Solvent influence on the interaction of cis-PtCl2(NH3)2 complex and graphene: A theoretical study
الموضوعات : Journal of NanoanalysisElham Ebrahimi Mokarram 1 , Reza Fazaeli 2 , Hossein Aghaei 3 , Mohammad Yousefi 4 , Karim Zare 5
1 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
الکلمات المفتاحية: Cis-PtCl2(NH3)2 Complex, energy decomposition analysis (EDA), Graphene, Polarizable Continuum Model (PCM), Quantum Theory of Atoms In Molecules Analysis (QTAIM), Solvent Effect,
ملخص المقالة :
In this study the interaction of cis-PtCl2(NH3)2 complex and graphene were investigated with MPW1PW91method in gas and solvent phases. The solvent effect was examined by the self-consistent reaction fieldtheory (SCRF) based on Polarizable Continuum Model (PCM). The selected solvents were chloroform,chlorobenzene, bromoethane, dimethyldisulfide, and dichloroethane. The solvent effect on thefrontier orbital energy and HOMO-LUMO gap were studied. The characterization of the interactionbetween two fragments was clarified with energy decomposition analysis (EDA). Pt-C(Graphene) andH(NH3)...C(Garaphen) interactions in the graphene … cis-PtCl2(NH3)2 complex were analyzed usingquantum theory of atoms in molecules analysis (QTAIM).
1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firson, Science, 306, 666 (2004).
2. R. Majidi, A.R. Karami, Physica E 59, 169 (2014).
3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson , I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature, 438, 197 (2005).
