بهینهسازی، مشخصهیابی و فعالیت آنتیباکتریایی نانوذرات طلای بیوسنتز شده با استفاده از عصاره آبی گیاه Sambucus ebulus L.
الموضوعات :امید عزیزیان شرمه 1 , جعفر ولیزاده 2 , میثم نوروزیفر 3 , علی قاسمی 4 , محرم ولیزاده 5
1 - کارشناسارشد، گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
2 - دانشیار، عضو هیأت علمی گروه زیستشناسی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
3 - استاد، عضو هیأتعلمی گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
4 - مربی، عضو هیأتعلمی گروه زیستشناسی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
5 - استادیار، عضو هیأتعلمی گروه تولیدات گیاهی، دانشکده کشاورزی، مجتمع آموزش عالی سراوان، سراوان، ایران
الکلمات المفتاحية: آقطی, آنتیباکتریایی, بیوسنتز, نانوذرات طلا, Sambucus ebulus L,
ملخص المقالة :
گیاهان بهعنوان منابع پایدار و دسترس در تهیه نانوذرات زیست سازگار در سالهای اخیر مورد توجه زیادی قرار گرفتهاند. هدف از مطالعه حاضر بهینهسازی و مشخصهیابی و بیوسنتز نانو ذرات طلا با استفاده از عصاره آبی برگ گیاه آقطی (Sambucus ebulus L.) میباشد. پس از آماده کردن عصاره، 2 میلیلیتر از آن به 4 میلیلیتر از نمک طلا (HAuCl4.3H2O) با غلظت 1 میلیمولار اضافه شد که عصاره، یونهای طلا (III) را به اتمهای طلا در ابعاد نانومتریک کاهش داده و بلافاصله رنگ محلول به رنگ بنفش تغییر داد. بهمنظور دستیابی به نانوذرات طلا با شکل و اندازه یکنواخت، پارامترهای موثر بر سنتز، نظیر pH محیط واکنش، حجم عصاره، غلظت نمک طلا، دما و زمان واکنش مورد مطالعه قرار گرفت و تمامی پارامترها با استفاده از اسپکتروفتومتری فرابنفش- مرئی بهینه شدند. برای مشخصه یابی نانوذرات از تصویر میکروسکوپ الکترونی عبوری (TEM) و پراش پرتو ایکس (XRD) استفاده شد. در نهایت خواص آنتی باکتریایی نانوذرات بر روی 4 گونه باکتری بیماریزا استافیلوکوکوس اورئوس، باسیلوس سوبتیلیس، اشرشیا کلی و سالمونلا اینتریتیدیس) با روش دیسک دیفیوژن مورد بررسی قرار گرفت و بهصورت قطرهاله عدم رشد گزارش شد. نتایج نشان دادند که نانو ذرات طلا کروی بوده و علاوه بر اینکه حداکثر جذب را در 534 نانومتر دارند، با میانگین اندازه بین 17-11 نانومتر از فعالیت آنتیباکتریایی نسبتاً خوبی نیز علیه باکتریهای برخوردارند.
- Abdollahi, H., Javadi, H., Zand monfared, M.R. 2014. Synthesis of gold nanoparticles and study of their antimicrobial effects study on Helicobacter pylori. Journal of Qom University of Medical Sciences, 8(2): 44-50. (In Persian)
- Amanda, S., Mohammad, F., John, J., Schlager, D., Syed, A. 2010. Metal-based nanoparticles and their toxicity assessment. Journal of Nano medicine and Nanotechnology, 2: 544-568.
- Armendariz, V., Herrera, I., Peralta-Videa, J. R., Jose-Yacaman, M., Troiani, H., Santiago, P., Gardea-Torresdey J.L. 2004. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nano biotechnology. Journal of Nanoparticle Research, 6: 377–382.
