMS.2011.6073337).
[4] M. Hashemi, G. Shahgholian, "Distributed robust adaptive control of high order nonlinear multi agent systems", ISA Trans., Vol. 74, pp. 14-27, March 2018 (doi:10.1016/j.isatra.2018.01.023).
[5] A. Casavola, E. Mosca, D. Angeli, "Robust command governors for constrained linear systems", IEEE Trans. on Automatic Control, Vol. 45, No. 11, pp. 2071-2077, Nov. 2000 (doi:10.1109/9.887628).
[6] M. A. Mohammadkhani, F. Bayat, A. A. Jalali, "Design of explicit model predictive control for constrained linear systems with disturbances," International Journal of Control, Automation and Systems, Vol. 12, No. 2, pp. 294-301, April 2014 (doi:10.1007/s12555-013-0058-0).
[7] E. G. Gilbert, K. T. Tan, "Linear systems with state and control constraints: The theory and application of maximal output admissible sets", IEEE Trans. on Automatic Control, Vol. 36, No. 9, pp. 1008-1020, Sep. 1991 (doi:10.1109/9.83532).
[8] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, "The explicit linear quadratic regulator for constrained systems", Automatica, Vol. 38, No. 1, pp. 3-20, Jan. 2002 (doi:10.1016/S0005-1098(01)00174-1).
[9] J. A. Primbs, C. H. Sung, "Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise", IEEE Trans. on Automatic Control, Vol. 54, No. 2, pp. 221-230, Feb. 2009 (doi:10.1109/TAC.2008.2010886).
[10] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. Scokaert, "Constrained model predictive control: Stability and optimality" Automatica, Vol. 36, No. 6, pp. 789-814, June 2000 (doi:10.1016/S0005-1098(99)00214-9).
[11] K. D. Do, "Control of nonlinear systems with output tracking error constraints and its application to magnetic bearings," International Journal of Control, Vol. 83, pp. 1199-1216, May 2010 (doi: 10.1080/00207171003664828).
[12] W. Meng, Q. Yang, J. Si, Y. Sun, "Consensus control of nonlinear multiagent systems with time-varying state constraints," IEEE Trans. on cybernetics, Vol. 47, No. 8, pp. 2110-2120, Aug. 2017 (doi:10.1109/TCYB. 2016.2629268).
[13] D. Liu, X. Yang, D. Wang, Q. Wei, "Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints", IEEE Trans. on Cybernetics, Vol. 45, No. 7, pp. 1372-1385, July 2015 (doi:10.1109/TCYB.2015.2417170).
[14] L. Zhang, C. Hua, H. Yu, X. Guan, "Distributed adaptive fuzzy containment control of stochastic pure-feedback nonlinear multiagent systems with local quantized controller and tracking constraint", IEEE Trans. on Systems, Man, and Cybernetics: Systems, Vol. 40, No. 4, April 2019 (doi:10.1109/TSMC.2017.2701344 ).
[15] W. He, H. Huang, S. S. Ge, "Adaptive neural network control of a robotic manipulator with time-varying output constraints," IEEE Trans. on Cybernetics, Vol. 47, No. 10, pp. 3136-3147, Oct. 2017 (doi:10.1109/TCYB. 2017.2711961).
[16] Y.-J. Liu, S. Lu, S. Tong, "Neural network controller design for an uncertain robot with time-varying output constraint," IEEE Trans. on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 8, Aug. 2017 (doi:10.1109/ TSMC.2016.2606159).
[17] K. P. Tee, S. S. Ge, E. H. Tay, "Barrier Lyapunov functions for the control of output-constrained nonlinear systems", Automatica, Vol. 45, No. 4, pp. 918-927, April 2009 (doi:10.1016/j.automatica.2008.11.017).
[18] K. P. Tee, B. Ren, S. S. Ge, "Control of nonlinear systems with time-varying output constraints", Automatica, Vol. 47, No. 11, pp. 2511-2516, Nov. 2011 (doi:10.1016/j.automatica.2011.08.044).
[19] G. Shahgholian, A. Movahedi, "Modeling and controller design using ANFIS method for non-linear liquid level system", International Journal of Information and Electronics Engineering, Vol. 1, No. 3, pp. 271-275, Nov. 2011 (doi:10.7763/IJIEE.2011.V1.43).
[20] E. Fridman, U. Shaked, "A descriptor system approach to H/sub/spl infin//control of linear time-delay systems", IEEE Trans. on Automatic Control, Vol. 47, No. 2, pp. 253-270, Feb. 2002 (doi:10.1109/9.983353).
[21] L. Yu, J. Chu, "An LMI approach to guaranteed cost control of linear uncertain time-delay systems", Automatica, Vol. 35, No. 6, pp. 1155-1159, June 1999 (doi:10.1016/S0005-1098(99)00007-2).
[22] D.-H. Zhai, Y. Xia, "Adaptive control for teleoperation system with varying time delays and input saturation constraints", IEEE Trans. on Industrial Electronics, Vol. 63, No. 11, pp. 6921-6929, 2016 (doi:10.1109/TIE. 2016.2583199).
[23] Y.-Y. Cao, P. M. Frank, "Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach", IEEE Trans. on Fuzzy Systems, Vol. 8, No. 2, pp. 200-211, April 2000 (doi:10.1109/91.842153).
[24] Li, Da-Peng, et al. "Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints", IEEE Trans. on Cybernetics, Vol. 47, No. 10, pp. 3100-3109, Oct. 2017 (doi:10.1109/TCYB.2017.2707178).
[25] K. Gu, "An integral inequality in the stability problem of time-delay systems", Proceeding of the IEEE/CDC, pp. 2805-2810, Sydney, NSW, Australia, Dec. 2000 (doi: 10.1109/CDC.2000.914233).
