Adsorption of ozone molecules on AlP-codoped stanene nanosheet: A density functional theory study
الموضوعات : Journal of Nanoanalysis
1 - Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran || Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran || Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
الکلمات المفتاحية: Adsorption, DFT, Total Electron Density, Band Structure, AlP-Codoped Stanene,
ملخص المقالة :
Density functional theory calculations were carried out to investigate the structural and electronicproperties of the adsorption of O3 molecules on AlP-codoped monolayers to fully exploit the gas sensingcapability of these two-dimensional materials. Various adsorption sites of O3 molecule on the considerednanosheets were examined in detail. The side oxygen atoms of the O3 molecule strongly bind to the tinatoms, and provide double contacting point between the nanosheet and O3 molecule. O3 adsorptionon the Al-site of AlP-codoped structure is more favorable in energy than that on the pristine one. AlPcodopedstanene exhibits better semiconductor characteristics because of the band gap opening in thesystem. The total electron density plots show the charge distribution along the interacting side oxygenand tin atoms, which indicate the formation of chemical bonds between them. This formation of chemicalbond was also evidenced by the projected density of states diagrams. The large overlaps between thePDOS spectra of the oxygen and tin atoms show the formation of chemical bonds between these atoms.The charge density difference calculations represent charge accumulation on the adsorbed O3 molecule.Our results suggest a theoretical basis for AlP-codoped stanene monolayer as efficient candidate forapplication in gas sensor devices.
[1] K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Nature, 438, 197 (2005).
[2] N. Drummond, V. Zolyomi, V. Fal’Ko, J. Phys. Rev. B, 85, 075423 (2012).
[3] W. Hu, N. Xia, X. Wu, Z. Li, J. Yang, Phys. Chem. Chem. Phys., 16, 6957 (2014).
[4] W. Hu, X. Wu, Z. Li, J. Yang, Nanoscale, 5, 9062 (2013).
[5] W. Xia, W. Hu, Z. Li, J. Yang, Phys. Chem. Chem. Phys., 16, 22495 (2014).
[6] T.P. Kaloni, J. Phys. Chem. C, 118, 25200 (2014).
[7] M. Zhao, X. Zhang, L. Li, Sci. Rep., 5, 16108 (2015).
[8] O.U. Aktürk, E. Aktürk, S. Ciraci, J. Phys. Rev. B, 93, 035450 (2016).
[9] A.L. Elias, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Ha yashi, Y.A. Kim, M. Endo, Acs Nano, 7, 5235 (2013).
[10] L. Chu, H. Schmidt, J. Pu, S. Wang, B. Özyilmaz, T. Takenobu, G. Eda, Sci. Rep. 4 7293 (2014).
[11] J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun., 5, 4475 (2014).
[12] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small, 11, 640 (2015).
[13] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano, 8, 4033 (2014).
[14] Z. Zhu, D. Tománek, Phys. Rev. Lett., 112, 176802 (2014).
[15] M. Pumera, Energy Environ. Sci., 4, 668-674 (2011).
[16] Y. Cai, G. Zhang, Y.W. Zhang, L Sci. Rep., 4, 6677 (2014).
[17] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science, 341, 534 (2013).
[18] A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, J. Phys. Chem. Lett., 6 1087 (2015).
[19] S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater., 27, 2150 (2015).
[20] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nat. Nanotechnol., 9, 768 (2014), 9.
[21] H. Liu, Y. Du, Y. Deng, D.Y. Peide, Chem. Soc. Rev., 44, 2732 (2015).
[22] X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, J. Jiang, X. Sun, T. Ren, Phys. Chem. Chem. Phys., 18, 16229 (2016).
[23] X. Chen, R. Meng, J. Jiang, Q. Liang, Q. Yang, C. Tan, X. Sun, S. Zhang, T. Ren, Phys. Chem. Chem. Phys., 18, 16302 (2016).
[24] F- F. Zhu, W- J. Chen, Y. Xu, C - L. Gao, D- D. Guan, C- H. Liu, D. Qian, S- C. Zhang, and J- F. Jia, Nat. Mater., 14, 1020 (2015).
[25] J. Gao, G. Zhang, Y- W. Zhang, Sci. Rep., 6, 29107 (2016).
[26] Y. Shaidu, O. Akin-Ojo, Chem. Phys. Lipids, 44, 149 (2015).
[27] O. Leenaerts, B. Partoens, F. Peeters, Phys. Rev. B, 77, 125416 (2008).
[28] F. Schedin, A.K. Geim, S.V. Morozov, E. W. Hill, P. Blake, M.I. Katsnelson, et al. , Nat. Mater., 6, 625 (2007).
[29] F. K. Perkins, A.L. Friedman, E. Cobas, P. Campbell, G. Jernigan, B.T. Jonker, Nano letters, 3, 668 (2013).
[30] L. Kou, T. Frauenheim, C. Chen, J. Phys. Chem. Letts., 5, 2675 (2014).
[31] Y Cai, Q. Ke, G. Zhang, Y.W. Zhang, J. Phys. Chem. C, 119(6), 3102 (2015).
[32] B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, A. Kis, Nat. Nanotechnol., 6(3), 147 (2011).
[33] P. Garg, I. Choudhuri, A. Mahata, B. Pathak, Phys. Chem. Chem. Phys., 19, 3660 (2017).
[34] X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, M. Cai, S. Zhang, J. Jiang, J. Phys. Chem. C, 120(26), 13987 (2016).
[35] P. Garg, I. Choudhuri, B. Pathak, Phys. Chem. Chem. Phys., 19, 31325 (2017).
[36] A. Abbasi, Physica E: Low-dimensional Systems and Nanostructures, 108, 34 (2019).
[37] A. Abbasi, J.J. Sardroodi, Appl. Surf. Sci., 456, 290 (2018).
[38] A. Abbasi, J.J. Sardroodi, Physica E: Low-dimensional Systems and Nanostructures, 108, 34 (2019).
[39] A. Abbasi, Synthetic Metals, 247, 26 (2019).
[40] A. Abbasi, J.J. Sardroodi, J. Appl. Phys., 124, 165302 (2018).
[41] A. Abbasi, J.J. Sardroodi, Adsorption, 24, 443 (2018).
[42] A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, M. Yaghoobi, Appl. Surf. Sci., 435, 733 (2018).
[43] P. Hohenberg, W. Kohn, Phys. Rev. B, 136, B64 (1964).
[44] W. Kohn, L. Sham, Phys. Rev. B, 140, A1133 (1965).
[45] J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejn, D. Snchez-Portal, J. Phys. Condens. Matter, 14, 2745 (2002).
[46] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Letts., 78, 1396 (1981).
[47] A. Koklj, Comput. Mater. Sci., 28, 155 (2003).
[48] N. Troullier, J. Martins, Phys. Rev. B, 43, 1993 (1991).
[49] H.J. Monkhorst J.D. Pack, Phys. Rev. B, 13, 5188 (1976).
[50] K. Momma F. Izumi, J. Appl. Crystallogr., 44, 1272 (2011).
[51] B. Broek, M. Houssa, E. Scalise, G. Pourtois and V. V. Afanas‘ev Stesmans, 2D Materials, 1, 021004 (2014).
[52] Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Phys. Rev. Lett., 111, 136804 (2013).
[53] A. Jafari, M. Ghoranneviss A.S. Elahi, J. Cryst. Growth., 438, 70 (2016).
[54] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett., 9, 1752 (2009).
[55] I. Choudhuri, N. Patra, A. Mahata, R. Ahuja, B. Pathak, J. Phys. Chem. C, 119, 24827 (2015).