Structural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature
الموضوعات : Journal of Nanoanalysis
1 - School of Physics, Damghan University (DU), Damghan, Islamic Republic of Iran
الکلمات المفتاحية: Mechanical Properties, Ferrites, Citrate method, X-ray diffraction method, IR spectroscopy,
ملخص المقالة :
In this work, the structural and elastic moduli properties of ZnFe2O4, Zn0.5Cu0.5Fe2O4, and Ni0.3Cu0.2Zn0.5Fe2O4 ferrites prepared by the citrate method have been investigated. The structuralcharacterization of the samples is evidence for a cubic structure with Fd-3m space group. TheHalder-Wagner analysis was used to study crystallite sizes and lattice strain and also stressand energy density. The cation distribution for each composition has been suggested. Theexperimental and theoretical lattice constants were found to be in good agreement with eachother confirming the agreeability of the suggested cation distribution. The force constantsfor tetrahedral and octahedral sites have been determined by infrared spectral analysis. Theincrease in force constants of ZnFe2O4 nanoparticles compared to other samples suggests theelastic properties of this sample is better than the other samples. The values of Young’s modulus,rigidity modulus, bulk modulus, Debye temperature have been determined. In addition,using the values of the compliance sij obtained from elastic stiffness constants, the values ofYoung’s modulus and Poisson’s ratio along the oriented direction have been calculated for thesamples. Consequently, we can conclude the ZnFe2O4 nanoparticles could be more useful inindustrial applications because of their elastic properties compared to other samples.