[26] L. Xie, E. Fridman, U. Shaked, "Robust H/sub/spl infin//control of distributed delay systems with application to combustion control", IEEE Trans. on Automatic Control, Vol. 46, No. 12, pp. 1930-1935, Dec. 2001 (doi:10.1109/9 .975483).
[27] S.-I. Niculescu, "H/sub/spl infin//memoryless control with an/spl alpha/-stability constraint for time-delay systems: an LMI approach," IEEE Trans. on Automatic Control, vol. 43, No. 5, pp. 739-743, May 1998 (doi:10.1109/ 9.668850).
[28] M. Ataei, H. Ghotb, G. Shahgholian, A. Kiyoumarsi. "Modeling of the electric arc furnaces using chaos theory and control of power quality parameters", Journal of Control. Vol. 7, No. 2, pp. 33-42, 2013.
[29] M. Taslimi, A. Chatraei, M. Hosseini, "A robust neuro-adaptive control of three link scara robot with mass uncertainty", Journal of Intelligent Procedures in Electrical Technology, Vol. 4, No. 15, pp. 11-18, Sep. 2013.
[30] R. Aarthi, R. A. Natarajan, "An integrated fault detection and diagnosis using kaman filter and eigen structure assignment-application to three tank system", Applied Mechanics and Materials, Vol. 704, pp. 252-256, 2015 (doi: 10.4028/www.scientific.net/AMM.704.252).
[31] J. Chen, W. Zhang, Y.-Y. Cao, "Robust reliable feedback controller design against actuator faults for linear parameter-varying systems in finite-frequency domain", IET Control Theory and Applications, Vol. 9, No. 10, pp. 1595-1607, June 2015 (doi:10.1049/iet-cta.2014.1308).
[32] J. Chen, W. Zhang, Y.-Y. Cao, H. Chu, "Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems", IEEE Trans. on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 7, pp. 1336-1347, July 2017 (doi:10.1109/TSMC.2016.2587300).
[33] C. Deng, G.-H. Yang, "Cooperative adaptive output regulation for linear multi-agent systems with actuator faults", IET Control Theory and Applications, Vol. 11, No. 14, pp. 2396-2402, Sep. 2017 (doi:10.1049/iet-cta.2016.1571).
[34] M. Hashemi, "Adaptive control of nonlinear systems in the presence of actuator failures", Journal of Intelligent Procedures in Electrical Technology, Vol. 8, No. 32, pp. 51-58, March 2018.
[35] K. Shojaei, A. Chatraei, S. Nakhkoob, "Fuzzy adaptive control for trajectory tracking of autonomous underwater vehicle", Journal of Intelligent Procedures in Electrical Technology, Vol. 4, No. 16, pp. 51-58, Dec. 2014.
[36] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, J. Schröder, Diagnosis and fault-tolerant control vol. 691: Springer, 2006.
[37] I. Sadeghzadeh, A. Mehta, Y. Zhang, C.-A. Rabbath, "Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control", Proceeding of the ACPHMS, Aug. 2011.
[38] M. Hashemi, "Adaptive neural dynamic surface control of MIMO nonlinear time delay systems with time‐varying actuator faults", International Journal of Adaptive Control and Signal Processing, Vol. 31, No. 2, pp. 275-296, 2017 (doi:10.1002/acs.2715).
[39] C. Wen, Y. Zhang, Y. C. Soh, "Robustness of an adaptive backstepping controller without modification", Systems and Control Letters, Vol. 36, No. 2, pp. 87-100, Feb. 1999 (doi:10.1016/S0167-6911(98)00081-4).
[40] M. Hashemi, J. Askari, J. Ghaisari, "Adaptive actuator fault compensation for a class of MIMO nonlinear time delay systems," Nonlinear Dynamics, Vol. 79, pp. 865-883, 2015 (doi: 10.1007/s11071-014-1708-3).
[41] M. Hashemi, J. Askari, J. Ghaisari, "Adaptive control of uncertain nonlinear time delay systems in the presence of actuator faults and applications to chemical reactor systems", European Journal of Control, Vol. 29, pp. 62-73, May 2016 (doi:10.1016/j.ejcon.2016.03.002).
[42] S. Yin, H. Yang, H. Gao, J. Qiu, O. Kaynak, "An adaptive NN-based approach for fault-tolerant control of nonlinear time-varying delay systems with unmodeled dynamics", IEEE Trans. on Neural Networks and Learning Systems, Vol. 28, No. 8, pp. 1902-1913, Aug. 2017 (doi:10.1109/TNNLS.2016.2558195).
[43] H. Li, Y. Gao, L. Wu, H.-K. Lam, "Fault detection for TS fuzzy time-delay systems: delta operator and input-output methods", IEEE Trans. on Cybernetics, Vol. 45, No. 2, pp. 229-241, Feb. 2015 (doi:10.1109/TCYB.2014. 2323994).
[44] S.-J. Huang, G.-H. Yang, "Fault tolerant controller design for t–s fuzzy systems with time-varying delay and actuator faults: a k-step fault-estimation approach", IEEE Trans. on Fuzzy Systems, Vol. 22, No. 6, pp. 1526-1540, Dec. 2014 (doi:10.1109/TFUZZ.2014.2298053).
[45] E. Hosseini, E. Aghadavoodi, G. Shahgholian, H. Mahdavi-Nasab, "Intelligent pitch angle control based on gain-scheduled recurrent ANFIS", Journal of Renewable Energy and Environment, Vol. 6, No. 1, pp. 36-45, 2019.
_||_