Spectroscopic studies on the interaction of Fe3O4@CaAl LDH@Lamivudine with the calf thymus DNA
الموضوعات : Journal of NanoanalysisNahid Shahabadi 1 , Mahtab Razlansari 2 , Avat (Arman) Taherpour 3
1 - Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
2 - Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
3 - Organic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
الکلمات المفتاحية: Lamivudine, Fe3O4, CT-DNA, Layered Double Hydroxide, Groove Binding,
ملخص المقالة :
In this study, we were synthesized Fe3O4@LDH@Lamivudine and characterized by FT-IR spectroscopy,XRD and TEM. The interaction of this nanoparticle with CT-DNA was investigated by viscosity, circulardichroism (CD), Uv-Visible and fluorescence spectroscopy. Among all nanocarriers which applied as drugdelivery vectors, layered double hydroxides (LDHs) with exchangeable anions in the positive brucitelikeinterlayers have been attracting much attentions in the field of cellular delivery of anionic drug andother bio-functional molecules, due to their low toxicity, biocompatibility, high stability, pH dependentsolubility and enhanced cellular uptake behavior compared with the conventional drug carriers. UVVisibleabsorption studies indicated hyperchromism with the binding constant of 4.9×103 M-1. In thefluorimetric investigation, this nanocomposite can bind to DNA and creates a new non-fluorescenceadduct. The thermodynamic parameters (ΔHand nanocomposite is hydrogen bond and Vander-Waals force. The process of binding was spontaneous,in which Gibbs free energy change (ΔG) was negative. Furthermore, viscosity measurements did not showany changes by increasing the amount of the mentioned nanocomposite. In Circular dichroism, bothpositive and negative bands illustrate little changes, which imply a non-intercalative mode of binding. Theexperimental results demonstrated that Fe3O4@LDH@Lamivudine interact with DNA by groove bindingmode. As an evidenced, increasing the fluorescence intensity of Hoechst–DNA solutions in the presence ofdifferent amounts of Fe3O4@LDH@Lamivudine nanoparticles are able to displace the Hoechst molecules,which was grooved into DNA completely as to indicate groove binding mode.
[1] I. Haq, Thermodynamics of drug-DNA interactions, Arch. Biochem. Biophys., 403, 1 (2002).
[2] N. Ghinea, M. Little, W. Lipworth, Access to High Cost Cancer Medicines Through the Lens of an Australian Senate Inquiry-Defining the “Goods” at Stake, J. Bioethic. Inq., 14, 401 (2017).
[3] L. Xu, Y.-X. Hu, Y.-C. Li, L. Zhang, H.-X. Ai, Y.-F. Liu, H.-S. Liu, In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques, J. Mol. Struct., 1154, 9 (2018).
[4] J.B. Mamani, L.F. Gamarra, G.E.d.S. Brito, Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications, Mater. Res., 17, 542 (2014).
[5] M. Oroujeni, B. Kaboudin, W. Xia, P. Jönsson, D.A. Ossipov, Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery, Prog. org. coat., 114, 154 (2018).
[6] G. Choi, T.-H. Kim, J.-M. Oh, J.-H. Choy, Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery, Chem. Rev., 359, 32 (2018).
[7] S. Senapati, R. Shukla, A.K. Mahanta, D. Rana, P. Maiti, Y.B. Tripathi, Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment, Mol. Pharm., (2018).
[8] T.K. Sau, A. Biswas, P. Ray, S. Thota, D.C. Crans, Metal Nanoparticles in Nanomedicine: Advantages and Scope, Metal Nanoparticles: Synthesis, Appl. Pharm. Sci., 155 (2018).
[9] J. Warren Beach, Chemotherapeutic agents for human immunodeficiency virus infection: mechanism of action, pharmacokinetics, metabolism, and adverse reactions, Clinical Therapeutics, 20, 2 (1998).
[10] O. World Health, Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach, W. H. O., 2016.
[11] N. Shahabadi, M. Maghsudi, M. Mahdavi, M. Pourfoulad, Interaction of calf thymus DNA with the antiviral drug lamivudine, DNA cell .biol., 31, 122 (2012).
[12] N. Shahabadi, M. Falsafi, F. Feizi, R. Khodarahmi, Functionalization of γ-Fe2O3@SiO2 nanoparticles using the antiviral drug zidovudine: synthesis, characterization, in vitro cytotoxicity and DNA interaction studies, RSC Adv., 6, 73605 (2016).
[13] N. Shahabadi, M. Razlansari, Exploring the interaction of nanocomposite composed of Fe3O4, CaAl layered double hydroxide and lamivudine drug with Human serum albumin (HSA): Spectroscopic studies, J. Nanoanalysis, 5, 107 (2018).