4. A. Geim, Science 324, 1530 (2009).
5. S. Jalili, R. Majidi, J Comp Theor Nanosci, 3, 664 (2006).
6. R. Majidi, Theor Chem Acc 136, 109 (2017).
7. M.D. Ganji, S.M. Hosseini-khah, Z. Amini-tabar, Physical Chemistry Chemical Physics 17, (2015).
8. A. Yaraghi, O.M. Ozkendir, M. Mirzaei, Superlattices and Microstructures, 85, 784 (2015).
9. B. Saha, P.K. Bhattacharyya, Computational and Theoretical Chemistry, 106, 45 (2016).
10. M. Oubal, M.-T.R. S. Picaud, J.-C. Rayez, Computational and Theoretical Chemistry, 990, 159
11. N.F. Domancich, R.M. Ferullo, N.J. Castellani, Computational and Theoretical Chemistry, 1059, 27 (2015).
12. I.K. Petrushenko, K.B. Petrushenko, Computational and Theoretical Chemistry, 1117, 162 (2017).
13. S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Chem. Sci., 2, 1326 (2011).
14. H. M. Pinedo, J.H. Schornagel, Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, Plenum Press, New York, 1996.
15. R.S. Go, A.A. Adjei, J. Clin. Oncol, 17, 409 (1999).
16. B. Rosenberg, L.V. Camp, T. Krigas, Nature, 205, 698 (1965).
17. B. Rosenberg, L.V. Camp, J.E. Trosko, V. H.Mansour, Nature, 222, 385 (1969).
18. E.R. Jamieson, S.J. Lippard, Chem. Rev. , 99, 2467 (1999).
19. M.A. Fuertes, C. Alonso, J.M. Perez, Chem. Rev., 103, 645 (2003).
20. R.Y. Tsang, T. Al-Fayea, H.-J. Au, Drug Saf. , 323, 1109 (2009).
21. N.P.E. Barry, P.J. Sadler, ACS Nano, 7, 5654 (2013).
22. E. Gabano, M. Ravera, D. Osella, Curr. Med. Chem. , 34, 4544 (2009).
23. R. Oun, J.A. Plumb, N.J. Wheate, Journal of Inorganic Biochemistry 134, 100 (2014).
24. A. Valizadeh, R. Ghiasi, J. Struct. Chem, 58, 1307 (2017).
25. R. Ghiasi, N. Sadeghi, J. Chin. Chem. Soc., 64, 934 (2017).
26. M. Rezazadeh, R. Ghiasi, S. Jamehbozorgi, J. Struc. Chem, 59, 245 (2018).
27. S. Sarraf, R.Ghiasi, Structural Chemistry, 29, 435 (2018).
28. R. Ghiasi, N. Sadeghi, S.Jamehbozorgi, J. Struc. Chem., 59, 1791 (2018).
29. H. Ghanbari, B.G. Cousins, A.M. Seifalian, Macromol Rapid Commun., 32, 1032 (2011).
30. A.N. Khlobystov, D.A. Britz, G.A.D. Briggs, Acc. Chem. Res. , 38, 901 (2005).
31. E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva, Chem. Phys. Lett., 421, 1 (2006).
32. K. Yanagi, Y. Miyata, H. Kataura, Adv. Mater. , 18, 437 (2006).
33. S.A. Houston, N.S. Venkataramanan, A. A. Suvitha, N.J. Wheate, Australian Journal of Chemistry, 69, 1124 (2016).
34. R. Ghiasi, F.Zafarniya, S. Ketabi, Russian Journal of Inorganic Chemistry, 62, 1371 (2017).
35. H. Alavi, R. Ghiasi, J. Struc. Chem, 58, 30 (2017).
36. F. Zafarniya, R.Ghiasi, S. Jameh-Bozorghi, Physics and Chemistry of liquids, 55, 444 (2017).
37. F. Zafarnia, R. Ghiasi, S. Jamehbozorgi, J. Struc. Chem, 58, 1324 (2017).
38. N. Sadeghi, R. Ghiasi, R. Fazaeli, S. Jamehbozorgi, Journal of Applied spectroscopy 83, 909 (2016).
39. R. Ghiasi, A. Peikari, Physical and Chemistry of Liquids, 55, 421 (2017).
40. R. Ghiasi, A. Peikari, Russian Journal of Physical Chemistry A, 90, 2211 (2016).
41. R. Ghiasi, A. Peikari, Journal of Applied Spectroscopy 84, 148 (2017).
42. R. Ghiasi, H. Pasdar, S. Fereidoni, Russian Journal of Inorganic Chemistry, 61, 327 (2016).
43. R. Ghiasi, M. Nemati, A. H.Hakimioun, J. Chil. Chem. Soc, 61, 2921 (2016).
44. A. Peikari, R. Ghiasi, H. Pasdar, Russian Journal of Physical Chemistry A, 89, 250 (2015).
45. R. Ghiasi, E. Amini, Journal of Structural Chemistry, 56, 1483 (2015).
46. M.Z. Fashami, R. Ghiasi, Journal of Structural Chemistry, 56, 1474 (2015).
47. M. Rezazadeh, R. Ghiasi, S. Jamehbozorgi, Journal of Applied Spectroscopy, 85, 926 (2018).
48. F. Rezaeyani, R. Ghiasi, M. Yousefi, Russian Journal of Physical Chemistry A, 92, 1748 (2018).
49. M. Rahimi, R. Ghiasi, Journal Molecular Liquid, 265, 164 (2018).
50. R. Ghiasi, J. Mol. Liqu, 264, 616 (2018).
51. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, in, Gaussian, Inc., Wallingford CT, 2009.
52. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. , 72, 650 (1980).
53. A.J.H. Wachters, J. Chem. Phys., 52, 1033 (1970).
54. P.J. Hay, J. Chem. Phys. , 66, 4377 (1977).
55. A.D. McLean, G.S. Chandler, J. Chem. Phys., 72, 5639- (1980).
56. D. Rappoport, F. Furche, J. Chem. Phys., 133, 134105 (2010).
57. D. Andrae, U. Haeussermann, M.Dolg, H.Stoll, H.Preuss, Theor.Chim.Acta, 77, 123 (1990).
58. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. , 77, 3865 (1996).
59. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. , 105, 2999 (2005).
60. T. Lu, F. Chen, J. Mol.Graphics. Model, 38, 314 (2012).
61. T. Lu, F. Chen, J. Comp. Chem., 33, 580 (2012).
62. W.W. Duley, S.S. Seahra, Astrophys. J, 522, L129 (1999).
63. L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 105, 3513 (2005).
64. R.F.W. Bader, C.F. Matta, F. Corte´s-Guzman, Organometallics, 23, 6253 (2004).
65. X. Fradera, M.A. Austen, R.F.W. Bader, J. Phys. Chem. A, 103, 304 (1999).
66. R.F.W. Bader, D.-F. Fang, J. Chem. Theor. Comput., 1, 403 (2005).
67. P.M. Mitrasinovic, Can. J. Chem. , 81, 542 (2003).
68. M. Palusiak, J. Organometallic. Chem, 692, 3866 (2005).
69. P. Macchi, A. Sironi, Coordination Chemistry Reviews 239, 383 (2003).