طراحی مدل پیش بینی ورشکستگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی و مقایسه آن با مدل رگرسیون لوجیت
الموضوعات : فصلنامه تحلیل بازار سرمایه
1 - گروه مهندسی صنایع، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران
الکلمات المفتاحية: شبکه عصبی مصنوعی, رگرسیون لوجیت, پیشبینی ورشکستگی مالی,
ملخص المقالة :
با توجه به نگرانیهایی که سرمایهگذاران از بازگشت اصل و سود سرمایه دارند و پیامدها و هزینههایی که وقوع ورشکستگی برای شرکتها و اقتصاد کشور و سایر افراد و نهادها میتواند ایجاد نماید، طراحی یک مدل قابل اطمینان جهت پیشبینی احتمال وقوع ورشکستگی شرکتها برای راهنمایی برای تصمیمگیرندگانی همچون شرکت-های سرمایهگذاری، بانکها و دولت ضروری به نظر میرسد. در این پژوهش از روش شبکه عصبی مصنوعی و روش رگرسیون لوجیت جهت پیشبینی ورشکستگی تعدادی از شرکتهای پذیرفته شده در بورس اوراق بهادار تهران طی سالهای 1395 تا 1399 استفاده شده و نتایج با روش رگرسیون لوجیت مقایسه شده است. میزان دقت کلی پیشبینی روش شبکه عصبی مصنوعی برای هریک از سال-های t، t-1، t-2 و t-3 به ترتیب برابر با 55/96 % ، 55/96 % ،24/92 % و 24/92 % و برای روش رگرسیون لوجیت برای همین سالها به ترتیب 94% ، 82/94% ، 51/90% و 06/87% میباشد که نشان داد روش شبکه عصبی مصنوعی از دقت بالاتری نسبت به روش رگرسیون لوجیت برخوردار می باشد. لذا می توان نتیجه گرفت که روش شبکه عصبی مصنوعی ابزار مناسبتری برای پیشبینی ورشکستگی شرکتها در اختیار قرار میدهد.
_||_