مدلسازی بیوفیزیکی- اقتصادی جامع اقلیم و کشاورزی (مطالعه موردی: حوضه آبخیز رودشور)
الموضوعات :ابوذر پرهیزکاری 1 , غلامرضا یاوری 2 , ابوالفضل محمودی 3 , غلامرضا بخشی خانیکی 4
1 - دانشجوی دکترای اقتصاد کشاورزی دانشگاه پیام نور تهران
2 - دانشیار گروه اقتصاد کشاورزی دانشگاه پیام نور
3 - دانشیار گروه اقتصاد کشاورزی دانشگاه پیام نور
4 - استاد گروه علوم کشاورزی (بیوتکنولوژی) دانشگاه پیام نور
الکلمات المفتاحية: طبقهبندی JEL: C23 Q54, .R11, اقلیم و کشاورزی, حوضه آبخیز رودشور, واژگان کلیدی: مدلسازی بیوفیزیکی- اقتصادی,
ملخص المقالة :
هدف این مقاله مدلسازی بیوفیزیکی- اقتصادی جامع اقلیم و کشاورزی در حوضه آبخیز رودشور با استفاده از مجموعه داده های پانل (سری زمانی) مربوط به متغیر اقلیمی بارش طی 1395-1365 و مقطعی سال پایه 95-1394 میباشد. برای دستیابی به نتایج کاربردی، مدلسازی با تلفیق دو بخش بیوفیزیکی و اقتصادی تحت سناریوهای آزمایش ملایم، متوسط و شدید با استفاده از نرمافزار گمز صورت گرفت. نتایج نشان داد الگوی رفتاری متغیر اقلیمی بارش در حوضه آبخیز رودشور پس از سال 1380 با روندی کاهشی همراه بوده و با تغییر اقلیم ناشی از کاهش بارش تحت سناریوهای ملایم تا شدید، منابع آب منطقه 75/5 تا 8/13 درصد، تولیدات کشاورزی 60/3 تا 54/8 درصد و سود ناخالص کشاورزان 71/2 تا 04/8 درصد کاهش مییابد؛ اما، ارزش اقتصادی هر مترمکعب آب آبیاری نسبت به سال پایه 13/5 تا 7/12 درصد افزایش مییابد. برای حفاظت از منابع آب این حوضه، تعیین مجدد نرخ آب بها براساس برابری، آیش گذاری اراضی و تجهیز سیستمهای نوین آبیاری پیشنهاد می شود.
منابع
- امیرنژاد، حمید، اسدپور کردی، مریم (1396). بررسی اثرات تغییر اقلیم بر تولید گندم ایران. مجله تحقیقات اقتصاد کشاورزی، 35(9): 163-182.
- بخشی، علی، دانشور کاخکی، محمد، مقدسی، رضا (1390). کاربرد مدل برنامهریزی ریاضی مثبت به منظور تحلیل اثرات سیاستهای جایگزین قیمتگذاری آب در دشت مشهد. نشریه اقتصاد و توسعه کشاورزی، 25(3): 294-284.
- پاکنژاد، حمید (1391). مدلسازی مشارکت کشاورزان در طرح بیمه محصول گندم (مطالعه موردی: شهرستان زابل). پایاننامه کارشناسی ارشد اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه زابل.
- پرهیزکاری، ابوذر، مظفری، محمد مهدی، حسینی خدادادی، مهدی (1394). تحلیل اقتصادی اثرات تغییر اقلیم ناشی از انتشار گازهای گلخانهای بر تولیدات کشاورزی و منابع آب در دسترس، مطالعه موردی: اراضی پاییندست سد طالقان. مجله اقتصاد و توسعه کشاورزی، 29 (1): 89-67.
- پرهیزکاری، ابوذر (1396). تحلیل اقتصادی اثرات مشارکت کشاورزان منطقه الموت در طرح سلیبیت برنج. مجله تحقیقات اقتصاد کشاورزی، 9(34): 92-57.
- پرهیزکاری، ابوذر، یزدانی، سعید (1396). ارزیابی تأثیرات اقتصادی و هیدرولوژیکی تغییرات اقلیم در حوضۀ آبخیز خررود. مجله اکوهیدرولوژی، 4(3): 724-711.
- خانلری، احمد (1391). اثر تغییر اقلیم بر کاربری اراضی و عملکرد بخش کشاورزی استان مازندران. پایاننامه کارشناسی ارشد اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه زابل.
- سازمان هواشناسی استان تهران (1397). خلاصه سیمای آب و هوا و اقلیم استان تهران.
- سلطانی، شیوا، موسوی، حبیباله (1394). استراتژی کمآبیاری و ارتقاء تکنولوژی آبیاری، راهکار بهینه سازگار با تغییر اقلیم. مجله اقتصاد کشاورزی، 9(4): 121-112.