[14] A. Özel, B. Barut, Ü. Demirbaş, Z. Biyiklioglu, Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium (IV) phthalocyanine compounds, J. Photochem. Photobiol. B: Biology., 157, 32 (2016).
[15] D. Lazić, A. Arsenijević, R. Puchta, Ž.D. Bugarčić, A. Rilak, DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium (II) terpyridine complexes, Dalton Trans., 45, 4633 (2016).
[16] N. Shahabadi, A. Khorshidi, H. Zhaleh, S. Kashanian, Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine, J. Drug. Deliv. Sci. Technol., 46, 55 (2018).
[17] M. Aghazadeh, One-step cathodic electrosynthesis of surface capped Fe3O4 ultra-fine nanoparticles from ethanol medium without using coating agent, Mater. Lett., 211, 225 (2018).
[18] S.J. Kiprono, M.W. Ullah, G. Yang, Encapsulation of E. coli in biomimetic and Fe3O4-doped hydrogel: structural and viability analyses, Appl. Microbiol. Biotechnol., 102, 933 (2018).
[19] B. Ma, A. Fernandez-Martinez, S. Grangeon, C. Tournassat, N. Findling, S. Carrero, D. Tisserand, S. Bureau, E. Elkaïm, C. Marini, Selenite uptake by CaAl LDH: a description of intercalated anion coordination geometries, Environ. Sci. Technol., 52, 1624 (2018).
[20] M.P. Bernardo, C. Ribeiro, [Mg-Al]-LDH and [Zn-Al]-LDH as Matrices for Removal of High Loadings of Phosphate, Mater. Res, 21 (2018).
[21] A.K. Jena, A.K. Nayak, A. De, D. Mitra, A. Samanta, Development of lamivudine containing multiple emulsions stabilized by gum odina, J. Pharm. Sci., 4, 71 (2018).
[22] M. Sirajuddin, S. Ali, A. Badshah, Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry, J. Photochem. Photobiol., 124, 1 (2013).
[23] M. Parveen, F. Ahmad, A.M. Malla, M.S. Khan, S.U. Rehman, M. Tabish, M.R. Silva, P.S.P. Silva, Structure elucidation and DNA binding specificity of natural compounds from Cassia siamea leaves: A biophysical approach, J. Photochem. Photobiol., 159, 218 (2016).
[24] B.M. Baker, J. Vanderkool, N.R. Kallenbach, Base stacking in a fluorescent dinucleoside monophosphate: εApεA, Biopolymers, 17, 1361 (1978).
[25] M.P. Grant, Synthesis and analysis of platinum (II) sequence selective complexes, (2011).
[26] X. Wen, Q. Wang, Z. Fan, Active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn2+ and tracking of interactions with single-stranded DNA, Anal. Chim. Acta., (2018).
[27] M.R. Gill, J.A. Thomas, Targeting cellular DNA with Luminescent Ruthenium (II) Polypyridyl Complexes, Ruthenium Complexes, Photochem. Biomed. Appl., 221 (2017).
[28] L. Cui, M. Lu, Y. Li, B. Tang, C.-y. Zhang, A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine, Biosens. Bioelectron., 102, 87 (2018).
[29] K.S. Saini, R. Ashraf, D. Mandalapu, S. Das, M.Q. Siddiqui, S. Dwivedi, J. Sarkar, V.L. Sharma, R. Konwar, New orally active DNA minor groove binding small molecule CT‐1 acts against breast cancer by targeting tumor DNA damage leading to p53‐dependent apoptosis, Mol. Carcinog., 56, 1266 (2017).
[30] M. Gholivand, H. Peyman, K. Gholivand, H. Roshanfekr, A.A. Taherpour, R. Yaghobi, Theoretical and Instrumental Studies of the Competitive Interaction Between Aromatic α-Aminobisphosphonates with DNA Using Binding Probes, Appl. biochem. biotechn., 182, 925 (2017).
[31] T. Sarwar, H.M. Ishqi, S.U. Rehman, M.A. Husain, Y. Rahman, M. Tabish, Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study, Int. J. Biol Macromol., 98, 319 (2017).
[32] Y. Sha, X. Chen, B. Niu, Q. Chen, The interaction mode of groove binding between quercetin and calf thymus DNA based on spectrometry and simulation, Chem. Biodivers., (2017).
[33] D. İnci, R. Aydın, Ö. Vatan, Y. Zorlu, N. Çinkılıç, New binary copper (II) complexes containing intercalating ligands: DNA interactions, an unusual static quenching mechanism of BSA and cytotoxic activities, J. Biomol. Struct. Dyn., 1 (2017).
[34] A. Usman, M. Ahmad, Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies, Chemosphere, 181, 536 (2017).