- Asghari, J.H., Gorganli Doji, T., Ghaemi, A. 2014. Phytochemical and antimicrobial investigation of essencial oil of Ferula gummosa Boiss. in Meighan region Semnan province. Eco-phytochemical Journal of Medicinal Plants, 1(5): 28-35 (In Persian)
- Ashiri, S., Safari, J. 2013. Synthesis of gold and silver nanoparticles in plant substrates and their application. Nanotechnology, 1(186): 12-15. (In Persian)
- Basiri, Sh. 2011. Investigation of the effect of temperature and air velocity in the dryer on the amount and quality of essential oil of Thymus. Innovation of Science and Food Technology Journal, 3(4): 73-82. (In Persian)
- Cho, K. J., Park, T., Osaka, S. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51: 956-960.
- Dubeya, Sh. P., Lahtinen, M., Sillanpaaa, M. 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45: 1065–1071.
- Dwivedi, A.D., Gopal, K. 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369: 27–33.
- Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Tchc, M., Kalaichelvan, P.T., Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine, 6: 103-109.
- Foroghirad, S., Khatibzadeh, M. 2015. Green synthesis of silver nanoparticles used in conductive inks using sonochemical method. Iranian Journal of Chemistry and Chemical Engineering, 1(34): 1-9. (In Persian)
- Gardea-Torredey, J. L., Parsons, J. G., Gornez, E., Peralta-Videa, J., Troiani, H. E., Santiago P. 2002. Formation and growth of Au nanoparticles inside live alfala plants. Nano letters, 2: 397-401.
- Gardea-Torresdey, J. L., Tiemann, K., J, Gamez, G., Dokken, K., Tehuacanero, S., Jose-Yacaman, M. 1999. Gold nanoparticles obtained by bio-precipitation from Gold (III) solutions. Journal of Nanoparticle Research, 1(3): 397-404.
- Govindaraju, K., Tamilselvan, S., Kiruthiga, V., Singaravelu, G. 2010. Biogenic silver nanopar ticles by Solanum torvum and their promising antimicrobial activity. Journal of Bio pesticides, 3(1): 394–399.
- Grace, A.N., Pandian, K. 2007. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles: A brief study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3): 63-70.
- Herrera, I., Gardea-Torresdey, J.L., Tiemann, K.J., Peralta-Videa, R., Armendariz, V., Parsons, J.G. 2003. Binding of silver (I) ions by alfalfa biomass (Medicago sativa). Batch, time, temperature, and ionic strength studies. Journal of Hazardous Substance Research, 4: 1-16
- Inbakandan, D., Venkatesan, R., Khan, S.A. 2010. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata. Colloids and Surfaces: B, 81: 634–639.
- Jones, G.L., Muller, C.T., O’Reilly, M., Stickler, D.J. 2006. Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. Journal of Antimicrobial Chemotherapy, 57: 266-272.
- Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., Barathmanikanth, S., Kartikeyan, B., Gurunathan, S. 2010. Biosynthesis of gold and silver nanoparticles using Brevibacterium casei. Colloids Surfaces Bio interfaces, 77(2): 257-262.
- Kamali, M., Ghorashi, S.A.A., Asadollahi, M.A. 2012. Controllable synthesis of silver nanoparticles using citrate as complexing agent: characterization of nanopartciles and effect of pH on size and crystallinity. Iranian Journal of Chemistry and Chemical Engineering, 31(4): 21-28.
- Kasture, M.B., Patel, P., Prabhune, A.A., Ramana, C.V., Kulkarni, A.A., Prasad, B.L.V. 2008. Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles. Journal of Chemical Sciences, 120 (6): 515–520.
- Kaviya, S., Santhanalakshmi, J., Viswanathan, B. 2011. Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity. Journal of Nanotechnology, 2011: 1-5.
- Lin, D.H., Xing, B.S. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150: 243-250.
- Louis, C., Pluchery, O. 2012. Gold nanoparticles for physics, chemistry and biology, imperial college press, London, United Kingdom, 395.