- شرکت آب منطقهای استان قزوین (1395). مطالعات پایه منابع آب. آبینه آبی استان، منابع آب سطحی و زیرزمینی، شمای کلی پتانسیل آبی استان، صفحات 1تا 6.
- محمدی قلعهنی، محمد مهدی، ابراهیمی، کیومرث، عراقینژاد، شهاب (1391). ارزیابی تأثیر عوامل اقلیمی بر افت منابع آب زیرزمینی (مطالعه موردی: آبخوان دشت ساوه). مجله پژوهشهای حفاظت آب و خاک، 19(4): 203-189.
- محمودی، ابوالفضل، پرهیزکاری، ابوذر (1395). مدلسازی اقتصادی مدیریت منابع آب کشاورزی استان تهران با تأکید بر نقش بازار آب. فصلنامه مدلسازی اقتصادی، 35(10): 121-139.
- Adamson, D, Mallawaarachchi, T. and Quiggin, J. (2009). Declining inflows and more frequent droughts in the Murray-Darling Basin: climate change, impacts and adaptation. Australian Journal of Agricultural and Resource Economics, 53(3): 345-366.
- Agovinoa, M, Casaccia, M, Ciommi, M, Ferrara, M. and Marchesano, K. (2018). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, Available online 8 May 2018, In Press, Corrected Proof.
- Balali, H. and Viaggi, D. (2015). Applying a system dynamics approach for modeling groundwater dynamics to depletion under different economical and climate change scenarios, Water Journal, 7(1): 5258- 5271.
- Cortignani, R. and Dono, G. (2018). Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy. Environmental Science & Policy, 81: 26-35.
- Graveline, C. (2016). Economic calibrated models for water allocation in agricultural production: A review. Environmental Modelling and Software, 81: 12-25.
- Graveline, N. and Merel, P. (2014). Intensive and extensive margin adjustments to water scarcity in France's Cereal Belt. European Review of Agricultural Economics, 41: 707-743.
- Garnache, C, Merel, P, Howitt, R. and Lee, J. (2015). Calibration of shadow values in constrained optimization models of agricultural supply. Work. Pap. Available at: https://www.msu.edu/~garnache/CalibShadValues.pdf.
- Griffin, R.C. (2006). Water Resource Economics: The Analysis of Scarcity Policies and Projects. MIT Press, Cambridge, Mass, 68 Pp.
- Howitt, R.E, Medellin-Azuara, J, MacEwan, D. and Lund, R. (2012). Calibrating disaggregate economic models of agricultural production and water management. Science of the Environmental Modeling and Software, 38: 244-258.
- Huka, H. Ruoja, C. and Mchopa, A. (2014). Price fluctuation of agricultural products and its impact on small-scale farmer's development: Case analysis from kilimanjaro Tanzania. European Journal of Business and Management, 6: 155-160.
- Jones, G.W, Antle, J.M, Basso, B, Boote, K.J, et al. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155: 269-288.
- Kaczan, D, Qureshi, M.E. and Connor, J. (2011). Water Trade and Price Data for the Southern Murray Darling Basin, CSIRO, Adelaide, Canberra, No: 23.
- Medellan-Azuara, J, Harou, J. and Howitt, R. (2011). Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology. Science of Agricultural Water Management, 108: 73-82.
- Mo, X.J, Hu, S, Lin, Z.H, Liu, S.X. and Xia, J. (2017). Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Advances in Climate Change Research, 8(2): 93-98.
- Petsakos, A. and Rozakis, S. (2015). Calibration of agricultural risk programming models. European Journal of Operational Research, 242(2): 536-545.
- Pratibha, G, Srinivas, I, Rao, K, Arun, V, Shanker, K. and Maheswari, M. (2016). Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atmospheric Environment, 145: 239-250.
- Qureshi, M.E, Schwabe, K, Connor, J. and Kirby, M. (2010). Environmental water incentive policy and return flows, Water Resources Research, No: 46.
- Qureshi, M.E, Whitten, S, Mainuddin, M, Marvanek, M. and Elmahdi, A. (2013). A biophysical and economic model of agriculture and water in the Murray-Darling Basin, Australia. Environmental Modeling and Software, 41: 98-106.
- Shukla, J.B, Maitri, V. and Misra, A.K. (2017). Effect of global warming on sea level rise: A modeling study. Ecological Complexity, 32: 99-110.
- Traynham, L, Palmer, R. and Polebitski, A. (2011). Impacts of future climate conditions and forecasted population growth on water supply systems in the Puget Sound region. Water Resources, 137(2): 318-326.
_||_