[35] C.A. Lelis, E.A. Hudson, G.M.D. Ferreira, G.M.D. Ferreira, L.H.M. da Silva, M.d.C.H. da Silva, M.S. Pinto, A.C. dos Santos Pires, Binding thermodynamics of synthetic dye Allura Red with bovine serum albumin, Food chem., 217, 52 (2017).
[36] N. Shahabadi, B. Bazvandi, A. Taherpour, Synthesis, structural determination and HSA interaction studies of a new water-soluble Cu (II) complex derived from 1, 10-phenanthroline and ranitidine drug, J. Coord. Chem., 70, 3186 (2017).
[37] N. Shahabadi, S. Fatahi, M. Maghsudi, Synthesis of a new Pt (II) complex containing valganciclovir drug and calf thymus DNA interaction study using multispectroscopic methods, J. Coord. Chem., 1 (2018).
[38] N. Shahabadi, M. Falsafi, M. Maghsudi, DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques, Nucleosides Nucleotides Nucleic Acids., 36, 49(2017).
[39] P. Jaividhya, M. Ganeshpandian, R. Dhivya, M.A. Akbarsha, M. Palaniandavar, Fluorescent mixed ligand copper (II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity, Dalton Trans., 44, 11997 (2015).
[40] C. Uvarani, K. Arumugasamy, K. Chandraprakash, M. Sankaran, A. Ata, P.S. Mohan, A New DNA‐Intercalative Cytotoxic Allylic Xanthone from Swertia corymbosa, Chem. Biodivers., 12, 358 (2015).
[41] F. Fathi, H. Mohammadzadeh-Aghdash, Y. Sohrabi, P. Dehghan, J.E.N. Dolatabadi, Kinetic and thermodynamic studies of bovine serum albumin interaction with ascorbyl palmitate and ascorbyl stearate food additives using surface plasmon resonance, Food chem., 246, 228 (2018).
[42] Q. Gan, Y. Qi, Y. Xiong, Y. Fu, X. Le, Two New Mononuclear Copper (II)-Dipeptide Complexes of 2-(2′-Pyridyl) Benzoxazole: DNA Interaction, Antioxidation and in Vitro Cytotoxicity Studies, J. Fluoresc., 27, 701 (2017).
[43] B. Sikarwar, V.V. Singh, P.K. Sharma, A. Kumar, D. Thavaselvam, M. Boopathi, B. Singh, Y.K. Jaiswal, DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance, Biosens. Bioelectron., 87, 964 (2017).
[44] Q. Guo, Z. Zhang, Y. Song, S. Liu, W. Gao, H. Qiao, L. Guo, J. Wang, Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies, Chemosphere, 168, 599 (2017).
[45] Z. Adiguzel, S. Ozalp‐Yaman, G. Celik, S. Salem, T. Bagci‐Onder, F. Senbabaoglu, Y. Cetin, C. Acilan, A platinum blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells, Chem. Biol. Drug. Des., 90, 210 (2017).
[46] S. Pawar, R. Tandel, R. Kunabevu, J. Seetharamappa, Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA, J. Biomol. Struct. Dyn., 1 (2018).
[47] N. Shakibapour, F. Dehghani Sani, S. Beigoli, H. Sadeghian, J. Chamani, Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches, J. Biomol. Struct. Dyn., 1 (2018).
[48] M. Dehkhodaei, M. Sahihi, H.A. Rudbari, F. Momenbeik, DNA and HSA interaction of Vanadium (IV), Copper (II), and Zinc (II) complexes derived from an asymmetric bidentate Schiff-base ligand: multi spectroscopic, viscosity measurements, molecular docking, and ONIOM studies, JBIC J. Biol. Inorg. Chem., 23, 181 (2018).
[49] M.S. Ali, M.A. Farah, H.A. Al-Lohedan, K.M. Al-Anazi, Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: a multi spectroscopic and molecular modelling study, RSC Adv., 8, 9083 (2018).
[50] E.M. Tuite, B. Nordén, Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides, Spectrochim. Acta Part A Acta A Mol. Biomol. Spectrosc. 189, 86 (2018).
[51] A.G. Clark, M.N. Naufer, F. Westerlund, P. Lincoln, I. Rouzina, T. Paramanathan, M.C. Williams, Reshaping the energy landscape transforms the mechanism and binding kinetics of DNA threading intercalation, Biochem., (2018).
[52] M. Bordbar, F. Tavoosi, A. Yeganeh-Faal, M.H. Zebarjadian, Interaction study of some macrocyclic inorganic schiff base complexes with calf thymus DNA using spectroscopic and voltammetric methods, J. Mol. Struct., 1152, 128 (2018).