- Marshal, A.T., Haverkamp, R.G., Davies, C.E., Parsons, J.G., Gardea-Torresdey, J.L., Agterveld, D.V. 2007. Accumulation of gold nanoparticles in Brassica Juncea. International Journal of Phytoremediation, 9: 197-206.
- Mironov, I.V., Makotchenko, E.V. 2009. The hydrolysis of AuCl−4 and the stability of aqua chlorohydroxo complexes of gold (III) in aqueous solution. Journal of Solution Chemistry, 38(6): 725-737.
- Moadi, T., Ghahramanzadeh, R., Yosofi, M., Mohammadi, F. 2014. Synthesis of silver nanoparticles using four species plant and investigation of their antimicrobial activity. Iranian Journal of Chemistry and Chemical Engineering, 33(4): 1-9. (In Persian)
- Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116: 6755-6759.
- Mukkerjee, A., Ahmad, A., Mandal, D., Senapti, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R., Sastry, M. 2001. Fungus-mediated synthesis of silver nanoparticles and their immobilization in mycelial matrix: a novel biological approach to nanoparticles synthesis. Nano letters, 1: 515-519.
- Narayanan, K.B., Sakthivel, N. 2011. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Journal of Advances in Colloid and Interface Science, 169: 59-79.
- Nejati, K., Davari, S. 2009. The effect of size of the nanoparticles on optical properties of plasmon line width. Nanotechnology,5(142):44-46.(In Persian)
- Philip, D. 2010. Green synthesis of gold and silver nanoparticles using Hibiscus Rosasinensis. Physica E, 42: 1417–1424.
- Ramzani, F., Kazemi, B., Jebali, A. 2013. Biological synthesis of silver nanoparticles. New cellular and Molecular Biotechnology Journal, 3(9):107-111. (In Persian)
- Rai, A., Singh, A., Ahmad, A., Sastry, M. 2006. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 22 (2): 736–741.
- Rai, M., Yadav, A., Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27: 76-83.
- Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S. 2011. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Free Radical Biology and Medicine, 363: 481- 489.
- Shah Mirzaee, H., Pazoki, M. 2007. A review on production of nanoparticles using microorganisms. Nanotechnology, 6 (119): 349-355. (In Persian)
- Shankar, S. S., Ahmad, A., Pasricha, R., Sastry, S. 2003. Bio reduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13: 1822-1826.
- Shanker, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M. 2004. Biological synthesis of triangular gold nanoprisms. Nature Material, 3: 482-488.
- Shenya, D.S., Mathewa, J., Philip, D. 2011. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79: 254–262.
- Song, J.Y., Kim, B.S. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32 (1): 79–84.
- Tajarrodi, A., Kiazadeh, A., 2007. The Comparison of the methods to synthesis of silver nanoparticles. Nanotechnology, 6(117): 217-222. (In Persian)
- Thakkar, K.N., Mhatre, S.S., Parikh, R.Y. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine, 6: 257-262.
- Tiwari, D.K., Behari, J., Sen, P. 2008. Time and dose dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Current Science, 95: 647–655.
- Vinoda, V.T.P., Saravanan, P., Sreedharc, B., Keerthi Devic, D., Sashidhard, R.B. 2011. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids and Surfaces B: Bio interfaces, 83: 291–298.
- Waghmar, S.S., Deshmukh, A.M., Sadowski, Z. 2014. Biosynthesis, optimization, purification and characterization of gold nanoparticles. African journal of microbiology research, 8(2): 138-146.
- Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., Xia, Y. 2006. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 110(32): 15666–15675.
- Yoon, K., Byeon, J.H., Park, J., Hwang, J. 2007. Susceptibility constant of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of Total Environment, 373: 572-575.
- Zakeri, M., Fasihi, J. 2011. Synthesis of gold nanoparticles using biomass of wheat and investigation of effective parameters. Iranian Journal of Chemistry and Chemical Engineering, 30(2): 35-41. (In Persian).